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Abstract 
Anaerobic protists frequently harbour methanogenic archaea, which apparently contribute to the hosts’ fermentative metabolism 
by consuming excess H2. However, the ecological properties of endosymbiotic methanogens remain elusive in many cases. Here we 
investigated the ecology and genome of the endosymbiotic methanogen of the Cononympha protists in the hindgut of the termite 
Coptotermes formosanus. Microscopic and 16S rRNA amplicon sequencing analyses revealed that a single species, designated here 
“Candidatus Methanobrevibacter cononymphae”, is associated with both Cononympha leidyi and Cononympha koidzumii and that its 
infection rate in Cononympha cells varied from 0.0% to 99.8% among termite colonies. Fine-scale network analysis indicated that multiple 
16S rRNA sequence variants coexisted within a single host cell and that identical variants were present in both Cononympha species and 
also on the gut wall. Thus, “Ca. Methanobrevibacter cononymphae” is a facultative endosymbiont, transmitted vertically with frequent 
exchanges with the gut environment. Indeed, transmission electron microscopy showed escape or uptake of methanogens from/by 
a Cononympha cell. The genome of “Ca. Methanobrevibacter cononymphae” showed features consistent with its facultative lifestyle: 
i.e., the genome size (2.7 Mbp) comparable to those of free-living relatives; the pseudogenization of the formate dehydrogenase gene 
fdhA, unnecessary within the non-formate-producing host cell; the dependence on abundant acetate in the host cell as an essential 
carbon source; and the presence of a catalase gene, required for colonization on the microoxic gut wall. Our study revealed a versatile 
endosymbiosis between the methanogen and protists, which may be a strategy responding to changing conditions in the termite gut. 
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Introduction 
Methanogenic archaea, or methanogens, play a key role in the 
final step of the decomposition of organic matter in various anaer-
obic environments [1]. In the guts of termites, for example, which 
are keystone animals in the terrestrial carbon cycle, methanogens 
accounted for 0%–10% of the prokaryotic gut community and pos-
sibly produce 1%–3% of the global methane [2, 3]. Methanogens 
are present in the guts of diverse termite lineages [4, 5] and are  
considered to contribute to the gut ecosystem as H2-sinks by pro-
ducing methane from H2 and CO2 [6, 7]. Methanogens are found 
on the hindgut epithelium [4, 8, 9] or within the cells of certain 
gut protist species [10]. The protists in the termite gut belong to 
the phylum Parabasalia or the order Oxymonadida in the phylum 
Preaxostyla and play major roles in the digestion of lignocellulose 
[11]. These gut protists generally harbour endo- or ectosymbi-
otic prokaryotes, which likely contribute to the host nutrition by 
supplying nitrogenous compounds [11] and/or removing H2 [12, 
13]. In addition to the mutualistic symbionts, commensal or par-
asitic endosymbiotic bacteria are occasionally present [14]. 

Endosymbiotic methanogens are observed, for example, in 
the parabasalid protist Trichomitopsis termopsidis in the gut of 
the termite Zootermopsis angusticolis [15, 16] and the oxymonad 
protist Dinenympha parva in the gut of the termite Reticulitermes 
speratus [17, 18]. It has been hypothesized that endosymbiotic 
methanogens promote wood decomposition of the protist hosts 
by consuming excess H2 [10], but their detailed physiology and 
ecology remain unclear. Indeed, although there are numerous 
examples of endosymbiosis between anaerobic protists and 
methanogens in various environments, the ecological properties 
of endosymbiotic methanogens, including whether they are 
obligate or facultative endosymbionts, are elusive in many cases 
[19, 20]. 

The Formosan subterranean termite Coptotermes formosanus is 
the most destructive pest of wooden constructions in southern 
China and Japan and has invaded Hawaii and the southern part 
of the USA [21]. The termite harbours a relatively simple protistan 
gut community consisting of five unculturable parabasalid 
species: Pseudotrichonympha grassii, Holomastigotoides hartmanii, 
Holomastigotoides minor, Cononympha [Spirotrichonympha] leidyi, 
and Cononympha koidzumii [22–24]. Among them, endosymbiotic 
methanogens are found only in Cononympha cells [25, 26], which 
are mainly localized in the posterior part of the hindgut [27, 
28]. Cononympha protists numerically dominate the protistan gut 
community, occupying 2200–10 900 out of 3800–12 900 total protist 
cells per gut [28]. Transcriptomic analysis of Cononympha cells 
suggested that Cononympha hydrolyzed cellulose, hemicellulose, 
pectin, and chitin, contributing to both lignocellulose digestion 
and nitrogen recycling [24]. 

In the present study, we examined the ecology and metabolic 
capacity of the uncultured endosymbiotic methanogen of 
Cononympha species in the gut of C. formosanus using a com-
bination of microscopy, fine-scale phylogenetic analysis, and 
genome sequence analysis. Here, we show evidence of facultative 
endosymbiosis with frequent horizontal acquisitions of the 
methanogen and its genome features adapted to the lifestyle. Our 
study sheds light on another aspect of the multilayered symbiotic 
system in the termite gut. 

