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Abstract
Pharmacogenomic Polygenic Risk Scores (PRS) have emerged as a tool to address 
the polygenic nature of pharmacogenetic phenotypes, increasing the potential 
to predict drug response. Most pharmacogenomic PRS have been extrapolated 
from disease- associated variants identified by genome wide association studies 
(GWAS), although some have begun to utilize genetic variants from pharmacog-
enomic GWAS. As pharmacogenomic PRS hold the promise of enabling precision 
medicine, including stratified treatment approaches, it is important to assess the 
opportunities and challenges presented by the current data. This assessment will 
help determine how pharmacogenomic PRS can be advanced and transitioned into 
clinical use. In this review, we present a summary of recent evidence, evaluate the 
current status, and identify several challenges that have impeded the progress of 
pharmacogenomic PRS. These challenges include the reliance on extrapolations 
from disease genetics and limitations inherent to pharmacogenomics research 
such as low sample sizes, phenotyping inconsistencies, among others. We finally 
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INTRODUCTION

The field of pharmacogenomics was driven by the ob-
servation that individuals varied widely with respect to 
the pharmacodynamic and pharmacokinetic measures 
including drug response and risk of adverse reactions. 
Early studies, typically conducted on small populations 
and examining extreme phenotypes identified genetic 
variants of large effect sizes such as those impacting the 
cytochrome P450 and TPMT enzymes that contributed to 
some of this variability.1 However, newer genetic methods 
have demonstrated that drug response phenotypes are 
highly polygenic, and driven by a large numbers of com-
mon variants of modest or small effect sizes.2

Historically, candidate gene studies and genome- wide 
association studies (GWAS) have served as the corner-
stone of genetic research, including pharmacogenomic 
studies. However, both approaches are complicated by 
a lack of efficiency in handling the multi- locus involve-
ment typical of drug response phenotypes. Thus, the field 
of pharmacogenomics has evolved from trying to predict 
drug responses using simple single- variant predictors to 
the use of polygenic instruments such as Polygenic Risk 
Score (PRS), which more fully capture the polygenic 
variability underlying drug responses.3 Other efforts to 
account for the genetic underpinnings of complex phe-
notypes led to the development of recent approaches, 
such as Transcriptome- Wide Association Studies (TWAS), 
Phenome- Wide Association Studies (PheWAS), and 
Mendelian Randomization, among others.4,5

PRS arose as a potential solution for addressing the 
polygenicity inherent to pharmacogenomic phenotypes. 
PRS amalgamate the cumulative effects of multiple ge-
netic variants associated with a particular trait or pharma-
cogenomics phenotype, such as drug efficacy or adverse 
events. In the context of pharmacogenomics, PRS offer a 
means to combine the impact of a multitude of genetic 
variants across many genes and genomic regions,6 and 
thus PRS may capture a larger portion of the genetic 

liability of drug responses,7 potentially improving risk 
prediction, as compared to single variant predictors.

PRS have emerged as a promising tool for disease risk 
prediction and patients' stratification. In recent years, 
many PRS have been developed for the prediction of com-
plex diseases such as coronary artery, diabetes, cancer, 
among others.8–11 The progress in disease PRS was largely 
facilitated by large scale, collaborative consortia of disease 
phenotypes. Moreover, many publications have provided 
recommendations on how to facilitate and enhance the 
transition of these PRS to the clinics.12 While the research 
on the pharmacogenomic PRS has also grown, it has 
lagged behind disease PRS. Enhancing research in phar-
macogenomic PRS and addressing its current challenges 
can facilitate the clinical utilization, which can advance 
personalized medicine, through treatment stratification 
and drug response prediction.

Herein, we aim to review the recent landscape of phar-
macogenomic PRS, describing the current approaches and 
most recent methods, shedding light on their limitations 
and impediments to clinical implementation. We finally 
propose a set of recommendations to address these chal-
lenges and facilitate a widespread utilization of pharma-
cogenomic PRS. This review provides summaries, rather 
than in- depth reviews of relevant studies, as extensive 
reviews of the addressed studies have been published in 
recent systematic reviews.6,13,14

