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Abstract

Many drugs can perturb the gut microbiome, potentially leading to negative health consequences. 

However, mechanisms of most microbe-drug responses have not been elucidated at the genetic 

level. Using high-throughput bacterial transcriptomics, we systematically characterized the 

gene expression profiles of prevalent human gut bacteria exposed to the most frequently 

prescribed orally administered pharmaceuticals. Across >400 drug-microbe pairs, significant and 

reproducible transcriptional responses were observed, including pathways involved in multidrug 

resistance, metabolite transport, tartrate metabolism, and riboflavin biosynthesis. Importantly, we 

discovered that statin-mediated upregulation of the AcrAB-TolC efflux pump in Bacteroidales 
species enhances microbial sensitivity to vitamin A and secondary bile acids. Moreover, gut 

bacteria carrying acrAB-tolC genes are depleted in patients taking simvastatin, suggesting that 

drug-efflux interactions generate collateral toxicity that depletes pump-containing microbes from 

patient microbiomes. This work provides a resource to further understand the drivers of drug-

mediated microbiota shifts for better informed clinical interventions.

Today, half of all Americans take at least one prescription drug, with national spending 

predicted to reach $400 billion by 20251,2. The prevalent use of pharmaceuticals is a 

major contributor to the alarming shifts in the gut microbiome, especially in industrialized 

countries3,4. A recent screen of >1,000 orally administered drugs revealed a high 
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frequency of antibacterial activity among human-targeted medications (24%), especially 

antipsychotics5. Clinically, proton pump inhibitors and atypical antipsychotics often 

trigger microbiota changes, with side-effects resembling those of antibiotic use (e.g., 

diarrhea, fungal infection)5,6. Even though the top three prescribed drug classes (i.e., 

antihyperlipidemic agents, antidepressants, analgesics7) are all linked to gut microbiota 

disturbances, the mechanisms driving these shifts are poorly understood5. Physiologically, 

altered microbiome composition can negatively impact epithelial integrity8, gut motility9, 

nutrient availability10, immune homeostasis11,12, and even treatment response. For instance, 

depletions in gut bacterial diversity have been linked to worse outcomes in immunotherapy 

drug trials13 and higher susceptibility to infection by pathogens such as Clostridiodes 
difficile14.

Gut microbes interact with pharmaceutical compounds in a variety of ways. Bacteria can 

biotransform drugs to impact efficacy15,16, bioavailability17, and toxicity18. For example, 

commensal Eggerthella lenta inactivates digoxin, an orally delivered cardiac glycoside, by 

expressing the cardiac glycoside reductase (cgr) operon15. Gut bacteria can also deplete 

xenobiotics from their local environment via bioaccumulation19 and mitigate the effects 

of toxic medications by employing conserved antibiotic resistance mechanisms5. Within 

minutes of xenobiotic exposure, microbes often exhibit highly specific transcriptional 

responses20,21. Therefore, transcriptomic measurements can help quickly dissect specific 

drug-microbe responses (e.g., digoxin15, 5-fluorouracil22, and levodopa23). However, current 

cost and scale of bacterial transcriptomics has precluded high-throughput studies using this 

approach24.

Here, we describe the systematic transcriptomic analysis of 409 drug-microbe pairs to 

dissect gene-level gut bacterial responses to top pharmaceuticals. We developed a high-

throughput transcriptomics pipeline for optimization in non-model gut microorganisms that 

was then applied to generate a total of 978 individual drug-microbe samples (including 

replicates). By analyzing the transcriptomes of prevalent human gut bacteria exposed to 

top-prescribed orally administered drugs, we observed shared and strain-specific responses, 

including in pathways for drug degradation, vitamin biosynthesis, and multidrug efflux. 

Further analysis of a human microbiome cohort dataset confirmed the clinical significance 

of our findings. This study highlights the utility of large-scale transcriptomics for functional 

discovery of gut microbiota-xenobiotic interactions.

RESULTS

Transcriptomic map of microbial responses to top medicines

Of the top 200 drugs prescribed today, 83% are orally delivered and expected to interact 

directly with the gut microbiome5,25,26. We therefore sought to measure the transcriptomic 

responses of prevalent gut bacteria exposed to top-prescribed oral pharmaceuticals. We 

implemented and optimized a multiplexed RNA-seq technique27 for high-throughput 

transcriptomics of non-model gut bacteria and incorporated cost-efficient ribosomal RNA 

(rRNA) depletion for diverse non-model gut bacteria that we previously developed24 (Fig. 

1a). This modified pipeline can generate high-quality transcriptomes for diverse gut bacterial 

phyla at a cost of <$16 for ~1M reads per sample (Supplementary Table 1).
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We assembled a panel of 14 representative and highly prevalent28–30 human gut isolates 

spanning the Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria phyla (see 

Supplementary Fig. 1, Supplementary Tables 2 & 3) and 19 oral drugs from the top 

prescribed drugs in 2017 according to the Agency for Healthcare Research and Quality 

(Supplementary Table 4, Methods)31. Our drug list included the top 8 most prescribed 

drugs as well as 10 additional neurotransmitter modulators, which were included due 

to established associations between the psychotherapeutic drug class and microbiota 

compositional changes5. Lenalidomide, a chemotherapeutic with the largest market cap in 

the small molecule drug class31, was also added.

We first assessed the antimicrobial activity of the chosen drugs against our bacterial 

panel (Fig. 1b, Supplementary Fig. 2; Methods). Drug concentrations were chosen to 

span median drug concentrations within the small and large intestine, which have been 

estimated to approach 20 and 100 µM, respectively5. We did not observe growth inhibition 

for most strains at 2 or 20 µM concentrations (Supplementary Fig. 2). At 100 µM, growth 

inhibition was observed for at least one drug in 18 of 19 strains within 24 hours (Fig. 

1b). Notably, B. longum did not exhibit growth defects in any drug condition. Broad 

spectrum antimicrobial activity was seen for simvastatin, amlodipine, and a subset of 

psychotherapeutics (i.e., sertraline, paroxetine, duloxetine, fluoxetine), in agreement with 

previous reports5. Interestingly, we observed the greatest magnitudes of drug-induced 

growth defects within Bacteroidetes strains, suggesting that these species are more 

susceptible to drug toxicities (Fig. 1b, Supplementary Fig. 2). We further validated that 

the observed toxicity profiles extended to complex bacterial communities by exposing the 

drug panel to a fresh fecal sample from a healthy volunteer. We observed similar growth 

inhibition profiles of 13 panel strains grown in fecal community (Supplementary Fig. 3), 

supporting the relevance of our individual strain-level growth measurements in the context 

of a complex consortium.

Since substantial growth inhibition can confound transcriptional measurements, we 

performed all subsequent transcriptomic assays at 20 µM, which reasonably approximated 

intestinal drug concentrations for detecting drug responses while minimizing drug 

toxicities5,32. To further avoid impact of antimicrobial toxicity, cells were harvested at 1.5 

hours post-exposure, which is shorter than the doubling time of several gut bacteria33. The 

transcriptomic pipeline was first validated using Eggerthella lenta exposed to our drug panel, 

as well as digoxin as a positive control (Supplementary Figs. 4-5, Supplementary Table 5). 

Differential E. lenta gene expression was observed in 17 of 20 drug conditions, including 

the expected upregulation of the cgr operon by digoxin15 (Supplementary Fig. 5). The 

transcriptomic pipeline was thus applied to all drug-microbe pairs in biological duplicates 

(Supplementary Fig. 4b, Supplementary Tables 6-8).

Overall, substantial and consistent transcriptional responses were observed across drug 

classes and bacterial phyla (Supplementary Table 6). We used the magnitude of global 

transcriptional response as a common proxy34 by calculating the ratio of differentially 

expressed genes (DEGs) to the total gene count per genome, which we refer to as the DEG 

ratio or DEGR (Fig. 1c). All drugs produced differential expression in at least one strain. 