Materials and Methods 
Termite collection and methanogen infection rate 
C. formosanus (family Rhinotermitidae) were collected from four 
prefectures in Japan (Table S1). The termite colonies collected in 

2019 or later were kept with their nest logs in plastic containers 
in a laboratory until use. Colonies collected in 2018 or earlier were 
kept in laboratories for years fed with red pine chips. The entire 
guts of three worker termites per colony were removed using 
sterile forceps, and the gut contents were suspended in sterile 
solution U [29]. The ratio of methanogen-containing Cononympha 
cells to total Cononympha cells in individual guts was examined 
on the basis of F420 autofluorescence under an Olympus BX51 
epifluorescence microscope. The procedure of CH4 measurement 
emitted by termites and semi-quantitative PCR amplification of 
the gene for methyl coenzyme M reductase (McrA) are described 
in Supplemental Methods. 

Collection of single Cononympha cells and 
sequencing of 18S rRNA genes 
Single Cononympha cells were collected using a Leica AM6000 
micromanipulation system and subjected to whole genome 
amplification (WGA) using the illustra GenomiPhi V2 kit (GE 
Healthcare) as described previously [30]. To identify the species 
of Cononympha, the 18S rRNA gene was amplified by PCR using 
Cononympha-specific primers designed in this study (Table S2). 
The PCR conditions are described in Supplemental Methods. The 
PCR products were purified, cloned, and sequenced using the 
Sanger method as described previously [30]. 

16S rRNA amplicon sequencing analysis 
The V3–V4 region (ca. 400 bp) of the 16S rRNA gene was amplified 
by PCR with prokaryote-universal primers, Pro341F, and Pro805R 
(Table S2), using Phusion High-Fidelity DNA Polymerase (New 
England Biolabs), as described previously [31]. Purification, library 
preparation, and paired-end sequencing (300 bp × 2) on the MiSeq 
platform with the MiSeq Reagent Kit v3 (Illumina) were con-
ducted as described previously [31]. The paired-end reads were 
trimmed, quality filtered, and sorted into amplicon sequence vari-
ants (ASVs) using DADA2 v1.6 [32]. The ASVs were classified using 
SINA v1.2.11 [33] with the SILVA v132 database [34]. ASVs classi-
fied as Eukarya or undetermined and ASVs of which frequency 
was <0.1% of the total reads were discarded from subsequent 
analyses. 

Phylogenetic analysis of 16S rRNA genes 
Near full-length 16S rRNA genes of methanogens were amplified 
by PCR using Phusion Hi-Fidelity DNA Polymerase. Primers M23F 
and M1382R broadly targeting methanogens were used for gut 
wall samples, while primer CfC-M23F adjusted to the sequence of 
the endosymbiotic methanogen was used as the forward primer 
for endosymbiotic methanogens (Table S2). The PCR conditions 
and procedures of sequencing and alignment are described in 
Supplemental Methods. A maximum-likelihood tree was con-
structed using IQ-TREE v1.6.12 [35] with the TVM + F + I + G4 
nucleotide substitution model selected by ModelFinder imple-
mented in IQ-TREE. Network construction of sequence variants 
(SVs) was conducted using the PopART program depending on Qt 
v4.8.5 with TCS algorithms [36]. 

Fluorescence in situ hybridization and 
transmission electron microscopy 
To discriminate between Con. leidyi and Con. koidzumii cells, 
oligonucleotide probes specific to each 18S rRNA sequence 
were designed using ARB [37] (Table S2). Fluorescence in situ 
hybridization (FISH) was performed as described previously 
[38] with hybridization at 55◦C for 2 h. Observations were 
conducted under the Olympus BX51 epifluorescence microscope.
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Transmission electron microscopy (TEM) was performed as 
described previously [39] using an H-7500 transmission electron 
microscope (Hitachi). 

Genome sequencing 
Single Cononympha cells were collected as described above, 
washed several times in droplets of solution U, and transferred 
to solution U containing 0.1% Tween 20 (Nacalai Tesque). 
Prokaryotic cells that leaked out from the ruptured host cell 
were collected with a glass capillary attached to the Leica 
AM6000 micromanipulation system and subjected to WGA as 
described above. Nine WGA samples of single Cononympha cells 
were prepared. These were subjected to paired-end sequencing 
on the MiSeq platform. After assembling and binning as below, 
one sample was selected for deeper paired-end sequencing and 
mate-pair sequencing on MiSeq, and long-read sequencing on the 
MinION platform (Oxford Nanopore Technologies), based on the 
estimated genome completeness of the target methanogen. The 
procedures for library preparation and sequencing are described 
in Supplemental Methods. 