CURRENT APPROACHES FOR 
CONSTRUCTING PRS

PRS measure the burden of additive genetic variants as-
sociated with a disease phenotype or an outcome that an 
individual has.15 For a given SNP, an individual can have 
0, 1, or 2 copies of the risk associated allele. Initially, 
PRS represented a tally (i.e., an unweighted sum) of 
the number of risk alleles across all variants that an in-
dividual carried.16 This approach relied on the simple 

propose recommendations to overcome the challenges and facilitate the clinical 
implementation. These recommendations include standardizing methodologies for 
phenotyping, enhancing collaborative efforts, developing new statistical methods 
to capitalize on drug- specific genetic associations for PRS construction. Additional 
recommendations include enhancing the infrastructure that can integrate genomic 
data with clinical predictors, along with implementing user- friendly clinical de-
cision tools, and patient education. Ethical and regulatory considerations should 
address issues related to patient privacy, informed consent and safe use of PRS. 
Despite these challenges, ongoing research and large- scale collaboration is likely to 
advance the field and realize the potential of pharmacogenomic PRS.
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assumption that each variant has an equivalent contri-
bution to disease risk, although risks associated with a 
given variant can vary widely. Thus, weighted PRS have 
now largely supplanted unweighted risk scores. These 
PRS are a weighted sum of risk alleles that an individ-
ual carries, with the effect size (often measured as the 
log of the odds- ratio) of the risk allele typically used as 
the weight.17 A weighted PRS is a continuous variable 
and, across a population, PRS will generally demon-
strate a normal distribution. An important consideration 
is which variants should be included in a PRS. Ideally, 
SNPs and weights are derived from a single GWAS, as 
this ensures that the relative weights of the SNPs are 
comparable. Initially, PRS were restricted to those SNPs 
that met a genome- wide significance threshold (typically 
a p- value <5 × 10−8). However, Purcell et  al. demon-
strated that inclusion of SNPs with lower statistical sig-
nificance in the PRS improved predictive performance.17 
Hence, PRS typically include large numbers of SNPs that 
have a lower level of significance.

Among the numerous approaches used to select SNPs 
for inclusion in the PRS, all include methods to account for 
correlation (or linkage- disequilibrium) among the large 
numbers of SNPs. The earliest and simplest strategy was 
a pruning- and- thresholding (or “clumping”) approach.17 
With this iterative strategy, the SNP with the lowest p- 
value in the GWAS is selected. Then, all SNPs in linkage- 
disequilibrium (LD) with that SNP are removed from the 
GWAS. The process is repeated until all independent SNPs 
below a specified threshold are selected. Alternatives to 

this pruning- and- thresholding approach employ various 
statistical methodologies and often seek to retain a larger 
number of SNPs for inclusion in the risk score. Bayesian 
approaches empirically determine a distribution of effect 
sizes among SNPs and then reweight SNP effect sizes to 
conform to the distributional expectations.18–23 Other 
approaches use LASSO or ridge regression to adjust SNP 
effect sizes according to different distributional assump-
tions.24 As GWAS studies have grown larger, the differ-
ences in predictive performance of PRS developed using 
differing methods has become relatively modest, though 
some methods may perform better for particular underly-
ing genetic architectures.25

Most of the existing pharmacogenomic PRS studies 
use variants from disease genetics, a method that has its 
limitations, since it assumes that these variants repre-
sent the drug's effects. This approach assumes a constant 
ratio between the genetic main effect and its interaction 
effect with the drug(s), which may not always hold true 
(discussed in details in the “Brief review of recent PRS 
Pharmacogenomics research section,” below).3 Further, 
the majority of the pharmacogenomic PRS studies employ 
the clumping- and- thresholding method to create PRS. 
Researchers have begun to investigate newer statistical 
methods for constructing pharmacogenomic PRS using 
Bayesian modeling that account for both the disease and 
drug effects. Of note, the recent methods developed by a 
single group of investigators have focused on overcoming 
some of the challenges of pharmacogenomic PRS, includ-
ing the reliance on disease variants. Table 1 summarizes 

T A B L E  1  A summary of recently developed methods for constructing pharmacogenomic PRS.

Name Premise Benefits Limitations

Bayesian modeling 
(e.g., PRS- CS)20,49

Bayesian shrinkage approach 
that uses global and local 
scale mixtures of normal prior 
distributions

• Improves prediction over 
traditional C + T method

• Accounts for differences in 
Linkage Disequilibrium

• Computationally expensive, thus 
may allow for fewer markers

• Choosing the priors requires careful 
consideration

Novel pharmacogenomics PRS

PRS- PGx- Bayes3 Bayesian based • Models both the direct effects 
(prognostic) and interaction with 
the drug (predictive)

• Outperforms other methods in 
prediction

• May not transfer to other 
populations

• Challenges in estimating the prior
• May be computationally demanding

mtPRS- PCA26 Integrates multiple PRS 
from traits, weighted by the 
PCA derived from genetic 
correlation matrix

• Leverage genetic correlation 
between traits

• Improves prediction

• Depends on the accuracy of the 
genetic correlation matrix

PRS- PGx- Bayesx27 Bayesian method that builds 
on PRS- PGx- Bayes accounting 
for disease- related and drug–
response- related effects of 
genetic variants

• Addresses trans- ethnic bias 
and allows flexible modeling to 
account for population specific 
effects

• Outperforms existing trans- ethnic 
PRS methods

• Relies on accurate linkage 
disequilibrium (LD) reference  
panels

• As a Bayesian based method, it 
requires assumptions about prior 
distributions for model parameters
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the benefits and limitations of the Bayesian- based tech-
niques, including the novel approaches.