The largest aggregate DEGR was produced by simvastatin (0.014), followed by sertraline 
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(0.010), levothyroxine (0.006), and paroxetine (0.004) (Fig. 1c, top bars). Notably, in many 

cases drugs eliciting large global transcriptional changes also exhibited broad-spectrum 

toxicity in the growth screen (Fig. 1b, c; Supplementary Fig. 6).

Large transcriptional changes are often associated with expression changes of global 

regulators and transcription factors (TFs)35. Indeed, the drug-microbe pairings associated 

with the highest DEGRs (Simvastatin-B. stercoris, Sertraline-F. saccharivorans, Simvastatin-

A. shahii) also induced the highest numbers of TFs (14, 13, and 12, respectively) 

(Supplementary Fig. 7). However, in several cases, bacterial-drug exposures generated 

differential expression without TF modulation, such as D. longicatena exposed to metoprolol 

tartrate and P. dorei exposed to various selective serotonin reuptake inhibitors (SSRIs) 

(Supplementary Fig. 7). In these cases, differential expression was not consistently 

correlated with antimicrobial activity (Fig. 1b, c). These results indicate that drug-microbe 

exposures producing large and broad gene expression changes often correlate with drug 

toxicity, while those eliciting specific transcriptional responses may not.

To understand the functional impact of different exposures on the gut microbiota, we 

performed pathway enrichment analysis using the KEGG (Kyoto Encyclopedia of Genes 

and Genomes) database to classify DEGs across the drug panel, agnostic of strain identity 

(Fig. 2). Most differentially regulated modules (padj<0.01, FC>4) were associated with 

mechanisms of antibiotic resistance (Fig. 2a). Specifically, pathways related to multidrug 

resistance, transport, and two-component systems were enriched. Simvastatin, sertraline, 

and amlodipine – the drugs exhibiting the broadest toxicity in growth screens – strongly 

upregulated multidrug resistance pathways associated with efflux transporters. Further, 

trazodone and levothyroxine, which triggered differential expression in Bacteroidetes, 
Firmicutes, and Actinobacteria without impacting growth (Fig. 1b, c), showed similarly 

enriched pathways to more toxic screened compounds (Fig. 2a). While growth deficits were 

not detected in trazodone and levothyroxine-treated cultures at the maximum concentrations, 

this result suggests that these compounds could exhibit toxicity in vivo at concentrations 

exceeding 100 µM. Notably, post-treatment microbiota changes have been detected in 

hypothyroid patients taking levothyroxine36 and psychiatric patients taking trazodone37.

We next examined functional orthologs within pathways that exhibited the greatest 

magnitudes of differential regulation across drug conditions (Fig. 2b). Among the top 7 

most upregulated orthologs, 6 corresponded to conserved multidrug efflux pumps (Fig. 2b). 

Among these orthologs, the top 4 (HAE1, AcrA, mexK, oprM) belonged to the Resistance-

Nodulation-Division (RND) permease superfamily, a drug and heavy metal efflux system 

whose upregulation is associated with gram-negative bacterial antibiotic resistance38,39. The 

fifth and sixth orthologs (bcrB and ABCB-BAC) belonged to the ATP-binding cassette 

(ABC) superfamily, which was also highly represented among the top downregulated 

orthologs across drug conditions (Fig. 2b). Interestingly, the ABC superfamily is not 

considered to contribute substantially to bacterial multidrug resistance; however, these 

pumps are highly associated with chemotherapy resistance in eukaryotic cells40. Together, 

these observations suggest that gut bacterial strains utilize conserved multidrug efflux pumps 

to ameliorate toxicities of human-targeted drug compounds5.
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Given the link between the identified RND-type efflux pumps and antibiotic resistance 

in gram-negative species38,39, we wondered whether gut bacteria employ the same 

resistance pathways to ameliorate toxicities in commonly prescribed antibiotic classes. 

To explore this question, we generated transcriptomes for 4 species (A. rectalis H1, 

D. longicatena H1, B. longum H1, P. vulgatus H1) exposed to 7 commonly prescribed 

antibiotics that target bacterial synthesis of DNA (ciprofloxacin), proteins (tetracycline, 

streptomycin, erythromycin), or the cell membrane (cefotaxime, ampicillin, vancomycin) 

(Supplementary Figs. 4 & 8, Supplementary Table 9). Principal coordinates analysis 

(PCoA) revealed that transcriptomic responses to traditional antibiotics clustered by drug 

target across sensitive strains (A. rectalis, D. longicatena, P. vulgatus), suggesting that 

bacteria utilize conserved pathways to mitigate toxicities of drugs with similar bacterial 

targets (Supplementary Fig. 8a). Notably, minimal transcriptomic responses to streptomycin 

exposures were observed, consistent with inherent streptomycin resistance of anaerobically 

grown bacterial isolates41. Further, B. longum, the only bacterial strain in our panel that 

did not exhibit growth sensitivity to at least one screened pharmaceutical, demonstrated 

minimal transcriptional responses to antibiotic exposures as compared to a vehicle control, a 

behavior consistent with resistance32. To compare bacterial pathways induced by traditional 

antibiotic exposures, we next performed a KEGG pathway enrichment analysis of DEGs 

in the 4 tested bacteria exposed to orally delivered drugs or traditional antibiotics 

(Supplementary Fig. 8b). Membrane-directed antibiotics upregulated pathways associated 

with cell membrane synthesis and modification (vancomycin resistance, fatty acid synthesis 

pathways), while ribosomal-targeted antibiotics induced upregulation of ribosomal pathways 

and downregulation of ATP-synthesis. Remarkably, our analysis revealed no overlap in 

bacterial pathways induced by non-antibiotic pharmaceuticals and traditional antibiotic 

compounds, suggesting that non-antibiotic orally delivered compounds impact unique 

mechanisms of prokaryotic multidrug resistance.

Drugs impact gut bioavailability, biosynthesis and toxicity

To obtain a deeper functional understanding of bacterial-drug interactions at the operon 

level, we searched for clusters of DEGs transcribed within the same operon. Numerous 

differentially expressed operons were identified across strains (Supplementary Table 8). 

Existing mechanistic studies of gut microbiota drug interactions have identified a range 

of bacterial drug responses that can cause differential treatment outcomes, including drug 

metabolism, toxicity mitigation and alteration of the prokaryotic metabolome5,19,42. In order 

to explore the diversity of physiologically relevant bacterial xenobiotic interactions, we 

selected 3 representative operons associated with drug metabolism, vitamin biosynthesis, 

and toxicity mitigation for further examination (Fig. 3).

First, we observed upregulation of the tartrate dehydratase (ttd) operon in E. coli, A. 
rectalis, and D. longicatena exposed to metoprolol tartrate, a beta blocker used to treat 

hypertension43 (Fig. 3a). Metoprolol is chemically formulated either as metoprolol tartrate 

or metoprolol succinate for immediate release or extended release, respectively. Which 

form of metoprolol is administered can impact bioavailability, with metoprolol tartrate 

producing higher peak-to-trough variation among patients44. For bacteria, dietary tartrate 

metabolism through the ttd operon provides another carbon source in the gastrointestinal 
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tract45. Our results suggest that certain gut microbes can metabolize the tartrate salt of 

immediate-release metoprolol, which could contribute to fluctuations in drug bioavailability 

within patient cohorts. These findings could also have broader implications for other 

tartrate-conjugated drugs46. Furthermore, upregulation of tartrate metabolism by metoprolol 

could have unintended negative consequences in the context of cardiovascular disease47. 

Increases in bacterial tartrate metabolism have been linked to metabolic disorders, including 

atherosclerotic cardiovascular disease (ACVD), type 2 diabetes (T2D) and obesity47. 