Genome assembly 
The MiSeq paired-end reads were trimmed, quality filtered, and 
assembled into contigs using SPAdes v3.9 [40]. The contigs were 
binned using a combination of MyCC [41] and Contig Annota-
tion Tool (CAT) [42]. The results were evaluated for the selec-
tion of the best sample. The MinION reads, after being qual-
ity trimmed, were assembled together with the quality-trimmed 
MiSeq paired-end and mate-pair reads into contigs using SPAdes 
v3.15.2 with the “hybrid-assembly” and “meta” mode [40]. The 
assembled contigs ≥500 bp were binned using a combination 
of  MyCC, CAT, RAST  (http://rast.nmpdr.org/rast.cgi), and BLASTn 
searches. The bin affiliated with Methanobrevibacter was further 
subjected to scaffolding using LINKS v2.0.1 [43] and gap-closing 
using TGS-GapCloser [44]. The quality-trimmed MiSeq and Min-
ION reads were mapped onto the gap-closed bin using BBMap 
v38.96 and Minimap2 v2.24-r1122 [45]. The reads mapped onto 
the bin were then reassembled using SPAdes v3.15.2 with the 
“hybrid-assembly” and “sc” mode. Reassembled contigs ≥1000 bp 
were binned as described above. Details of quality filtering are 
described in Supplemental Methods. 

Gene annotation 
Finding and functional annotation of genes were performed using 
a combination of DFAST [46] and BLASTp searches of the NCBI 
non-redundant (nr) protein database. CRISPR-Cas systems were 
identified using CRISPRCasFinder [47]. Assignment of COG (clus-
ters of orthologous genes) categories [48] was conducted by RPS-
BLAST v2.6.0+ searches of the NCBI Conserved Domain Database 
v3.16, and the results were manually curated. Pseudogenes were 
manually identified as described previously [49]. Metabolic path-
ways were inferred using the KEGG automatic annotation server 
(KAAS) [50] and KEGG Mapper [51]. 

Phylogenomics 
To construct a phylogenomic tree, we retrieved genome sequences 
of Methanobacteriaceae as references from GTDB r202 [52] and  
metagenome-assembled genomes (MAGs) assigned to Methanobac-
teriaceae recently obtained from termite guts [5, 53]. Gene pre-
diction, extraction, and alignment are described in Supplemental 
Methods. A maximum-likelihood tree was constructed using IQ-
TREE v1.6.12 with the LG + F + R5 amino acid substitution model 
selected by ModelFinder. The robustness of the tree topology was 

evaluated using 1000 ultrafast bootstrap resamplings. Average 
nucleotide identity (ANI) and average amino acid identity (AAI) 
were calculated using ANI/AAI-Matrix [54]. 

Comparative genome analysis 
The relative abundance of genes assigned to COG functional 
categories was calculated for genome sequences with >80% esti-
mated completeness (Table S3). Principal component analysis was 
performed after a central log-ratio transformation using a script 
(https://github.com/dkato2021/COGplot.git). To compare genome 
contents with an identical criterion, the identification of intact 
genes or pseudogenes was automatically performed using Pseud-
ofinder v1.1.0 [55] and the NCBI Prokaryotic Genome Annotation 
Pipeline (PGAP) [48]. 

Results 
Discovery of Cononympha cells lacking 
endosymbiotic methanogens 
During our preliminary observations of protists in the guts of 
C. formosanus by epifluorescence microscopy, we unexpectedly 
found that, in certain C. formosanus colonies, no Cononympha cells 
emitted F420 autofluorescence as a characteristic signal of the 
presence of endosymbiotic methanogens, unlike in other C. for-
mosanus colonies (Fig. 1A–D) or previous reports [25, 26, 28]. To 
confirm the absence of methanogens in Cononympha cells in 
such termite colonies, we performed amplicon sequencing anal-
ysis of the 16S rRNA V3–V4 region for prokaryotic microbiota 
associated with individual Cononympha cells. A total of 30 sin-
gle Cononympha cells collected from two C. formosanus colonies 
(O2020a and O2020b in Table S1), in which almost all Cononympha 
cells were without F420 autofluorescence, were examined. For 
comparison, we also conducted the same experiment using 28 
single Cononympha cells from two colonies (K2019b and K2019c 
in Table S1), in which almost all Cononympha cells exhibited F420 

autofluorescence. No 16S rRNA sequences of methanogens were 
obtained from the former 30 Cononympha cells, whereas sequences 
of Methanobrevibacter were recovered from all of the latter 28 
Cononympha cells (Fig. S1). 

Infection rate of methanogens in Cononympha 
cells and methane emission rate 
We examined the infection rate of methanogens in Cononympha 
cells for 33 colonies of C. formosanus collected from four prefec-
tures in Japan (Table S1), based on the detection of F420 autoflu-
orescence. The infection rate greatly varied from 0% to 99.8% 
depending on the termite colonies (Fig. 1E; Tables S1 and S4). This 
difference was irrespective of natural or laboratory-reared termite 
colonies and prefectures of the sampling sites (Fig. 1E; Tables S1 
and S4). 