Zhai et al.3 proposed a novel method (PRS- PGx- Bayes) 
to incorporate the genotypic main effect of the disease and 
the “genotype × treatment interaction” on drug response. 
They applied this method to predict the LDL- lowering  
impact of ezetimibe and simvastatin compared to the sim-
vastatin only arm using the IMPROVE- IT clinical trial 
data, and demonstrated superiority of this method over 
other existing methods in terms of prediction accuracy.3 
Zhai et  al. developed a framework for integrating mul-
tiple correlated traits for developing pharmacogenomic 
PRS. They proposed multiple integrative approaches in 
this paper including the mtPRS- PCA. The mtPRS- PCA 
method applies Principal Component Analysis (PCA) to 
a genetic correlation matrix of the traits, and uses the top 
PCAs as weights, followed by combining the PRS of each 
trait to create a final PRS.26 In the paper, Zhai et al. ap-
plied mtPRS- PCA and other methods to an anacetrapib 
GWAS study to predict the effect of the medication on 
LDL lowering. In their analysis, they included traits that 
are genetically correlated and used the summary statis-
tics from the UK Biobank GWAS such as those for HDL, 
LDL, triglycerides, apolipoprotein B, apolipoprotein A1, 
and lipoprotein (a). The investigators showed that this 

method improved both the prediction and risk stratifica-
tion compared to other PRS methods.26 The same investi-
gators proposed a newer approach for pharmacogenomic 
PRS to address three challenges in the development of 
pharmacogenomic PRS, which are: (1) the lack of sys-
tematic approaches to choosing the summary statistics 
(i.e., those for the disease, pharmacogenomics, or both) 
for PRS construction; (2) the Eurocentric or trans- ethnic 
bias in cross- population PRS prediction; and (3) the small 
sample sizes, low power, and complex PRS modeling in 
pharmacogenomics GWAS.27 This paper developed a new 
approach using a Bayesian regression method called PRS- 
PGx- Bayesx, which is an extension of PRS- PGx- Bayes. 
The method uses pharmacogenomic GWAS; however, 
they replace the effect size estimates of the pharmacog-
enomic summary statistics with those from disease GWAS 
summary statistics.27 This method has the potential to im-
prove the accuracy and power of PRS through leveraging 
the increased power of disease GWAS owing to the large 
number, and the specific predictive power of pharmacog-
enomic variants. A schematic figure of how pharmacog-
enomic PRS are constructed or proposed to be constructed 
is displayed (Figure 1). We refer the readers to the recent 
paper by Zhai et al.,27 for the additional technical details 
of these methods.

F I G U R E  1  Illustration of select approaches for building pharmacogenomic PRS.
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Various metrics are used to assess the predictive per-
formance of PRS, including the Area Under the Receiver 
Operating Characteristic- Curve (AUC- ROC), pseudo- R2, 
and the odds ratios (OR) per PRS quantiles. The AUC 
derived from the ROC curve (plotting true- positive rate 
against false- positive rate) measures the PRS's ability to 
discriminate between cases and controls. An AUC of 0.5 
indicates a discrimination that is no better than a random 
chance, while an AUC of 1 indicates a perfect discrimina-
tory power.28 Pseudo- R2 statistics such as Nagelkerke R2 
estimates the proportion of variance explained by PRS.15 
In the event that the case and control prevalence in a study 
differs from the actual population prevalence, alternative 
pseudo- R2 measures such as Lee R2 are recommended to 
avoid bias in the estimate15 The OR plot is a visual repre-
sentation that is commonly reported to quantify the as-
sociation between PRS and the phenotype. It shows the 
likelihood of being a case across different PRS percentiles 
(e.g., the OR of developing a side effect comparing patients 
in the 90th PRS percentile to those in the 10th percentile).