Enrichment in tartrate metabolism has also been associated with higher abundance of E. 
coli, a metoprolol tartrate metabolizer identified in our screen. Using a published clinical 

metagenomic microbiome dataset of T2D patients48, we performed an additional analysis 

exploring the distribution of ttd genes among T2D patients consuming metoprolol. We 

found that T2D patients taking metoprolol had an increased abundance of the ttd operon 

in their gut metagenome compared to patients not taking metoprolol (p=0.046) and healthy 

controls (p=0.008, Fig. 3b). Therefore, our findings combined with prior studies suggest 

that treatment with metoprolol tartrate for hypertension, which is the strongest predictor for 

ACVD49, might inadvertently influence the pathophysiology of a metabolic disorder via an 

increase in microbiota tartrate metabolism.

Next, we identified differential regulation of the riboflavin biosynthesis (rib) operon in 

D. longicatena by several drugs within our panel (Fig. 3c). The gut microbiome is an 

important source of riboflavin (vitamin B2) in humans50. Riboflavin production is an 

essential pathway in bacteria, as downstream metabolites flavin mononucleotide (FMN) 

and flavin adenine dinucleotide (FAD) are co-enzymes for oxidases, reductases, and 

dehydrogenases51. In gram-positive bacteria, riboflavin biosynthesis is downregulated by an 

FMN-responsive riboswitch, which also responds to roseoflavin51. In our transcriptomics 

dataset, several SSRIs (sertraline, paroxetine, fluoxetine, duloxetine), a cardiovascular 

medication (amlodipine), simvastatin, and levothyroxine all downregulate riboflavin 

production in D. longicatena. We also observed upregulation of the rib operon by D. 
longicatena in response to trazodone and atorvastatin exposure. Clinically, vitamin B2 

deficiency is associated with higher risk of psychiatric disorders for which SSRIs are 

indicated (e.g., depression), though whether these depletions are a cause or a result of 

disease is not understood52,53. Reduced riboflavin concentrations can also contribute to 

hyperhomocysteinemia, a well-studied independent risk factor for atherosclerosis54,55. Our 

data suggest that the administration of certain SSRIs and cardiovascular medications could 

modulate vitamin B2 levels in the setting of mood disorders or heart disease, respectively, 

which could have unintended detrimental consequences on the disease state.

Finally, we observed a strong statin-mediated upregulation of genes encoding the AcrAB-

TolC efflux pump in all Bacteroidales strains tested (B. fragilis, B. stercoris, B. uniformis, 
P. dorei, P. vulgatus, P. distasonis, A. shahii) (Fig 3d). The AcrAB-TolC pump has been 

linked to resistance against several classes of antibiotics as well as non-antibiotic orally 

delivered pharmaceuticals including methotrexate and tamoxifen5,56. The pump is also 

known to mediate bacterial sensitivity to retinol and secondary bile acids57. Given that 

previous studies have linked statin use with changes in gut microbiome composition25, we 

thus explored the mechanism by which upregulation of AcrAB-TolC by statins could impact 

microbial physiology in the gut.
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Statins modulate AcrAB-TolC activity in gut microbes

Statins have been widely studied for their potential as non-traditional antibiotics, with 

simvastatin garnering particular attention for its activity against multidrug resistant 

pathogens such as Staphylococcus aureus58. Simvastatin alters the composition of gut 

microbiome in patients, but the mechanism driving this microbial shift is not understood25. 

In our transcriptomic screening, we found that simvastatin strongly upregulated acrAB-tolC 
genes across multiple Bacteroidales strains, while atorvastatin significantly upregulated 

acrAB-tolC genes only in P. distasonis (Fig. 3d). Interestingly, these transcriptional profiles 

correlated with strong and modest toxicities exhibited in our growth screens by simvastatin 

and atorvastatin, respectively (Fig. 1b), motivating further exploration into the role of 

AcrAB-TolC in the interplay between gut microbes and antimicrobial compounds.

In Bacteroides species, the AcrAB-TolC efflux pump ameliorates toxicity of antibiotics and 

common dietary metabolites such as retinol (vitamin A)57. We thus hypothesized that drugs 

altering AcrAB-TolC expression in Bacteroidales species could result in targeted changes 

in the toxicity of other compounds. Using P. distasonis, we first determined the MIC of 

retinol (>24 µg/mL) and several common antibiotics with different mechanisms of action 

whose resistance is mediated by AcrAB-TolC56 (Supplementary Table 10). In the presence 

of simvastatin, the MICs of several of these compounds were significantly shifted, with 

retinol showing the most pronounced effect (>2-fold decrease, Supplementary Fig. 9). We 

then exposed four Bacteroidales strains (P. distasonis H1, P. dorei H1, P. vulgatus H1, P. 
vulgatus ATCC 8482) to retinol in the presence or absence of statins and additional drugs 

(sertraline, trazodone, amlodipine) observed to upregulate the acrAB-tolC operon (Fig. 

4a; Supplementary Fig. 10). As a negative control, we co-incubated retinol-exposed non-

Bacteroidales strains (E. coli, A. rectalis, D. longicatena) with simvastatin (Supplementary 

Fig. 11). At 20 µM, simvastatin enhanced the sensitivity to retinol in all Bacteroidales 
strains, with the strongest shift seen in P. distasonis and P. vulgatus (4-fold reduction in MIC, 

Fig. 4a). In non-Bacteroidales strains (E. coli, D. longicatena, A. rectalis), retinol MICs were 

not significantly altered by simvastatin co-incubation (Supplementary Fig. 11). Notably, we 

observed a modest shift approaching significance in simvastatin-treated A. rectalis, which 

we attribute to combined global toxicity burdens of simvastatin and retinol, unrelated to 

the AcrAB-TolC pump. Sertraline modestly increased retinol sensitivity in all Bacteroidales 
strains, amlodipine showed similar effects in two of four strains (P. vulgatus H1, P. dorei 
H1), atorvastatin modestly decreased the MIC of retinol in P. distasonis only, and trazodone 

did not significantly influence MIC of retinol in any strains (Fig. 4a, Supplementary Fig. 

10).

Deoxycholic acid (DCA) is a secondary bile acid whose toxicity is also modulated by 

AcrAB-TolC57. We thus tested whether simvastatin enhanced DCA toxicity in P. distasonis. 

Simvastatin at 20 µM significantly limited P. distasonis growth when co-incubated with 

DCA (MIC = 64 µg/ml, 66% reduction) (Fig. 4b). Simvastatin did not lower the MIC of 

other secondary bile acids (i.e., hydroxydeoxycholic acid, ursodeoxycholic acid) whose 

toxicity is not mediated by AcrAB-TolC57 (Supplementary Fig. 12). Importantly, the 

simvastatin-altered MICs of retinol and DCA each fall within estimated colon concentration 

ranges of these metabolites in the human gut57,59.
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Having established that simvastatin significantly upregulates AcrAB-TolC in Bacteroidales 
species, and that this exposure increases Bacteroidales sensitivity to retinol and DCA, 

we next sought to confirm that AcrAB-TolC upregulation directly increases sensitivity to 

dietary metabolites. In order to establish causality of AcrAB-TolC upregulation in increasing 

collateral sensitivity of Bacteroidales species to retinol, we engineered a P. vulgatus H1 

isolate to overexpress different copies of AcrAB-TolC or a control cargo, and measured 

retinol MIC for engineered isolates exposed to simvastatin or DMSO (Fig. 4c, Methods). 

As compared to plasmid overexpression of a cargo control, overexpression of either copy 

of AcrAB-TolC increased collateral sensitivity to retinol, establishing that efflux pump 

overexpression directly increases collateral sensitivity to vitamin A. Notably, while minimal 

toxicity was associated with plasmid overexpression in the control P. vulgatus strain, acrAB-
tolC expression also increased toxicity of simvastatin at 20 µM concentrations, as exhibited 

by P. vulgatus growth at retinol concentrations of zero. Further, overexpression of acrAB-
tolC copy 2 caused greater enhancement of retinol and simvastatin toxicity in P. vulgatus as 

compared to copy 1, suggesting distinct efficacy levels of these genomic efflux pump copies. 