To test whether the presence or absence of the endosymbiotic 
methanogens of Cononympha is linked to the methane emission 
rate from the termite hosts, we chose three C. formosanus colonies 
of the high and low endosymbiotic methanogen-infection rate 
types, respectively (Fig. 1E; Table S1; Supplementary Methods). 
The results showed that termites from the colonies of the “high 
infection rate” type emitted 4.5–7.8 times more methane than 
those from the “low infection rate” type colonies (Fig. 1E). Semi-
quantitative PCR targeting the mcrA gene in the entire gut micro-
biota generated results consistent with the methane emission 
rates (Fig. S2; Supplementary Methods). No mcrA amplification 
was detected in any of the four tested C. formosanus colonies of 
the “low infection rate” type under the PCR condition, where mcrA
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Figure 1. Detection of endosymbiotic methanogens of Cononympha protists in the hindgut of Coptotermes formosanus. (A, C) Phase-contrast images of 
Cononympha cells. (B, D) Epifluorescent images. Endosymbiotic methanogens are visible with their greenish F420 autofluorescence in panel B, whereas 
no signal was detected in panel D. Amorphous yellow is the autofluorescence of wood particles. Bars indicate 10 μm. (E) Ratio of methanogen-
containing Cononympha cells to total Cononympha cells in individual termite guts across 33 termite colonies. Values indicate methane emission rates 
(nmol−1 g termite−1 h−1) averaged between biological replicates. Asterisks attached to termite colony IDs indicate laboratory-reared termite colonies. 

amplicons were detected in all six tested colonies of the “high 
infection rate” type ( Fig. S2; Table S1). 

Because the hindgut wall of C. formosanus can be another 
habitat of methanogens [56], we examined F420 autofluorescence 
signals on gut wall fragments from termite colonies of both 
“high infection rate” and “low infection rate” types. We observed 
dense colonization of rod-shaped methanogens on fragments of 
the hindgut wall from two out of seven colonies of the “high 
infection rate” type, whereas almost no signals were detected in 
termites from four colonies of the “low infection rate” type (Fig. S3; 
Table S1). 

Fine-scale phylogenetic composition and host 
specificity of endosymbiotic methanogens 
In the above 16S rRNA amplicon sequencing analysis (Fig. S1), 
multiple ASVs belonging to Methanobrevibacter were obtained from 
each Cononympha cell (Fig. S4). Nine closely related ASVs were 
obtained in total, showing only 1–4 mismatches out of 386 bp. 
Among them, the ASV-3 sequence was identical to the corre-
sponding region of clone SlMeN10 (AB360373), which was derived 
from Cononympha cells in a C. formosanus gut [26]. Since the 
genome of the endosymbiotic methanogen contains only a single 
rRNA operon as described below, these multiple ASVs were not 
derived from intragenomic variation. These results indicated that 

multiple strains of a single Methanobrevibacter species frequently 
coexisted within a single Cononympha cell. 

Next, we examined whether both Cononympha species, i.e., Con. 
leidyi and Con. koidzumii, can harbour methanogens. We obtained 
the 18S rRNA gene sequences of single Cononympha cells used 
in the above 16S rRNA amplicon analysis (Fig. S1) and found 
that both Cononympha species housed methanogens in colonies 
of the “high infection rate” type (Fig. S5; Table S5). Conversely, in 
colonies of the “low infection rate” type, both Cononympha species 
lacked methanogens (Fig. S5; Table S5). We observed that both 
Cononympha species, visually discriminated by FISH specifically 
targeting 18S rRNA of each species, harboured Methanobrevibacter-
like rods (Fig. S6). 

We further investigated whether the lineages of the endosym-
biotic methanogens are distinct, even though closely related, 
between the two host Cononympha species or not. In addition, we 
examined the phylogenetic relationship between the endosym-
bionts and the methanogens on the gut wall. To examine these 
with higher resolution, we obtained near full-length 16S rRNA 
gene sequences of methanogens by PCR amplification from 14 
single Con. leidyi cells, three single Con. koidzumii cells, and seven 
fragments of the hindgut wall (Fig. 2; Tables S1 and S5). Three out 
of four 16S rRNA gene SVs of methanogens associated with Con. 
koidzumii cells were also obtained from Con. leidyi cells. In addition,
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Figure 2. Network analysis of 16S rRNA gene sequence variants (SVs) of 
methanogens obtained from Cononympha leidyi (green), Cononympha 
koidzumii (magenta), and gut wall (blue). Unambiguously aligned 1312 
nucleotide sites were used. The circle size of each SV is equivalent to the 
number of samples of single Cononympha cells or gut wall fragments, 
from which the corresponding SVs were detected. Slashes on branches 
indicate the number of nucleotide substitutions. The SVs were clustered 
by termite colonies, and their colony IDs and Cononympha cell IDs are 
shown (see Tables S1 and S5). 

we obtained 16S rRNA gene amplicons of methanogens from three 
of the seven gut wall fragments and sequenced 24 clones in total, 
all of which showed 99%–100% sequence similarities to SVs of the 
endosymbionts ( Fig. 2). These SVs from the gut wall or Cononympha 
cells formed clusters that were delineated mainly by the host C. 
formosanus colonies (Fig. 2); thus, the sequence variations of these 
methanogens were strongly related to the host termite colony and 
not to the Cononympha species. 