BRIEF REVIEW OF RECENT 
PRS PHARMACOGENOMICS 
RESEARCH AND ITS ASSOCIATED 
LIMITATIONS AND CHALLENGES

Pharmacogenomic studies have used two main  
approaches for PRS: the first approach relies on using  
genetic variants associated with disease or traits, while 
the second approach uses genetic variants associated with 
drug response, as shown in Table 2. In the next section, 
we provide a selective review of the recent studies (within 
the past 5–10 years) that fall under these two approaches, 
describing the advantages and challenges. More exten-
sive reviews of the pharmacogenomics PRS studies were  
recently published.6,14

PRS USING VARIANTS ASSOCIATED 
WITH DISEASES

Most existing studies have developed PRS using variants 
identified by GWAS of common diseases (e.g., cardiovas-
cular and psychiatric diseases) to assess disease- related 
drug response. This approach leveraged the existing PRS, 
developed from large- scale GWAS data. For example, 
PRS derived from coronary artery disease (CAD) GWAS 
improved CAD prediction and demonstrated a value in 
identifying patients likely to receive clinical benefits from 
interventions.10,29,30 CAD PRS have since been tested for al-
locating of lipid lowering treatment, including statins, and 
more recently PCSK9 inhibitors. In the statin prevention 

clinical trials, individuals with a high CAD PRS (top quin-
tile) had a greater absolute and relative CAD risk reduc-
tion compared to other PRS strata (quintiles 2 to 4), despite 
a similar low- density lipoprotein cholesterol (LDL- C) 
lowering among individuals of different CAD genetic risk 
strata.31,32 A recent study by Oni- Orisan et al. investigated 
if a PRS for coronary heart disease (CHD), constructed 
from 164 variants of the CARDIoGRAMplusC4D GWAS 
could stratify patients based on the benefits derived from 
statin therapy in a large, diverse cohort of primary preven-
tion patients.33 They found that a high CHD PRS value 
(top 20%) was associated with a greater relative risk reduc-
tion from statins (59%), compared to a smaller relative risk 
reduction from statins (33%) among patients with lower 
PRS values (quintiles 2–4).33 Similar to the statin trials, 
a greater absolute risk and relative risk reduction in car-
diovascular events from alirocumab, a PCSK9 inhibitor, 
was observed among patients with high PRS.34 Likewise, a 
CAD PRS was evaluated with evolocumab, another PCSK9 
inhibitor among patients with a history of cardiovascular 
disease.35 In this study by Marston et al., patients in the 
highest PRS category had 31% and 4% relative and abso-
lute risk reductions from evolocumab, respectively, com-
pared to placebo. While these studies together suggested 
that PRS of CAD could be utilized to stratify patients with 
high PRS for statins or PCSK9 inhibitors, for early preven-
tion effort, most of the studies have not assessed the in-
teraction of PRS and treatment benefit, which would be 
important to ascertain whether relative risk reductions 
vary across PRS strata with respect to medications.

Evaluating pharmacogenomic PRS using variants ex-
trapolated from other traits has been prolific in the field 
of psychiatry, with the majority of these studies evaluat-
ing the use of PRS in predicting treatment efficacy, and 
fewer evaluating the association with doses and treatment 
related adverse events. Unlike the case with CAD PRS in 
stratifying patients benefiting from lipid lowering treat-
ment, the use of PRS in psychiatric diseases has shown 
less consistent results. For example, several schizophrenia 
PRS were associated with high clozapine dose and poor 
treatment outcomes in patients with severe schizophre-
nia.36–38 In contrast, no association was reported between 
schizophrenia PRS and treatment resistant schizophre-
nia.39 Similarly, a systematic review of 26 PRS for anti-
psychotic or antidepressant treatment outcomes reported 
associations for less than half of the studies.6