Taken together, our transcriptomic dataset revealed a statin-mediated interaction with the 

AcrAB-TolC efflux pump that could enhance the antimicrobial effects of common dietary 

and host metabolites in vivo, potentially accounting for the gut microbiota alterations seen in 

statin-treated patient populations25.

Simvastatin is generally administered as a lactone prodrug, while atorvastatin is 

administered in the active compound form58 (Fig. 4d). Given the role of lactone moieties in 

many antibiotics60, we wondered whether the transcriptional regulation of the AcrAB-TolC 

efflux pump by simvastatin might be linked to the toxicity of its lactone moiety. To test 

whether the lactone ring in simvastatin induces toxicity, we incubated simvastatin-sensitive 

P. distasonis and P. vulgatus strains with the lactone prodrug (simvastatin), the non-lactone 

activated compound (tenivastatin), and atorvastatin (Fig. 4e). Interestingly, tenivastatin, 

which does not contain a lactone ring, did not exhibit toxicity against either tested strain. 

Notably, AcrAB-TolC preferentially binds to hydrophobic substrates (e.g., lipophilic lactone 

side chains)61,62. To determine whether AcrAB-TolC modulation of bacterial inhibition by 

dietary metabolites depends on the presence of the toxic simvastatin lactone moiety, we 

exposed a P. distasonis strain to various concentrations of retinol in the presence or absence 

of 20 µM simvastatin or tenivastatin (Fig. 4f). Tenivastatin did not lower the MIC of retinol, 

suggesting that the intact lactone ring of the unmetabolized prodrug simvastatin is necessary 

to enhance bacterial retinol sensitivity.

Next, to better understand the prevalence of AcrAB-TolC in the human gut microbiome, we 

assessed its frequency in 4,930 representative metagenome-assembled genomes (MAGs) 

sourced from healthy human microbiomes (Fig 5a, Methods)63. 106 MAGs contained 

a complete AcrAB-TolC homolog (e <10−5, coverage >90%, identity >40%), of which 

59.4% were linked to the Bacteroidaceae family. The high prevalence of AcrAB-TolC 
in Bacteroidaceae suggests that Bacteroidaceae-dominated individuals may be particularly 

susceptible to simvastatin-mediated microbiota changes.

To explore the clinical relevance of simvastatin-induced upregulation of the acrAB-tolC 
operon, we next quantified the metagenomic abundance of this operon’s homologs in stool 
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samples from the Body Mass Index Spectrum (BMIS) cohort25 (Fig. 5b-d). Notably, the 

AcrAB-TolC pump was highly prevalent in fecal metagenomes of the BMIS cohort, with 

91.6% of study participants showing >20% median relative abundance of AcrAB-TolC 

across treatment groups (Fig. 5b). Further, a significant decrease in relative abundance of the 

acrAB-tolC operon (padj = 0.0102) in the gut microbiome of patients receiving simvastatin 

was observed (Fig. 5b). In contrast, acrAB-tolC gene abundance was not changed in patients 

who received atorvastatin, fluvastatin, pravastatin, or rosuvastatin. Accordingly, simvastatin-

treated patients also showed a significant depletion in Bacteroides species (p = 0.0030), as 

well as increases in Alistipes and unclassified Firmicutes (Fig. 5c). Moreover, Bacteroides 
and other bacteria containing a complete AcrAB-TolC homolog were significantly depleted 

in simvastatin-treated cohorts as compared to untreated controls (p = 0.0013), whereas 

bacteria missing this operon were not depleted (p = 0.699) (Fig. 5d). Notably, a relative 

abundance analysis for the separate gene components of the acrAB-tolC operon in statin-

treated cohorts identified the most significant depletion (p = 0.003) in the AcrB2 gene, 

which encodes a homotrimer docked to the intracellular bacterial membrane that binds to 

pump substrates (Supplementary Fig. 13)61.

Taken all together, we posit a potential model of statin-mediated depletion of gut microbes 

containing the AcrAB-TolC efflux pump (Supplementary Fig. 14). Under normal conditions, 

gut microbial residents containing AcrAB-TolC homologs (e.g., Bacteroidales species) 

utilize this pump to prevent periplasmic and cytoplasmic accumulation of metabolites, such 

as retinol and deoxycholic acid, to toxic levels. In the context of simvastatin treatment, 

acrAB-tolC is upregulated, leading to increased collateral sensitivity to dietary metabolites 

and reduced cell viability. Efflux pump upregulation leading to decreased bacterial viability 

has been observed in clinical cohorts64, although the mechanism of this phenomenon has 

not been elucidated to date. Notably, the prototypical acrAB-tolC operon is regulated 

by the self-contained acrR repressor (Fig. 3d), which in E. coli is strongly upregulated 

under conditions of global stress65. Thus, it is possible that by inducing AcrR expression, 

engineered AcrAB-TolC pump overexpression could indirectly impact co-regulation of 

global stress response and lead to reduced cell viability. Regardless, with simvastatin 

treatment, increased expression of AcrAB-TolC causes decreased viability of gut bacteria 

and consequential alterations in gut microbiota composition.

Strain differences in drug-mediated transcriptomic responses

Finally, we sought to explore how drug-microbe transcriptional responses differed among 

different strains in our panel (Fig. 6, Supplementary Fig. 15). First, we analyzed the DEGRs 

across all drugs by principal coordinates analysis (PCoA) to quantify similarities in global 

transcriptomic profiles of strains. Interestingly, we found that microbial responses to drugs 

clustered significantly at the family level (i.e., Bacteroidaceae, Lachnospiraceae), (p = .003 

by PERMANOVA test) (Fig. 6a), suggesting that closely related bacteria may respond 

similarly to different drugs. However, a detailed comparison of conspecific strains revealed 

a more variable pattern of response. For example, while strains of A. rectalis (H1 vs. ATCC 

33656) exhibited highly consistent drug responses, strains of B. uniformis (H1 vs. ATCC 

8492) responded more heterogeneously to pharmaceuticals (Fig. 6a).
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To further delineate the strain specificity of drug responses, we next quantified the average 

nucleotide similarity (ANI) between different Bacteroidales strain pairs, which we compared 

with the correlation of global transcriptomic response (DEGR values) between strains (Fig. 

6b). We observed higher correlations (R > 0.7) in overall drug response between pairs with 

the greatest ANI values (ANI > 0.95), suggesting that the more similar the bacterial genome, 

the more similar the global transcriptomic response across drug conditions (Fig. 6b). In 

order to compare the transcriptomic responses of conspecific strains more closely, we next 

aligned the genomes for all conspecific strains (Methods). We observed high correlations 

(R2 > 0.79) in expression of shared genes between all conspecific strain pairs, suggesting 

shared transcriptional responses between isolates (Supplementary Fig. 15).