These data together indicated that the endosymbiosis between 
the Cononympha protists and the methanogens is facultative and 
that the two Cononympha species can horizontally acquire the 
same Methanobrevibacter species. Furthermore, the spatial distri-
bution of the methanogen most likely extends to the gut wall of 
the termite host. The shape and size of the methanogens on the 
gut wall (Fig. S3A) and  within  Cononympha cells were similar. Both 
methanogens were straight rods, and the size was 1.1–1.8 μm by  
0.4–0.5 μm (n = 50) in the former while it was 1.3–1.8 μm by 0.4– 
0.5 μm (n = 50) in the latter. 

TEM of endosymbiotic methanogens 
The facultative nature of this endosymbiosis was further 
corroborated by TEM. An electron micrograph showed that 
electron-dense, rod-shaped prokaryotic cells, morphologically 
indistinguishable, were present not only within a Cononympha 
cell but also on its surface (Figs 3 and S7A–D). They appeared 
to be in the process of phago- or exocytosis by the Cononympha 
cell (Figs 3 and S7A). These prokaryotic cells morphologically 
resembled cells of cultured Methanobrevibacter species [8, 9, 57]. 
The intracellular ones were surrounded by a host membrane 
(Figs 3 and S7A–D), and some were localized proximal to putative 
hydrogenosomes (Figs 3B and S7C). Intracellular Methanobre-
vibacter-like cells apparently during fission were observed 
(Fig. S7D); they likely proliferate within the host Cononympha 
cell. We hereafter designated this endosymbiotic methanogen 
as “Candidatus Methanobrevibacter cononymphae” (abbreviated 
as Mbv. cononymphae), and the species description is presented 
below. 

Figure 3. Transmission electron microscopy of a Cononympha cell. (A) 
Section of a Cononympha cell. Several black lines are artefacts. (B) 
Magnified view of the boxed region in panel (A). Electron-dense 
Methanobrevibacter-like cells were observed within the host cytoplasm 
and also on the host cell surface. H: Examples of putative 
hydrogenosomes; CM: Cytoplasmic membrane of Cononympha. 
Bars = 1 μm (A); 500 nm (B). 

Phylogenetic position of Mbv. cononymphae based 
on 16S rRNA gene 
Based on the near full-length 16S rRNA gene, Mbv. cononymphae 
was placed within a clade exclusively comprising uncultured 
clones derived from termite guts (Fig. S8). Within this clade, Mbv. 
cononymphae was closely related to clones obtained from the pro-
tists Microjoenia sp. and D. parva in the gut of R. speratus [17]. This 
clade further formed a monophyletic cluster with termite-gut-
derived sequences, including cultured species inhabiting the gut 
epithelium of the protist-dependent termite Reticulitermes f lavipes, 
i.e., Methanobrevibacter curvatus [8] and  Methanobrevibacter filiformis 
[9]. Endosymbiotic Methanobrevibacter housed by an anaerobic 
ciliate, Nyctotherus ovalis, in the hindgut of the cockroach Blap-
tica dubia [58] and that housed by an aquatic anaerobic ciliate, 
Trimyema compressum [20], were more distantly related (Fig. S8). 

General genome features of Mbv. cononymphae 
We obtained a draft genome sequence of Mbv. cononymphae from 
a single Cononympha cell. The genome consisted of 245 contigs 
with 100% and 98.6% completeness estimated using CheckM [59] 
and CheckM2 [60], respectively (Table 1). Although only a single 
rRNA operon was identified in this genome as in many other 
Methanobrevibacter species (Table 1), we recovered four near full-
length 16S rRNA gene SVs showing 3–5 base mismatches by PCR 
amplification from the same DNA sample. Thus, this genome 
sequence was derived from multiple, at least four, genomovars 
and here designated as the composite genome “CfCl-M3”. 

The total contig length was 2 709 899 bp, and 1834 protein-
coding sequences (CDSs) were predicted, excluding 90 CDSs trun-
cated by contig ends and 203 CDSs <100 amino acid sequences 
that were automatically predicted but with no significant hits in 
BLASTp searches of the NCBI nr protein database. At least, two 
CRISPR-Cas systems were identified with a total of 282 spacer 
sequences (Tables S6–S8). Most spacers showed no sequence sim-
ilarity to those in CRISPRCasdb [61]. The number of pseudo-
genes was 148 after manual inspection (Table 1), and 14 were 
assigned to category [V] (defence mechanism) of COGs, includ-
ing DNA restriction-modification systems and cas genes (Fig. S9; 
Table S6). Finding of duplicated regions and the frequency of sin-
gle nucleotide polymorphisms in the CfCl-M3 composite genome 
are described in Supplemental Methods, Supplemental Results, 
and Table S9.