PRS USING VARIANTS ASSOCIATED 
WITH DRUG RESPONSE

Emerging data suggest that pharmacogenomics derived 
PRS (i.e., PRS derived from genetic associations of drug 
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responses) may offer better prediction of response to 
medications. The first PRS were developed in the con-
text of cardiovascular medications, with more recent 
studies in the context of psychiatric diseases. (Table 1). 
In 2020, Lewis et al. constructed a pharmacogenomics 
score for clopidogrel using allele counting, weighted 
on effect size of 31 candidate genetic variants related 
to platelet reactivity. The score aimed to predict major 
cardiovascular events in clopidogrel- treated patients, 
while accounting for other co- morbidities including 
age, sex, participating site, body mass index (BMI), dia-
betes, proton pump inhibitor use, and smoking.40 While 
no single variant was associated with cardiovascular 
events in the replication cohort, the higher PRS (i.e., 
patients with eight or more risk alleles for platelet re-
activity) were significantly associated with higher risk 
of cardiovascular events (Odds ratio (OR) = 1.78, 95% 
CI: 1.14–2.76, p = 0.01) or cardiovascular- related death 
(OR = 4.39, 95% CI: 1.35–14.27, p = 0.01), compared to 
patients with six or less risk alleles, suggesting that pa-
tients with high PRS are at high risk of clinical outcomes 
with clopidogrel and can be offered an alternative treat-
ment.40 Lanfear et  al. derived a PRS of 44 SNPs from 
GWAS of β- blocker related survival within Henry Ford 
Heart Failure Pharmacogenomic Registry (HFPGR) 
and tested it in additional independent cohorts (HF- 
ACTION and TIME- CHF).41 These 44 SNPs were se-
lected from a GWAS that evaluated how the genetic 
variants interact with β- blocker treatment (SNP x treat-
ment interaction), to predict survival benefits in patients 
with reduced ejection fraction heart failure. This GWAS 
analysis adjusted for the Meta- Analysis Global Group in 
Chronic Heart Failure (MAGGIC) score, a predictor of 
death or hospitalization in patients with heart failure 
and a β- blocker propensity score to account for poten-
tial confounding by indication or treatment bias. The 
results showed that β- blocker exposure was associated 
with a non- significant decrease in mortality risk among 
patients with low PRS (≤30th percentile) in the HFPGR 
and HF- ACTION cohorts, and a significantly lower risk 
in the TIME- CHF cohort (p = 0.049). In the total vali-
dation set of the meta- analysis of the three cohorts, the 
β- blocker significantly lowered mortality (Hazard Ratio 
(HR): 0.19, 95% CI: 0.06–0.64, p = 0.008) in the low PRS, 
while no significant association was found in the high 
PRS group (HR: 0.84, 95% CI: 0.53–1.30, p = 0.45). The 
interaction analysis was significant for the effect of β- 
blocker exposure between low and high PRS groups 
(p = 0.02).41 The PRS was further validated in a separate 
cohort within the UK Biobank.42 In the overall study 
(N = 7141), the PRS was not significantly associated with 
mortality (p = 0.92). Similar to the first paper by Lanfear 
et al.,42 patients in the low PRS category had a trending 

significant survival benefit with β- blocker treatment 
(HR = 0.57, 95% CI: 0.33–1.00, p = 0.052), compared to 
these in the high PRS (HR = 0.90, 95% CI: 0.70–1.15, 
p = 0.4), with a statistically significant interaction be-
tween the PRS and β- blocker exposure (p = 0.04).

In psychiatry, a number of studies have examined the 
association of PRS developed from pharmacogenomic 
association with treatment outcomes for several classes 
including antidepressants, antipsychotics, and lithium, 
among others. A 2023 study investigated the association 
of pharmacogenomic PRS with remission of psychotic 
depression treated with sertraline and olanzapine.43 
The investigators used a PRS generated from GWAS of 
response to antidepressants including SSRIs (e.g., citalo-
pram and sertraline) and norepinephrine reuptake in-
hibitor (NRI, e.g., reboxetine), and tested its association 
with remission, adjusting for age, sex, baseline depres-
sion and delusion severity, and principal components 
of ancestry (PCA).43,44 It was shown that the PRS was 
associated with remission (OR: 1.95, 95% CI: 1.20–3.17; 
p = 0.007).43 Another study evaluated the PRS for anti-
depressant response with its association with functional 
brain network from EEG data, after controlling for age 
and five principal components.45 The PRS was shown 
to be associated with the functional network, which is a 
predictive of treatment response.45 Given that ketamine 
and scopolamine are thought to similarly activate synap-
tic plasticity,46 a PRS developed using GWAS data of ket-
amine response was evaluated for the association with 
scopolamine response.46,47 The PRS association was not 
significant for the scopolamine response, likely due to a 
limited sample size of 37 patients.47

A number of studies investigated the association of 
pharmacogenomic PRS for antipsychotics and lithium. A 
recent study created a PRS from eight pharmacogenom-
ics associations with clozapine metabolism. The PRS was 
associated with clozapine levels, its metabolite, and the 
metabolic ratio, after adjusting for sex, age, age,2 principal 
components, genetic ancestry probabilities, the clozapine 
dose, and the time between dosing and sampling. This 
PRS explained 7% of the variance in clozapine metabolic 
ratio in a diverse cohort with multiple genetic ancestry.48 
A pharmacogenomic PRS for lithium response was re-
cently constructed in the ConLi+Gen consortium using a 
Bayesian regression and continuous shrinkage methods, 
including SNPs from the lithium GWAS summary statis-
tics.49 The study assessed treatment response to lithium 
and determined the contribution of PRS to the variability 
in lithium response, using R- squared (R2). The difference 
in R2 was calculated for a model that included PRS and 
covariates (age, sex, and principal components of ances-
try), and another model with covariates only. Patients in 
the highest PRS decile (10th decile) were 3.47 times more 
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likely to respond to lithium (95% CI: 2.22–5.47), com-
pared to patients in the second PRS decile (OR: 1.95, 95% 
CI: 1.02–2.49, p = 6.4 × 10−9).49 The difference in R2 was 
reported to be 2.6%.49 Most recently in 2024, a PRS was 
constructed from 11 variants of GWAS of antipsychotic 
response.50 The PRS was tested for its association with re-
sponse to antipsychotic medications in real world clinical 
setting, adjusting for age and five principal components.50 
The PRS was associated with response to antipsychotic 
treatment, regardless of the diagnosis (OR = 1.14, 95% 
CI: 1.03–1.26, p = 0.01), with a positive predictive value of 
64%, negative predictive value of 57%, specificity of 58% 
and sensitivity of 63%.50