We next sought to investigate strain-level drug response at the operon level. Remarkably, 

we identified two common types of transcriptional differences between conspecific strains: 

1) absence of an operon in one isolate, and 2) differential regulation of a shared operon 

between isolates, with both differences possibly having functional impacts. For example, 

sertraline upregulated a mobile element containing Type IV secretion system machinery 

in A. rectalis H1 that was not present in A. rectalis ATCC 33656 (Fig. 6c). Similarly, 

sertraline and paroxetine upregulated BepE efflux machinery in B. uniformis H1 that was 

not present in ATCC 8492 (Fig. 6c). On the other hand, several drugs (sertraline, paroxetine, 

levothyroxine, simvastatin) downregulated a shared putative L-arabinose utilization operon 

in A. rectalis H1, but this same operon (98.31% average conservation in coding sequence) 

was not differentially expressed in A. rectalis 33656 (Fig. 6c). Conversely, these compounds 

downregulated a shared putative transketolase operon (99.89% average conservation in 

coding sequence) in A. rectalis 33656 only (Fig. 6c). Interestingly, in addition to differences 

in shared operon expression between isolates, we also observed instances of differential 

regulation of different gene copies by the same drug perturbation (Fig. 6c). For example, 

within F. saccharivorans DSMZ 26062, levothyroxine, sertraline, simvastatin, and paroxetine 

exposures triggered simultaneous up- and down-regulation of different copies of araQ, a 

permease protein associated with L-arabinose transport (99.25% average conservation in 

coding sequence; Fig. 6c). A high degree of strain-level functional diversity could explain 

the substantial microbiome compositional variation often observed in clinical drug studies 

that only rely on 16S taxonomic analysis rather than whole genome sequencing. Together, 

these results underline the importance of assessing bacterial drug responses at the strain 

level with genomic information, as well as extending traditional microbiota drug screens to 

multiple conspecific strains to capture the full intra-strain diversity of drug responses.

DISCUSSION

While numerous clinical studies suggest prevalent drug-microbiota interactions5,13,23,25, 

genetic-level understanding of xenobiotic-induced microbiota shifts remains limited. In 

this study, we generated to our knowledge the largest transcriptome dataset for exploring 

gut microbiota-drug responses to common orally delivered drugs, totaling >400 bacterial-

drug pairwise interactions. With this dataset, we uncovered that simvastatin-mediated 

upregulation of the AcrAB-TolC efflux pump generates collateral toxicity to dietary 

metabolites ex vivo. Using a clinical metagenomic dataset, we confirmed that AcrAB-
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TolC-containing gut bacteria are depleted in patients taking simvastatin, suggesting that 

upregulation of acrAB-tolC under statin exposure increases cellular toxicity.

Beyond statins, our data established clinically relevant links between cardiovascular 

medications and SSRIs and the gut microbiome. Our ex vivo data and computational 

analysis of T2D patient data suggest the upregulation of tartrate metabolism in gut 

microbes exposed to metoprolol. This result motivates the need for further clinical studies 

to determine whether metoprolol tartrate places patients at higher risk for developing 

T2D and other metabolic disorders. The clinical dataset used in our analysis does not 

distinguish metoprolol tartrate versus metoprolol succinate, which are used short- or 

long-form treatment. As metoprolol tartrate exhibits a greater inter-individual variation in 

bioavailability44, future work exploring the impact of microbiome metabolism on the in 
vivo bioavailability of metoprolol tartrate and other tartrate-conjugated pharmaceuticals 

is warranted. Separately, our findings provide the first evidence that drugs can modulate 

riboflavin production by gut bacteria. Mechanistic delineation of how pharmaceuticals 

induce or repress vitamin B2 production could enable the development of tools to promote 

microbial production of this essential vitamin51. As vitamin B2 depletions have been linked 

to depression and atherosclerosis52,53,55, our data also motivate clinical studies of whether 

rib-modulating medications impact key vitamin reservoirs in the microbiomes of psychiatric 

and cardiovascular patients, and whether these interactions impact disease pathology.

From an ecological standpoint, shared transcriptional responses could provide mechanistic 

insights into how pharmaceuticals drive shifts in microbiome populations over time. 

Our pathway meta-analysis demonstrated that many drugs upregulate highly conserved 

bacterial multidrug efflux pumps. Efflux-associated pathways were distinct from resistance 

pathways upregulated by traditional antibiotics, suggesting novel mechanisms of drug-driven 

microbiota responses. Our results showing efflux-mediated collateral toxicity induced by 

simvastatin-retinol coincubation underline the importance of exploring the molecular efflux 

networks to identify drug-efflux pump interactions that can result in gut microbiota shifts. 

Further, recent data has linked chronic prescription drug use and polypharmacy with 

antimicrobial resistance in gut microbiota4. One work even linked the upregulation of 

efflux pumps by four antidepressants used in our study (sertraline, duloxetine, escitalopram, 

bupropion) to the promotion of antimicrobial resistance among gut community members66. 

These data all suggest that chronic medication-induced increases in the activity of efflux 

pumps could contribute to higher rates of antimicrobial resistance among gut microbiota 

within patient populations.

Our study has several limitations. Ex vivo screens cannot capture the full environmental 

complexity that may exist between microbiota community members and the host in vivo, 

and transcriptomics does not directly probe host-mediated drug-microbiota interactions. 

While many of our observed inhibitory drug activities aligned with published clinical 

data5,25, we detected neither growth nor transcriptional changes in gut bacteria exposed to 

metformin. The role of host-derived factors mediating metformin-induced microbiota shifts 

is well documented (i.e., secondary bile acids cause depletion of Bacteroides and enrichment 

of Escherichia species that trigger downstream regulation of the farnesoid receptor)67. This 

and other instances of low transcriptomic signals generated in our study by drugs linked to 
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microbiota changes in vivo (e.g., omeprazole) could suggest missing host- or community- 

derived factors, motivating future in vivo studies that integrate these other factors (e.g., 

bile acids and dietary vitamins). While we leveraged published clinical microbiome data to 

further validate our ex vivo drug-microbe interaction results, our simvastatin findings could 

benefit from prospective clinical trials designed to dissect the impacts of simvastatin and 

disease status on gut microbiota dynamics, and to determine whether AcrAB-TolC is simply 

a biomarker or a functional mediator of simvastatin-associated gut microbiota shifts.

Altogether, this work has demonstrated the utility of high-throughput transcriptomics to 

delineate microbiota-drug interactions. We envision that this low-cost and scalable pipeline 

can be easily applied to any microbiota-treatment pairing including xenobiotic, prebiotic, 

and probiotic treatments. These efforts will lead to a greater mechanistic understanding of 

how different environmental exposures impact the gut microbiome that in turn can affect 

host health and response to medical interventions.

ONLINE METHODS

Materials and Culture Conditions

All bacteria used in this study have fully sequenced genomes, the information for which 

can be found in (Supplementary Table 3). Natural bacterial isolates used in this study were 

derived from a single fecal sample taken from a healthy individual for an unrelated study. 

Sex and gender of this individual, while reported in the unrelated study, were deemed 

irrelevant in this study and were not reported. This work was approved and conducted under 

Columbia University Medical Center Institutional Review Board protocol AAAR0753, and 

written informed consent was obtained from the subject. Additional conspecific strains of 

A. rectalis, F. saccharivorans, B. uniformis, P. vulgatus, and B. fragilis, as well as the 

Eggerthella lenta strain described in Ref15, were obtained from public strain catalogs. All 

publicly available strains used in this study were either purchased from the American Type 

Culture Collection (Manassas, VA) or the Leibniz Institute DSMZ-German Collection of 

Microorganisms and Cell Cultures GmbH. All monoclonal isolates were Sanger sequenced 

(Azenta Life Sciences) at the 16S-V4 region pre- and post-experimentation to confirm strain 

identity. Natural isolates used in this study are available from the corresponding author upon 

request.

For our drug panel, we selected 19 orally administered drugs from the top prescribed 

pharmaceuticals in 2017 according to the Agency for Healthcare Research and Quality 

(Supplementary Table 4)31. This list included the top eight most prescribed drugs, included 

lisinopril, atorvastatin, levothyroxine, metformin, amlodipine, metoprolol, omeprazole, 

and simvastatin. Additional neurotransmitter modulators were selected from the top 25 

drugs prescribed, as follows: sertraline, fluoxetine, citalopram, escitalopram, paroxetine, 

duloxetine, venlafaxine, amitriptyline, bupropion, and trazodone. We finally included 

lenalidomide due to its large market cap31. All chemicals used in this study were purchased 

from Sigma-Aldrich (Burlington, MA), Thermo Scientific Chemicals (Waltham, MA), or 

Avantor (Phillipsburg, NJ) (Supplementary Tables 4, 9-10). Probes for rRNA depletions 

were purchased from Integrated DNA Technologies (Coralville, IA). Unless otherwise 

noted, bacterial cultures were grown in ½ diluted Gifu Anaerobic Medium Broth, modified 
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(mGAM, HyServe 05433) media prepared according to manufacturers’ instructions. Prior to 

experimentation, all mGAM media was reduced for 24 hours under anaerobic conditions 

(5% H2, 10% CO2, 85% N2) within a Coy Laboratory products anaerobic chamber. 