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
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Table 1. General genome features of “Ca. Methanobrevibacter cononymphae” and related species. 

species “Ca. Mbv. 
cononymphae” 
CfCl-M3 

Mbv. curvatus 
(GCA_001639295) 

Mbv. filiformis 
(GCA_001639265) 

Mbv. cuticularis 
(GCA_001639285) 

NOE 
(GCA_003315655) 

Habitat Intracellular/gut 
wall 

Gut wall Gut wall Gut wall Intracellular 

Total length (Mb) 2.71 (2.67d) 2.41 2.61 2.61 1.91 
Contig 244 232 295 169 70 
Completenessa (%) 98.6 98.2 97.1 99.7 99.3 
G + C (%) 27.2 25.7 27.0 26.8 25.3 
CDSb 2319 (1834) 1883 1985 1869 2175 
Coding density (%)b 65.8 (59.7) 68.5 68.5 66.2 68.3 
rRNA 3 3 3 3 3 
tRNA 28 31 30 32 33 
Pseudogenec 29/174 (148) 11/86 9/83 15/117 95/209 (187) 

aEstimated using CheckM2 v.1.0.1. bIdentified using Prodigal v2.6.3. Manually curated values are shown in parentheses. cIdentified using Pgap/Pseudofinder 
with those within 1000 bp region from both contig ends being excluded. The number was manually curated for CfCl-M3 in this study and previously for NOE 
[57 ] and shown in parenthesis. dTotal length with duplicated CDSs being excluded. 

Phylogenomics and comparative genome 
analysis 
A maximum-likelihood tree based on concatenated amino acid 
sequences of conserved single-copy genes (Fig. 4; Table S3) was  
basically congruent with the 16S rRNA gene tree (Fig. S8). Mbv. 
cononymphae belonged to a monophyletic cluster consisting 
exclusively of MAGs and two Methanobrevibacter isolates obtained 
from the guts of protist-dependent termites. These genomes 
shared at least 75% ANI and 60% AAI (Fig. S10). This clade was 
sister to a clade comprising genome sequences from protist-
dependent/independent termite guts or other environments 
(Fig. 4). 

Genome sequences derived from termite guts in these two 
clades (Fig. 4) tended to possess more genes assigned to the 
COG categories [L] (replication, recombination, and repair) and 
[V] (defense mechanisms) (Fig. S11). Among the genes, those 
related to DNA methylation and drug resistance were especially 
abundant in termite-gut derived genomes (Fig. S12). No clear dif-
ferences in the number and ratio of genes assigned to respective 
COG categories were observed among the five Methanobrevibacter 
species in Table 1, except for a much smaller number and ratio of 
genes assigned to [V] (defense mechanism) in Methanobrevibacter 
sp. NOE (Fig. S13), which is likely an obligate endosymbiont [57]. 

The number of pseudogenes of Mbv. cononymphae was approx-
imately 1.5–2.1 times larger than those of the gut-wall dwelling 
Mbv. curvatus, Mbv. filiformis, and  Methanobrevibacter cuticularis, but  
smaller (ca. 80%) than that of Methanobrevibacter sp. NOE (Table 1). 
The distribution pattern of pseudogenes among COG categories 
indicated that pseudogenes were characteristically accumulated 
in Mbv. cononymphae in categories [L] (replication, recombina-
tion, and repair), [V] (defence mechanism), and [X] (mobilome; 
prophages, transposons) (Fig. S14). No unique genes were iden-
tified in Mbv. cononymphae among COG-assigned 911 CDSs when 
compared to other known Methanobrevibacter species (Fig. S15; 
Table S10). Details are described in Supplemental Results. 

Predicted metabolism of Mbv. cononymphae 
All genes for enzymes required for energy conservation through 
methanogenesis were present in Mbv. cononymphae (Fig. 5). Similar 
to other Methanobrevibacter species, it likely produces methane 
from H2 and CO2. On the other hand, the formate dehydrogenase 
subunit alpha gene fdhA is pseudogenized, and the gene for 
formate transporter (fdhC) was missing (Fig. S16). Intact fdhA and 

fdhC genes were not found in sequence reads outside the assem-
bled genome or in the other eight samples that were not selected 
for deeper sequencing analysis. In addition, genes for the acetyl-
CoA decarbonylase/synthase (ACDS) multienzyme complex were 
absent; thus, Mbv. cononymphae apparently requires acetate to 
produce acetyl-CoA. The cobalamin biosynthetic pathway was 
absent, and instead, genes for the cobalamin/siderophore trans-
porter FepBCD were identified (Table S6). These characteristics, 
i.e., loss or absence of genes for Fdh, ACDS, and cobalamin biosyn-
thesis, were shared by most MAGs derived from the guts of 
protist-dependent termite species, but not shared by the gut wall-
dwelling species Mbv. curvatus, Mbv. filiformis, and  Mbv. cuticularis 
[8, 9] (Fig. 4). 