As stated earlier in this paper, the observed incon-
sistency in the association of CAD PRS and some of the 
psychiatry suggests that the effectiveness of PRS in strat-
ifying patients may depend on the specific disease and 
the medications. While the current studies in CAD and 
those in psychiatry show promise for PRS in predicting 
treatment response or patient stratification based on the 
PRS strata, there are no current data on whether PRS can 
guide the selection of treatment based on the underlying 
diagnosis, an area that is worth investigating in future 
studies.

CURRENT CHALLENGES 
AND LIMITATIONS OF THE 
PHARMACOGENOMIC PRS

It is notable that the research in developing disease PRS 
has advanced in recent years, at a much faster pace than 
in pharmacogenomic PRS. As of May 2024, a PubMed 
search using the keywords “Polygenic Risk Score” and 
“Disease” yielded over 10,477 publications, whereas the 
same search with “Pharmacogenomics” returns only 322 
papers, with many papers focusing on psychiatry and less 
on cardiovascular and chemotherapy.14,32,43,48,51–57 The 
difference in the number of publications suggests poten-
tial challenges that may be impeding the advancement of 
pharmacogenomics PRS, which will be highlighted in this 
section. Additionally, the landscape of pharmacogenomic 
PRS show that the majority of existing studies relied on a 
shortcut of constructing these PRS from disease variants, 
while fewer studies currently evaluated PRS directly from 
genetic variants of drug response.

For the pharmacogenomic PRS to advance, the cur-
rent pharmacogenomics studies need to address some 
limitations that are inherent to pharmacogenomics, par-
ticularly with respect to measuring drug response and 
standardizing the phenotype definitions. Additionally, 
accurate phenotyping requires extensive data collection 
on medication adherence, dosage, and clinical outcomes 

in relation to medication start times. Further, although 
smaller sample sizes may theoretically be sufficient for 
pharmacogenomics studies given the larger effect sizes of 
pharmacogenomic variants compared to disease variants, 
the inconsistency and complexity of drug response phe-
notyping may necessitate large sample sizes to overcome 
the noise and variability of the phenotype. This power is 
not often available in pharmacogenetics studies. While re-
sources such as large biobanks and disease consortia are 
available in disease genetics, such comparable resources 
are relatively nascent for pharmacogenomics phenotypes.

As discussed earlier, most of the studies extrapolate 
from existing disease variants to build pharmacogenomic 
PRS. A recent systematic review by Zhai et al.27 found that 
82% of the pharmacogenomic PRS studies used variants 
from disease GWAS. This approach of extrapolating from 
disease GWAS may not be an optimal approach for phar-
macogenomic PRS due to a common, but not always ac-
curate, assumption that disease- related variants directly 
impact the effects of drugs. While there may be some 
genetic overlap between variants associated with disease 
predisposition and medication response, this relationship 
does not necessarily hold true for all medications and phe-
notypes. Additionally, drug response phenotypes, similar 
to complex disease traits, are polygenic and are also influ-
enced by environmental factors. Therefore, environmental 
effects such as gene–drug interactions, which are import-
ant for drug response phenotypes, may not be accounted 
for when only relying on variants from disease genetics. 
Indeed, current studies rarely evaluate how PRS interact 
with medications in different PRS risk groups (high vs. 
low PRS), as done in the study by Lanfear et al.41 Further, 
building pharmacogenomics PRS from pharmacogenomic 
variants have relied on candidate gene variants rather 
than using pharmacogenomic GWAS variants.13 Selecting 
candidate gene variants to build PRS will often miss key 
pharmacogenomics variants, leading to a less accurate 
PRS. Together, these factors may explain some of the in-
consistency observed among studies of pharmacogenomic 
PRS, with respect to the association with drug response 
phenotypes, across different medications and diseases, as 
was described.6