Chemical plates were prepared in 96-well format under aerobic sterile conditions and 

reduced for 3–6 hours prior to experimentation.

Bacterial Transcriptome Preparation and Extraction

For all transcriptomic experiments, bacterial cultures at exponential phase were added to 

96- deep-well plates (Axygen P-DW-20-C) containing pre-reduced chemicals to reach a 

final concentration of 20 µM (500 µM for metformin). After 90 minutes of exposure in 

shaken media at 37°C, cultures were centrifuged, supernatant removed, and cell pellets were 

transferred to −80°C prior to bacterial RNA extraction.

Bacterial RNA was extracted using RNAsnap methods68. Briefly, frozen bacterial 

pellets were suspended in 500 µl RNAsnap mix (95% formamide, 18 mM 

ethylenediaminetetraacetic acid, 0.025% sodium dodecyl sulphate, 1% B-mercaptoethanol) 

before addition of ∼200 µl of 0.1mm Zirconia Silica beads (Biospec 11079101Z). Cells were 

then lysed by bead beating for 3× 2.5 minutes in a Biospec Mini Bead Beater (Biospec 

1001) with 5-minute intervals and then subjected to centrifugation at 4,300 g for 5 minutes. 

The clean supernatant was then transferred to a new deep well plate and RNA was purified 

using a Zymo ZR-96 RNA Clean & Concentrator kit (Zymo R1080) per manufacturer’s 

instructions.

RNA-seq Library Preparation and Sequencing

RNA-seq libraries were constructed following a modified RNAtag-seq protocol as detailed 

in Ref24. Briefly, 400 ng of total RNA lysate was subjected to fragmentation in 2X FastAP 

buffer (ThermoFisher EF0651), genomic DNA removal (TURBO™ DNase, ThermoFisher 

AM2239), and dephosphorylation (FastAP, ThermoFisher EF0651). Fragmented RNA was 

purified using SeraPure SPRI bead cleanup69 and ligated with barcoded first adapter ligation 

by T4 RNA ligase I (NEB M0437M). After pooling and purification with the Zymo RNA 

Clean and Concentrator-5 kit (Zymo R1015), we quantified barcoded RNA using a Qubit 

RNA HS Assay Kit (ThermoFisher Q32855) and then performed RNase H-based ribosomal 

RNA depletion on 400 ng of barcoded RNA sample using a 10:1 probe-to-RNA ratio, as 

previously outlined24.

rRNA-depleted RNA was subjected to downstream library preparation following standard 

RNAtag-seq protocols27, including reverse transcription (ThermoFisher 18090010) and 

second adapter ligation (NEB M0437M). Ligation products were further amplified with 

primers containing Illumina P5 and P7 adapters and sample indexes, and PCR reactions 

were stopped during exponential amplification. PCR products were subjected to gel 

electrophoresis on E-Gel™ EX Agarose Gels, 2% (ThermoFisher G402002) and expected 

DNA smears (300–600 bp) were excised and extracted using the Monarch™ DNA gel 

Extraction Kit (NEB T1020L). Resulting libraries were sequenced to a minimum of 4.9X 

(Supplementary Table 6). Sequences of all adapters and primers used in library preparation 

are provided in Ref24.
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RNA-seq Data Analyses

RNA libraries were analyzed for differential expression analysis as outlined in Ref24, 

which lists all adapter and primer sequences used. Briefly, raw sequencing reads were 

demultiplexed using Sabre70 and bcl2fastq71 prior to adapter removal with Cutadapt v2.172, 

using parameters ‘-a file:[RNAtagSeq adapter.fa] -u 5 –minimum-length 20 –max-n 0 -q 

20’ to remove low-quality bases and adapters. To mitigate the effect of rRNA reads, 

we performed alignments against the 16S and 23S rRNAs of corresponding strains with 

Bowtie273, using the versions and parameters outlined in 24. Genomes of natural isolates 

used for sequencing alignments were de novo assembled as described in24. Genome 

assemblies for all publicly available isolates were downloaded from the NCBI database, 

with all accession numbers listed in (Supplementary Table 3). The number of reads uniquely 

mapped to each coding sequence was calculated using featureCounts v1.6.274 without 

restraint on strandness (-s 0), and the expression level of each CDS by transcripts per million 

(TPM) was quantified using an in-house script.

Finally, we used DESeq275 to perform differential expression analysis on the number of 

reads uniquely mapped to each coding sequence, calculating the FC of gene expression 

after perturbations. Differential gene expression was defined as >2 fold-change (FC) in 

gene expression relative to a vehicle control, with padj <0.05, and average fragments per 

kilobase per million reads aligning to annotated open reading frame (FPKMO) > 0.10. 

P-values of differential expression were all adjusted by the Benjamini–Hochberg procedure 

in DESeq2 using default settings. Identified DEGs were used to identify drug-enriched 

modules and pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database76. KEGG enrichment with padj<0.05 and e<.00001 was considered statistically 

significant. All analyses were visualized in R77.

Growth Assays

For all growth experiments, overnight bacterial cultures were back-diluted 1:100 before 

addition to 96-well plates containing 5–25 µl of pre-reduced chemicals or bile acids to reach 

2, 20, or 100 µM concentrations in 1 ml of solution (all concentrations for bacterial-drug 

pairings listed in Supplementary Fig. 2). As an exception, higher concentrations of 50, 

500 and 2500 µM were used for metformin (Methods, Supplementary Fig. 2), which has 

much higher predicted drug concentrations in the intestinal tract5. Further, A. shahii was 

not included in growth experiments it exhibits characteristically poor growth in liquid that 

prevents optical density measurements78. Cultures were then incubated at 37°C in shaken 

media for 24 hours. For 24-hour temporal growth screens, 190 µl of culture was harvested 

at 6, 10, and 24 hours for measurement of optical density at 600 nm (OD600) using an 

Epoch2 Microplate Spectrophotometer (Agilent Technologies). For all MIC tests, cultures 

were harvested for visual inspection and OD600 measurement at 24 hours only. Growth 

inhibition was defined in all growth experiments as relative growth depletion >30%, with 

false discovery rate (FDR)-adjusted p value (padj) <0.05. To determine statistical differences 

in relative growth between conditions, two-sided independent t-tests with Benjamini & 

Hochberg correction were performed in R to determine FDR-adjusted p-values unless 

otherwise stated.
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Analysis of Public Datasets

To identify species harboring the acrAB-tolC operon, we generated an amino acid reference 

from the P. vulgatus acrAB-tolC operon detailed in57. We then performed a homolog 

search for this reference operon in a public dataset of 4930 representative metagenome-

assembled genomes (MAGs) characterized in Ref63. Briefly, we annotated all putative 

protein sequences in the MAG dataset using Prokka79 before performing a homolog search 

with blastP80. Gene targets with an e-value < 10−5, coverage > 90% and identity > 40% were 

considered hits. We then estimated abundances of all species containing the acrAB-tolC 
operon using metadata from Ref63. All associated p-values were calculated by two-tailed 

independent t-test in R.

To examine whether metoprolol administration could be linked to the upregulation of 

the ttd operon in vivo, raw amplicon sequencing data from a public dataset (n=145) 

were downloaded from Sequence Read Archive (SRA) under accession code ERP002469. 