Mbv. cononymphae possesses genes for ammonium transporter 
AmtB and glutamine synthetase GlnA. The genome also encoded 
a major facilitator superfamily transporter for di- and tripep-
tides, which may be other nitrogen sources (Fig. 5). The amino 
acid and cofactor synthesis capabilities were similar to those of 
other Methanobrevibacter species (Table S11). Genes for proteins 
involved in oxygen tolerance, including catalase KatE, were iden-
tified (Fig. 4), and details are described in Supplemental Results. 
No genes related to motility were found. 

Discussion 
This study unveiled the ecology and genomic features of the 
endosymbiotic methanogen Mbv. cononymphae harbored by two 
Cononympha species in the gut of C. formosanus. A series of evidence 
obtained by a combination of F420 autofluorescence detection, 
small subunit (SSU) rRNA gene sequence analysis, and TEM, 
clearly indicated that their association is facultative and that 
the methanogens are most likely transmitted in “mixed mode” 
[62], i.e., both vertically and horizontally among Cononympha cells 
across the two Cononympha species. In addition, our data suggest 
that Mbv. cononymphae colonizes the hindgut wall. This faculta-
tive lifestyle is consistent with its genomic features such as the 
genome size comparable to those of free-living relatives, the num-
ber of pseudogenes intermediate between free-living relatives and 
the putatively obligate endosymbiont NOE of the anaerobic ciliate 
N. ovalis [58] (Table 1), and the presence of a catalase gene (CfCl-
M3_0439, Table S6). 

Catalase activity was previously observed in Mbv. filiformis, Mbv. 
curvatus, and  Mbv. cuticularis, all of which attach to the microoxic 
hindgut wall of R. f lavipes [8, 9]. The catalase gene katE was

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
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Figure 4. Phylogenetic position and characteristic genetic features of “Ca. Methanobrevibacter cononymphae”. Maximum likelihood tree was 
constructed based on 42 concatenated single-copy genes using the LG + F + R5 amino acid substitution model. Methanobacterium veterum MK4 and 
Methanobacterium bryantii M.o.H. were used as outgroups (Table S3). Ultrafast bootstrap values of 85–95% and ≥ 95% are indicated with open and closed 
circles, respectively. Genomes derived from protist-dependent and protist-independent termite species are highlighted in filled and unfilled diamonds, 
respectively. The genome completeness estimated using CheckM is shown by pie charts. The presence or absence of genes for formate dehydrogenase 
FdhAB, formate transporter FdhC, acetyl-CoA decarbonylase/synthase Cdh, cobalamin biosynthesis Cbi, and oxygen tolerance (catalase KatE, F420H2 
oxidase FprA, and desulfoferredoxin Dfx) are linked to the phylogenetic tree. Existing and absent genes are indicated by filled (blue) and blank (grey) 
squares, respectively. Pseudogenes are indicated with “ϕ”. The fdhA gene of MAG_NG87 is at a contig end and truncated; therefore, it is impossible to 
specify whether it is intact or pseudogenized. 

commonly found in the clade containing Mbv. cononymphae and 
its sister clade; however, it is pseudogenized in Methanobrevibac-
ter sp. NOE ( Fig. 4). This is possibly because NOE, unlike Mbv. 
cononymphae, has become an obligate endosymbiont that rarely 
encounters a high concentration of oxygen. 

Assuming that Cononympha cells produce H2, CO2, and acetate 
as the main fermentation products but do not produce formate, 
as observed in other cellulolytic parabasalids [63, 64] and pre-
dicted based on the transcriptome of Cononympha [24] (see Sup-
plemental Methods), the loss of fdhC and pseudogenization of fdhA 
(Fig. S16) are likely attributable to endosymbiosis. In the hindgut 
of termites, the amount of formate is generally limited, but still 
appreciable amounts were detected [7, 65]. Indeed, the fdh operon 
is apparently intact in the genomes of the gut wall-dwelling 
species Mbv. filiformis, Mbv. curvatus, and  Mbv. cuticularis (Fig. S16), 
even though these isolates exhibited only weak or no growth on 
formate [8, 9]. It is conceivable that the reduced opportunity 

and/or requirement to use formate has allowed the loss of func-
tional fdh genes in Mbv. cononymphae. The  lack  of  ACDS  in  Mbv. 
cononymphae may also be related to endosymbiosis. The expect-
edly high concentration of acetate within the host protist cell 
may have allowed the endosymbiont to depend solely on acetate 
to produce acetyl-CoA (Fig. 5). However, as the concentration of 
acetate is also high in the termite hindgut [7, 65], other factors 
may be involved in the absence of ACDS. 

