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� Abstract: Background: Single Amino Acid Polymorphisms (SAPs) or nonsynonymous Single Nu-
cleotide Variants (nsSNVs) are the most common genetic variations. They result from missense 
mutations where a single base pair substitution changes the genetic code in such a way that the tri-
plet of bases (codon) at a given position is coding a different amino acid. Since genetic mutations 
sometimes cause genetic diseases, it is important to comprehend and foresee which variations are 
harmful and which ones are neutral (not causing changes in the phenotype). This can be posed as a 
classification problem. 
Methods: Computational methods using machine intelligence are gradually replacing repetitive and 
exceedingly overpriced mutagenic tests. By and large, uneven quality, deficiencies, and irregulari-
ties of nsSNVs datasets debase the convenience of artificial intelligence-based methods. Subse-
quently, strong and more exact approaches are needed to address these problems. In the present 
work paper, we show a consensus classifier built on the holdout sampler, which appears strong and 
precise and outflanks all other popular methods. 
Results: We produced 100 holdouts to test the structures and diverse classification variables of di-
verse classifiers during the training phase. The finest performing holdouts were chosen to develop a 
consensus classifier and tested using a k-fold (1 ≤ k ≤5) cross-validation method. We also examined 
which protein properties have the biggest impact on the precise prediction of the effects of nsSNVs. 
Conclusion: Our Consensus Holdout Sampler outflanks other popular algorithms, and gives excel-
lent results, highly accurate with low standard deviation. The advantage of our method emerges 
from using a tree of holdouts, where diverse LM/AI-based programs are sampled in diverse ways. 
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1. INTRODUCTION 

 Distinguishing residue substitutions that affect protein 
function and lead to medical disorders is one of the most 
important problems of present-day molecular medicine [1]. 
Most (98.5%) of the human genome comprises of noncod-
ing DNA, and the majority of variants are located in the 
noncoding part of the genome. Furthermore, the majority of 
mutations are neutral and do not influence the phenotype. 
This constitutes evolutionary conservatism, which results 
from the fact that protein structure is much more conserved 
during evolution than protein sequence. In our paper, we 
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will concentrate on single nucleotide variations (SNV) in 
protein-coding genes. There are two types of SNVs within 
protein-coding genes: synonymous SNVs (sSNVs), which is 
a consequence of the degeneracy of the genetic code since 
20 amino acids are coded by 64 triplet codons, and nonsyn-
onymous SNVs (nsSNVs). For sSNVs, a nucleotide muta-
tion does not lead to residue change, while for nsSNVs, a 
nucleotide mutation results in residue change. It has been 
found that each individual human genome contains 24,000 - 
40,000 residue variations [2] coming from nsSNVs [3, 4]. 
Whereas most residue mutations are impartial [5, 6], some 
mutations have an impact on protein function. These im-
pacts can lead to mutation-related diseases [7]. In spite of 
the fact that most of the variations within the GWAS Cata-
log are in the noncoding genomes, generally, half of known 
disease-related variations in protein-coding genes are due to 
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nonsynonymous variations [8, 9]. Subsequently, it is vital to 
predict the impact of the variation on the protein function 
and to distinguish between neutral and deleterious mutations 
[10]. It is well known that some mutations might be straight-
forwardly linked to medical disorders such as cancer, or 
Parkinson's and Alzheimer's disease [11]. Despite the huge 
amount of medical data collected and enormous efforts to 
reveal links between the genotype and the phenotype, the 
problem is still unsolved due to the complexity of the basic 
issue. Subsequently, computational ML/AI-based strategies 
have been developed to analyse nsSNVs information.  
 Fig. (1) presents a general scheme of the work: the goal 
is to combine sequence information and big data analytics to 
predict the consequence of protein mutations to distinguish 
between neutral and deleterious variations. 
 A wide variety of computational methods have been 
developed to predict the effect of residue mutations on pro-
tein function. Of particular interest are AI/ML-based and 
classification-based methods that combine different types of 
biological data to distinguish between harmful and neutral 
residue mutations [12]. The use of AI/ML methods is re-
quired because the relation between residue mutations and 
their effects on phenotype is a priori unknown. 
 Some of these methods use evolutionary information to 
distinguish whether a particular residue variation is harmful 
or neutral, such as Provean [13, 14], SIFT [15], PANTHER 
[16] or the Evolutionary Action method [17, 18]. The main 
disadvantage is that they use evolutionary conservatism in-
formation for a single position in multiple sequence align-
ments. Other methods combine physicochemical properties 
with evolutionary and sequence data to improve predictions. 
This includes Mutation Taster [19], CADD [20], Polyphen-2 
[21], SNPandGO [22], PhD-SNP [23], PredictSNP [24] or 
MAPP [25]. These methods use a number of ML procedures 
to forecast the impact of missense mutations. Nevertheless, 
these methods often have a high rate of false positives, i.e., 
the predicted harmful variants are frequently in reality neu-
tral [26]. Although the structure, sequence, and evolutionary 
information are important factors for protein function, it is 