Single-ended raw reads were processed by Cutadapt v2.172 with the following parameters 

“--minimum-length 24 -u 10 --trim-n -q 15” to remove low-quality bases and Illumina 

adapters. Reads passing quality filtering were then aligned against our ttd operon reference 

by Bowtie2 v2.3.473 in --very-sensitive mode. Read counts per gene were normalized 

by gene length and sequencing depth (i.e., reads per kilobase per million mapped reads) 

for expression-level quantification. All associated p-values were calculated using the Mann-

Whitney test in R.

To examine whether simvastatin-modulated microbiota shifts could be linked to acrAB-tolC 
operon prevalence in vivo, raw amplicon sequencing data from the cross-sectional Meta-

Cardis Body Mass Index Spectrum (BMIS) cohort (n = 888) were downloaded from the 

EMBL-EBI European Nucleotide Archive (ENA) under accession number PRJEB37249. 

Single-ended raw reads were processed by Cutadapt v2.172 with the following parameters 

“--minimum-length 24 -u 10 --trim-n -q 15” to remove low-quality bases and Illumina 

adapters. Reads passing quality filtering were then aligned against our acrAB-tolC operon 

reference by Bowtie2 v2.3.473 in --very-sensitive mode. Read counts per gene were 

normalized by gene length and sequencing depth (i.e., reads per kilobase per million mapped 

reads) for expression level quantification. All associated p-values were calculated by two-

tailed independent t-test in R.

AcrAB-TolC Engineering Studies

All Bacteroides expression vectors were generated using Gibson assembly (NEBuilder 2x 

HiFi DNA assembly master mix), and polymerase chain reaction (PCR) fragments for 

cloning were generated using Q5 DNA Polymerase (NEB). We first generated two PCR 

fragments from a plasmid designed and constructed in our laboratory containing a 

constitutive Bacteroidales promoters described in Ref81 (additional features of this custom 

vector backbone are described in a separate manuscript currently under consideration) to 

drive expression of the AcrAB-TolC gene copies. We then cloned AcrAB-TolC copy 1 

(primers 

TCTCGTCAAACAAATATAAATAATATAAACATGAAAATGACAGTAAATAGTATGAA

ATGT and 
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AGAAGGGCACCAATAACTGCCTTAAAAAAATTAATTATTCACGTCCACCGC) and 

copy 2 (primers 

TCTCGTCAAACAAATATAAATAATATAAACATGAAATTTTATTGCAAACCTACGT 

and 

AGAAGGGCACCAATAACTGCCTTAAAAAAATTATTCTTTTTTGCCTTTGGTCATC) 

from the P. vulgatus H1 genome using PCR. A 3 fragment Gibson assembly was incubated 

at 50 °C for 1 hour to generate our plasmid construct. As a control, we cloned a tetracycline 

(Tet) resistance gene (described in Ref82) into our plasmid construct in place of AcrAB-TolC 

cargo. Finally, AcrAB-TolC-containing plasmids (or Tet plasmid controls) were transformed 

into chemically competent NEB turbo cells. Transformed colonies were screened by PCR 

for the correct insert size length and whole plasmids were sequenced on an Illumina Nextseq 

500/550 platform or using Plasmidsaurus (Eugene, OR). Vector constructs with the correct 

payload were used in subsequent conjugation experiments.

Before conjugation, donor strains harboring conjugative Bacteroides expression vectors were 

grown from a single colony in 5 ml of LB-Lennox media (BD) supplemented with 50 µg 

ml−1 of carbenicillin and 50 µM DAP at 37 °C overnight (~10–16 h). We prepared donor 

and recipient P. vulgatus H1 cells and carried out conjugations as previously described in 

Ref83 under anaerobic conditions. Transconjugant colonies were Sanger sequenced at the 

16Sv4 region to confirm strain identity, and stable plasmid maintenance was confirmed 

by colony PCR using the primers listed above. Positive P. vulgatus transconjugants were 

then picked into 5 mL ½ mGAM supplemented with 20 µg/ml erythromycin and grown 

overnight. These strains were banked in glycerol stocks (25% glycerol final concentration) 

and stored at −80 °C. Subsequent growth curve experiments were done using overnight 

cultures grown from these glycerol stocks in ½ mGAM.

Conspecific Strain Gene Mapping

To compare the transcriptomic response for strains of the same species, we performed 

gene mapping for five pairs of conspecific strains used in this study. Briefly, all protein 

sequences of the strains were first annotated using Prokka79. Protein alignment was then 

performed for the protein sequences of conspecific strains by blastP80 using the parameters 

“-max_target_seqs 20 -evalue 0.001”. Hits with identity > 0.75 and coverage > 0.75 were 

considered as mapped genes for conspecific strains.

Statistics and Reproducibility

For all isolates generated in this study, individual of origins for isolated gut strains were 

assigned based on the defined identity of original feces (Supplementary Table 2), for 

which covariate analysis is not applicable. The specific number of bacterial strains used 

in this study (19) was chosen to allow for inclusion of major bacterial phyla within an 

individual donor microbiome, with replicates included as described in Methods to allow 

for statistical significance calculations. For clinical datasets analyzed, cohort assignment for 

individuals was taken from the metadata of the original study. Blinding was not possible 

during experiments as we were comparing transcriptional responses of different bacterial 

isolates to different drug conditions. Transcriptomic and growth processing within species 

was blinded as different drug conditions were processed together using pooled methods. 
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Data exclusion was based on sequencing coverage or genome quality to remove technical 

artifacts as described in the Methods section. The sample sizes in this study are either 

number of bacterial strains tested (with replicates, see below), or number of experimental 

or control cohort individuals taken from a publicly available dataset (for which sample 

size calculations were already performed). All sample sizes are listed in figure legends 

and methods sections where applicable. All in vitro assays on bacterial strains were 

performed with multiple (2–4) technical replicates, as noted in the methods section and 

figure legends where applicable, in order to confirm replicability and enable statistical 

significance calculations. All analyses of associated data were performed with the same 

parameters and criteria described in Methods section above. Data distribution was assumed 

to be normal, but this was not formally tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Top prescribed drugs elicit rich transcriptomic responses from prevalent gut bacterial 
species.
(a) Schematic of our high throughput transcriptomic pipeline for non-model gut 

microorganisms. (b) Heatmap color indicates delta in average optical density (OD) at 48 

hours of bacterial strains grown in mGAM supplemented with different pharmaceuticals at 

100 µM as compared to a same-volume solvent control (n=3 per condition). Drug condition 

is indicated on the x-axis and strain identity is indicated on the y-axis. Stars indicate >0.3 

average absolute change in growth with padj<0.05 (*), calculated by two-sided independent 

t-test with Benjamini & Hochberg correction (c) Bacterial strains were exposed to drugs 

(n=2 per condition) or vehicle controls (n=4 per condition) and differentially expressed 

genes (padj<0.05, calculated as above) were identified. Heatmap color represents the log10 

value of the differentially expressed gene ratio (DEGR), defined as number of differentially 

expressed genes in a drug condition divided by total number of genes within a strain 

genome, with drug indicated on the x-axis (classes grouped by color) and strain identity 

indicated on the y-axis. Bar plot inserts show log10 values of average DEGRs across strains 
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(top bar insert) or drugs (left bar insert). Maximum likelihood phylogenetic tree is shown on 

the left with bacterial family identity indicated by color in the figure legend.
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Figure 2. Pathway enrichment analysis reveals modulation of conserved efflux pathways by top 
pharmaceutical compounds.
(a) KEGG modules with significant enrichment (padj <0.05 by two-sided independent t-test 

with Benjamini & Hochberg correction, e-value<10−5) based on pathway analysis of DEG 

datasets are shown. Drug condition is labeled on the x-axis and corresponds to background 

color of the bubble plot. IDs of KEGG modules with significant enrichment are labeled on 

the left y-axis, and KEGG pathway groups are labeled on the right y-axis. Bubble color 

indicates direction of regulation (red=up-regulation, blue=down-regulation), bubble intensity 