A critical gap in pharmacogenomic PRS research is the 
need to evaluate the added value of PRS besides the estab-
lished clinical predictors, including independent validation 
of existing pharmacogenomics PRS. While many studies 
found a significant association between the PRS and the 
drug response, less than half of the studies compare the 
PRS model to clinical predictors.13 Additionally, many 
of these studies include some sort of internal validation, 
and do not validate in external cohorts, which can impact 
the generalizability of the developed pharmacogenomics 
PRS.13 Siemens et al. found in his review that only a small 
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percentage (4.5%) of the evaluated studies focused on val-
idating existing PRS, reflecting a tendency of researchers 
toward building new PRS rather than replicating the exist-
ing ones.6,13 A similar observation was reported in another 
review.6 Compounding the lack of validation of pharma-
cogenomics PRS, other key challenges that hinder compar-
isons across studies include: (1) low reporting of prediction 
metrics, (2) variability in the reported metrics (e.g., AUC, 
C- statistics, pseudo- R,2 positive predictive value (PPV), and 
negative predictive value (NPV)); and (3) the lack of guid-
ance on standardized cutoffs for relative or absolute risk 
reduction estimation.58 As discussed earlier in “Current 
Approaches for construction of pharmacogenomic PRS,” 
some studies report metrics like AUC, C- statistics, pseu-
do- R,2 and rank- based risk classifications such as odds 
ratios per percentile, which while informative, may not 
directly translate to individual level predictions as they 
do not often account for the baseline risk in the untreated 
population.28 Absolute risk metrics, such as PPV and NPV, 
which define the proportions of patients who truly have 
or do not have the drug response phenotype among those 
who test positive or negative, respectively, offer more clini-
cal utility, but are less commonly reported.28 Further, there 
are insufficient data to show the added value of PRS for 
predicting drug response beyond what can be predicted by 
the clinical and demographic factors (e.g., age, sex, renal 
function, or hepatic function). A recent study that included 
PRS and other clinical predictors was able to explain 48% 
of variability in the response to antipsychotics.38 For fu-
ture clinical implementation, it is necessary to develop and 
validate integrated models that incorporate both pharma-
cogenomic PRS and clinical factors, similar to some of the 
recent disease PRS papers.10

ARE WE READY FOR PRIME TIME? 
IF NOT NOW, WHEN?

Pharmacogenomics PRS are poised to gain prominence. 
Compared to disease PRS, pharmacogenomics PRS for 

most drugs are less likely to encounter concerns of need-
ing extra diagnostic tests or scans, potentially reducing 
patient burden and streamlining the medication decision- 
making process. Additionally, the large effect sizes typi-
cally observed for PRS, may translate to a better prediction 
of drug response.30 The current evidence suggests that the 
utility of pharmacogenomic PRS will likely be in stratify-
ing patients for drug treatments, such as initiating PCSK9 
inhibitors. A broader utility of pharmacogenomic PRS to 
guide treatment selection based on diagnosis requires fur-
ther research.

While there has been steady advancement in the field 
of pharmacogenomic PRS, the current evidence suggests 
that the time for widespread adoption is yet to come. To 
effectively evaluate pharmacogenomic PRS use in preci-
sion medicine and facilitate their widespread adoption, 
we propose recommendations (Figure  2) in three cate-
gories aimed at mitigating the existing limitations and 
challenges: (1) enhance the research of developing phar-
macogenomic PRS; (2) facilitate the clinical implementa-
tion via enhancing the infrastructure; and (3) address the 
ethical and regulatory issues.

Pharmacogenomic phenotypes represent an intricate 
interplay of multiple genetic variants and, therefore, 
pharmacogenomic PRS development will require the 
collection of large- scale, high- quality, standardized ge-
nomic data from diverse populations. Given the dynamic 
nature of drug responses, longitudinal data collection 
and analysis are essential to continuously refine and up-
date PRS. Further, establishing standardized definitions 
for measuring drug response phenotypes, coupled with 
enhanced data collection efforts to capture information 
on medication dates, dosage, and clinical outcomes, are 
essential. Researchers should engage in collaborative 
efforts to harmonize phenotypes, increase sample sizes, 
and develop statistical methods that transition away 
from reliance on candidate gene variants and /or extrap-
olation from disease GWAS associations. Newer methods 
should explore integrating GWAS variants from disease 
traits and drug response, incorporating newer Bayesian 

F I G U R E  2  Recommendations 
to advance the utilization of the 
pharmacogenomics PRS.
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regression methods, similar to the recently proposed.3,26 
The newly developed methods should identify the rele-
vant variants to be included in PRS, rather than an ar-
bitrary selection of pharmacogenomic variants based on 
genome- wide significance thresholds, with ambiguity 
toward the independent SNPs, ultimately leading to in-
accurate PRS.