The absence of the functional biosynthetic pathway of 
cobalamin, which is essential in methanogenesis [66] (Fig. 5), 
was previously reported also in the endosymbiotic methanogens 
Methanobrevibacter sp. NOE and Methanocorpusculum sp. MCE 
[58]. Thus, its absence and dependence on a transporter may 
be a common trait in endosymbiotic methanogens. These 
characteristics, i.e., the absence of functional fdh, ACDS genes, 
cobalamin biosynthetic pathway, and the presence of the 
catalase gene were common in most MAGs from the guts of

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae097#supplementary-data
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Figure 5. The predicted metabolic pathway of “Ca. Methanobrevibacter cononymphae.” Genes or pathways characteristically absent in Mbv. 
cononymphae are shown in white. The gene for formate dehydrogenase subunit alpha (fdhA) is pseudogenized. 

protist-dependent termites ( Fig. 4). This implies that these 
methanogens possibly have a lifestyle similar to that of Mbv. 
cononymphae, i.e., facultative endosymbiosis, although their local-
izations are unidentified. Among them, MAG_NG87 from Coptoter-
mes elisae [53] and MAG_GCA031280375 from Prorhinotermes canal-
ifrons [5] showed high ANIs, 98.8% and 96.2%, respectively, with 
Mbv. cononymphae, and both termite genera harbour Cononympha 
species [67]; these MAGs are most likely of endosymbionts of 
Cononympha with similar lifestyles. 

It is widely believed that hydrogenotrophic methanogens 
critically contribute to the fermentative metabolism of H2-
producing anaerobic protist hosts as syntrophic mutualists [19]. 
Indeed, retarded growth of anaerobic ciliates that had lost their 
endosymbiotic methanogens was previously observed [68, 69]. In 
particular, removal of “Candidatus Methanoregula pelomyxae”, 
an endosymbiont of Pelomyxa schiedti, led to the death of the 
anaerobic amoeba host [70]. In the case of termite-gut protists, 
Messer and Lee (1989) [16] reported that Trichomitopsis termopsidis 
treated with 2-bromoethanesulfonate (BES) inhibiting methano-
genesis was viable in the gut of Z. angusticollis. However, in  an  
experiment using cultured Trichomitopsis termopsidis, the growth 
of the protist was severely retarded when methanogenesis was 
suppressed by BES treatment [64]. Its growth was recovered 
when fed with a more favorable nutrient source in addition 
to cellulose, i.e., autoclaved cells of a specific bacterial strain 
[64]. This reminded other reports that anaerobic ciliates during 
successive cultures under optimal conditions tended to lose 
their endosymbiotic methanogens, whereas ciliates under 
food-limiting conditions or at low temperatures kept housing 
methanogens [71, 72]. These previous results imply that the 
loss of Mbv. cononymphae may be related to the nutritional 

condition of the Cononympha host. It is unclear whether Mbv. 
cononymphae contributes to the nutrition of the Cononympha 
host, not only by consuming H2, but also by supplementing 
nitrogenous compounds as suggested in several cases of obligate 
endosymbioses between termite-gut protists and bacteria 
[12, 49, 73–75]. 

Although Mbv. cononymphae can also likely colonize the gut 
wall, the methane emission rate shown in Fig. 1E indicated 
that the absence of the endosymbiont was not compensated 
by methanogens outside Cononympha cells. Large differences 
in the methane emission rate among colonies were previously 
observed in other termite species, i.e., R. speratus [2], Neotermes 
sugioi [koshunensis] [56], and Cryptotermes secundus [2, 7]. Thus, the 
facultative association of methanogens not only with gut protists 
but also with termite hosts may be not rare phenomena. Although 
what factors determine the infection rate of methanogens 
in gut protists and their total abundance in the termite gut 
remain unclear, methanogens might play a role in adjusting the 
fermentation process of the protist hosts and the whole termite 
gut ecosystem in response to changing nutritional conditions with 
their versatile localization and abundance. 

Description of “Candidatus Methanobrevibacter 
cononymphae” sp. nov 
Methanobrevibacter cononymphae (co.no.nym’phae. N.L. fem. n. 
Cononymphae, of  Cononympha, a genus of flagellated protist 
hosts). The archaea are straight rods with dimensions of 1.3– 
1.8 μm (mean ± SD, 1.58 ± 0.1; n = 50) by 0.4–0.5 μm (0.4 ± 0.0). The 
archaea are non-motile and facultatively colonize the cytoplasm 
of Cononympha leidyi and Cononympha koidzumii in the gut of 
Coptotermes formosanus. The archaea occasionally colonize the
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hindgut wall of C. formosanus. The assignment is based on the 
16S rRNA gene (LC802674). The draft genome sequence CfCl-
M3 showed 96.2% ANI to Methanovirga procula, which has been 
named under SeqCode on the basis of a MAG (GCA_031280375) 
obtained from the gut of Prorhinotermes canalifrons [5]. Since the 
genus Methanobrevibacter is highly divergent, Protasov et al (2023) 
have proposed division of Methanobrevibacter into at least nine 
genera, including Methanovirga, based on the genomic phylogeny 
and distance under SeqCode [5, 76]. 
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