indicates log2(FC) enrichment, and bubble size indicates level of significance (-log10 of 

padj). (b) Top 19 upregulated and top 10 downregulated functional orthologs within the DEG 

dataset across drugs, as annotated within the KEGG orthology (KO) database. Bar color 

indicates direction of transcriptional regulation as in (a). -Log10 of padj (calculated as in (a) 

is shown on the x-axis. K-number assigned by the KO database is labeled on the left y-axis, 

and putative ortholog function is labeled on the right y-axis.
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Figure 3. Top pharmaceutical compounds impact gut bacterial metabolism, vitamin production, 
and mitigation of toxic metabolites.
(a). Top schematic shows the components of the tartrate dehydratase (ttd) operon in E. coli. 
Genes within the operon are labeled on the x-axis, and isolates containing ttd analogs are 

labeled on the y-axis. Heatmap color indicates log2(FC) in transcripts per million (TPM) 

expression. Stars indicate padj <0.05 (*), padj <0.01 (**), padj<0.001(***) calculated by 

two-sided independent t-test with Benjamini & Hochberg correction. Gray panels indicate 

absence of a gene analog. (b) Relative abundance of bacterial isolates containing the ttd 
operon was calculated within a dataset of T2D patients48 (n=323 total patients). The x-axis 

indicates patient cohort, grouped by healthy controls not taking metoprolol (red dots), T2D 

patients taking metoprolol (green dots), and T2D patients not taking metoprolol (blue dots). 

Relative abundance of isolates is shown on the y-axis. P-values calculated by two-sided 

independent t-test are annotated with brackets. (c) Top schematic shows the components 

of the riboflavin biosynthesis (rib) operon in D. longicatena H1. Drugs are labeled on the 

x-axis (grouped and colored by class), and gene components of the rib operon are labeled on 

the y-axis. Heatmap color indicates log2(FC) in TPM expression. Stars indicate significance 

as calculated and annotated in (a). (d) Regulation of acrAB-tolC within Bacteroidales 
isolates by atorvastatin (left panel) and simvastatin (right panel). Bottom schematic shows 

the components of the acrAB-tolC operon in E. coli. Genes within acrAB-tolC are labeled 

on the x-axes, and isolates containing AcrAB-TolC analogs are labeled on the y-axis. 
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Heatmap color indicates log2(FC) in TPM expression, as indicated by the bottom right 

red-to-blue color bar. Stars indicate significance as calculated and annotated in (a). Dots 

to the right of strain rows indicate percent operon identity as compared to the P. vulgatus 
AcrAB reference57, as indicated by the top right red-to-yellow color bar.
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Figure 4. Statin exposure alters Bacteroides sensitivity to common dietary metabolites via the 
AcrAB-TolC efflux pump.
(a) Bacteriodales isolates exposed to retinol at various concentrations in the presence of 

20 µM simvastatin (orange lines), atorvastatin (green lines), or vehicle control (blue lines). 

Graph titles indicate strain identity, with retinol concentration shown on the x-axis and 

growth (OD600, optical density at 600 nm wavelength) relative to a vehicle control shown on 

the y-axis. (b) P. distasonis H1 exposed to various deoxycholic acid (DCA) concentrations 

in the presence of 20 µm simvastatin (orange lines) or vehicle control (blue lines). Bile 

acid concentration is shown on the x-axis, and growth relative to a vehicle control is shown 

on the y-axis. Standard deviation bars (n=3 biologically independent culture replicates per 

condition) are shown, and stars indicate padj <0.05 (*), padj <0.01 (**), and padj <0.001 

(***) calculated by two-sided independent t-test with Benjamini & Hochberg correction. 

(c) P. vulgatus H1 overexpressing different copies of AcrAB-TolC (see schematic) or a 

plasmid control exposed to different concentrations of retinol in the presence of 20 µm 

simvastatin (n=3 biologically independent culture replicates, orange lines) or vehicle control 

(n=3 biologically independent culture replicates, blue lines). Retinol concentration is shown 

on the x-axis, and average OD600 growth across replicates relative to average growth of 

vehicle controls is shown on the y-axis. (d) Structures of atorvastatin, simvastatin, and 

tenivastatin (simvastatin-hydroxy acid). The lactone ring in simvastatin is shown in red. (e) 
P. distasonis H1 and P. vulgatus ATCC8482 grown in liquid mGAM supplemented with 

simvastatin (orange line), tenivastatin (raspberry line), or atorvastatin (green line) at 100 

µM concentrations. Standard error bars (n=4 biologically independent culture replicates 

per condition) for average OD600 growth across replicates are shown. (f) P. distasonis H1 
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retinol MIC curves in the presence of 20 µM simvastatin (n=2, orange line), tenivastatin 

(n=3 biologically independent culture replicates, raspberry line), or vehicle control (n=3 

biologically independent culture replicates, blue line). padj values and standard deviations of 

average OD600 growth at each concentration are annotated as in (b).
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Figure 5. AcrAB-TolC is linked to gut microbiota shifts in statin-treated patient populations.
(a) The number of genomes containing acrAB-tolC analogs based on Ref63. Bacterial 

family is indicated on the x-axis and by bar color. The number of acrAB-tolC-containing 

genomes within each family is indicated on the y-axis. (b) The relative abundance of 

acrAB-tolC within treatment groups of the BMIS cohort is shown. Statin or control 

cohorts are indicated on the x-axis. Simvastatin (red) and atorvastatin (blue) cohorts are 

highlighted, and corresponding p-values (calculated by two-sided independent t-test) are 

annotated with colored brackets. Each dot represents a different patient metagenome. (c) 
Relative abundance of bacterial species within the BMIS dataset, annotated using Ref63. For 

each genus, the log10 relative abundance within simvastatin-treated (red) and non-treated 

(black) individuals is shown as a box and whisker plot. Box hinges correspond to the 

25th and 75th percentiles, and whiskers extend to values within 1.5 the interquartile range 

(outliers omitted). Stars indicate p<0.05 (*) as calculated by two-sided independent t-test. 

(d) Relative abundance of Bacteroides species (left two panels) or all gut bacteria (right two 

panels) in simvastatin-treated and untreated individuals within the BMIS cohort. Within each 

panel, the x-axis indicates simvastatin (red) or control (black) treatment cohort, and relative 

abundances of species with or without the acrAB-tolC operon are labeled on the y-axis. 

P-values are annotated as in (b).
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Figure 6. Diverse patterns of transcriptional response among conspecific bacterial isolates.
(a) Plot of PCoA results comparing the transcriptomic responses of tested gut bacterial 

isolates to top pharmaceutical compounds, using DEGRs within each drug condition as 

features. Variance contribution of first and second principal coordinates are shown on the x- 

and y- axes, respectively. Bacterial family of each isolate is indicated by color. Conspecific 

strains are connected by dotted lines. (b) For each possible pair of Bacteroidaceae strains, a 

comparison of average nucleotide identity (ANI, shown on x-axis) and Spearman correlation 

of DEGRs across all drug conditions (shown on y-axis) is shown. Each dot indicates 

a pairwise comparison, with color indicating whether the comparison was performed on 

conspecific (red) or allospecific (green) strains. (c) Differential regulation of selected 

operons by simvastatin (purple dots), sertraline (green dots), paroxetine (blue dots), or 

levothyroxine (red) dots are depicted for different conspecific strains (purple boxes depict 

operon expression in strain H1, yellow boxes depict operon expression in a publicly 

available strain). Grey dots indicate padj >0.05. Species and operon identities are indicated 

by panel titles, and strain identity is shown on the right y-axis. Log2(FC) in gene expression 

as compared to a vehicle control is shown on the left y-axis and aligned gene IDs are shown 

on the x-axis. Absence of an operon is indicated by a beige panel with red annotation. Gray 

dashed lines and box indicate significance threshold of FC>2.
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