The existing PRS methods generally have limited por-
tability across-  and sometimes even within- ancestries.59,60 
This effect can be due to ancestral differences in the fre-
quencies of alleles, patterns of linkage disequilibrium, or 
effect sizes associated with a variant. Moreover, the exist-
ing PRS are Eurocentric as the largest GWAS are typically 
comprised largely of individuals of European ancestry, 
and therefore the application of PRS has the potential 
to create systematic disparities.61 While SNP selection 
approaches to mitigate this problem are under develop-
ment,62 the underlying issue is likely best addressed by ex-
panded inclusion of other ancestral populations in genetic 
studies.63 Forming large consortia for pharmacogenomic 
PRS development that include diverse genetic ancestry, 
similar to existing disease PRS consortia like the Polygenic 
RIsk MEthods in Diverse populations (PRIMED), can ad-
dress concerns of widening disparity if pharmacogenomic 
PRS continue to be developed in European ancestry.

Prior to reaching the clinical implementation stage, 
pharmacogenomic PRS will require validation to ensure 
their accuracy and reproducibility across independent 
datasets. Given the limited clinical evidence linking nu-
merous genetic variants to drug responses, replicating 
and/or validating PRS across diverse datasets merits 
particular attention. Furthermore, standardizing predic-
tion metrics and reporting practices is essential to enable 
comparison across studies, including both internal and 
external validation. Finally, prioritizing and assessing the 
integration of pharmacogenomic PRS with clinical pre-
dictors, similar to clinical risk tools,64 should be done to 
discern the contribution of pharmacogenomic PRS and 
justify their clinical use.

The clinical use of pharmacogenomic PRS requires 
overcoming technical challenges and enhancing the in-
frastructure and clinician support. The voluminous na-
ture of genomic data necessitates secure storage solutions, 
which is accompanied with high costs. Additionally, in-
tegrating the genomic data and other clinical data within 
EHR is essential for obtaining a comprehensive clinical 
view of patients' health. All of these create financial 
constraints, particularly in resource- limited settings. 
Moreover, PRS generate numerical scores that can pose 
challenges for clinicians with regards to the interpreta-
tion and practical application. Therefore, there is an ur-
gent need for the development of user- friendly tools to 
facilitate a seamless incorporation of PRS into clinical 

practice similar to the efforts led by the eMERGE net-
work.65 Clinical guidelines, such as those developed by the 
Clinical Pharmacogenetics Implementation Consortium 
(CPIC) and others, will become essential for interpret-
ing PRS results and guiding treatment decisions. The 
creation of these guidelines will need to be developed in 
coordination with training for healthcare professionals 
to effectively understand and utilize PRS. Further, initia-
tives to address health literacy and empower patients to 
act upon their PRS information, will need to take place. 
Patients must be educated that PRS is a risk prediction 
and not a diagnostic tool.66,67 Simultaneously, a rigorous 
evaluation of the cost- effectiveness of PRS implementa-
tion in clinical practice is critical to ensure sustainable 
and equitable access of PRS across diverse populations, 
alongside with the development of reimbursement 
policies that incentivize the adoption of PRS- guided 
treatments.

Finally, a regulatory framework must be established if 
PRS are to be incorporated into drug labeling and clinical 
decision processes. Policies and procedures are essential 
to ensure that patients understand the implications of 
PRS generation. Laws and regulations are needed to pro-
tect patients' privacy and prevent genomic data breaches, 
including strong data security measures. The regulatory 
framework should prevent against discrimination based 
on a patients' PRS, allow equitable access, and prevent 
harms from any misuse of PRS. Further, regulatory 
guidance should be in place to promote the standardiza-
tion of PRS development and validation. The regulatory 
framework should be flexible to accommodate scientific 
discoveries, dynamic changes in PRS and address arising 
challenges.

SUMMARY AND CONCLUSION

Overcoming the current limitations of the existing phar-
macogenomic PRS research presents the next logical step 
before clinical implementation. The adoption of pharma-
cogenomic PRS in the clinics is a complex process, and 
will require a comprehensive approach that addresses 
infrastructure, clinical interpretation and use, and ethical 
and regulatory considerations. This process will likely be 
gradual, requiring ongoing collaboration among research-
ers from academic and industry, implementers of phar-
macogenomics, healthcare professionals, regulators, and 
policymakers. Together, they can ensure robust develop-
ment and rigorous evaluation of pharmacogenomics PRS, 
followed by a safe and effective implementation into clini-
cal care. Ongoing research and large- scale collaboration 
are crucial to overcoming existing obstacles and bring PRS 
to fruition.
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