rarely used in classification methods [27-29]. Lastly, anoth-
er significant disadvantage of these supervised ML-based 
techniques is that decision rules result from overlying data 
in training sets, which leads to performance overestimation 
[30, 31]. Therefore, it is highly recommended to use com-
pletely independent sets of data to train, test, and validate all 
prediction techniques [32]. This issue is additionally exac-
erbated by the absence of variability in the training data sets, 
which leads to biased forecasts [33]. 

 To evade these restrictions, here we tried to forecast the 
impact of mutations by increasing the sampling of protein 
properties to understand the relation between the stability 
and harmfulness of mutations. In addition, to avoid biases, 
the data are randomly separated into diverse holdouts, where 
training and testing are accomplished by random selection 
of features of nsSNV. We then select the settings that offer 
the best performance and combine them to create the con-
sensus classifier. It is commonly known that different classi-
fiers might be grouped to form a consensus classifier [34], 
such as Meta-SNP [35], CONDEL [36] or PredictSNP [24]. 

 Our consensus classifier outperforms each separate clas-
sifier and provides a robust and comprehensive prediction 
system able to identify and analyse protein properties that 
better categorize residue variations according to their harm-
fulness.  

2. MATERIALS AND METHODS 

2.1. nsSNV Datasets 

 A set of neutral and deleterious mutations was derived 
from the UniProt/SwissVar database [37] to train, test and 
validate the prediction methodology. We used k-fold (1 ≤ k 
≤5) cross-validation, in which the 5th fold was applied for 
blind validations, and the remaining data were used for 
training by creating 100 random holdouts, with 75% of them 
utilized for training and 25% for testing. The entire set of 
mutations contained 38,460 single-point mutations from 
9,067 proteins. (See Supplementary Material 1). 

 
Fig. (1). General flowchart of the paper. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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2.2. The Holdout- nsSNV Methodology 

 Prediction of the consequence of nsSNVs involves sub-
stantial uncertainty, and we need to correctly sample the 
uncertainty space while performing effective classification.  

 Generally, any classification procedure can be represent-
ed by a simple linear regression. The least-square fitting of a 
linear model involves finding a set of parameters � �

��� �� , that the Euclidean distance between the vectors of 

observed data �
���
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 is minimized, where S is the di-

mension of the space. In a matrix form, we need to solve a 
linear system of equations �� � �

���, where the matrix 
� � ��� ��  is built from the coordinates of the data points 

� �

��

�

��
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 The analysis of the uncertainty is based on sampling the 
set of models � � ��� �� , that forecast ����within an ac-
cepted tolerance error, ���� (Eq. 1): 

���� � � � ��� �� �
��������� �

�

����
�

� ��� �        (1) 

 Fernández-Martínez et al. [38-40] have shown that in the 
case of linear problems, the cost function has the topogra-
phy of a straight, flat valley. For the nonlinear cases, the 
topography of the cost function contains curvilinear valleys 
joined by saddle points [38-40].  

 Fig. (2) illustrates a simple 2d regression model by 
showing ellipses of uncertainty for different relative misfits 
and varying sets of parameters associated with different 
bagging experiments. 
 The problem of predicting the effects of nsSNVs can be 
viewed as a generalized regression problem between the sets 
of discriminatory nsSNV features describing the result of 
mutation and the set of classes in the training set of data. 
This analogy with the linear prediction problem (least 
squares) is very important to understand the algorithm used 
here. 
 This procedure has been successfully applied by us to 
predict protein stability changes upon single and multiple 
residue mutations [41], and phenotype prediction and for the 
sampling of defective pathways in Alzheimer’s disease [42], 
Multiple Myeloma [43], and Inclusion Body Myositis [44, 
45]. The Holdout sampler terminology introduced here 
means the 5-fold cross-validation procedure that involves 
data pre-processing in holdouts. 
 Here, we introduce a prediction algorithm based on con-
sensus methodology using holdouts [46] and combining an 
Extreme Learning Machine (ELM) with a Random Forest 
(RF) procedure [47].  
 A k-fold (1 ≤ k ≤5) blind cross-validation is performed 
by using 75% of the PDB data to create 100 holdouts. Each 
holdout constitutes a data bag, with 75% of the data applied 
for training and 25% for testing purposes. For each holdout 
a random selection of features and classification activation 
function was used to avoid overfitting or underfitting prob-
lems and to ensure the robustness of the methodology. 
 The Holdout- nsSNV algorithm predicts the effect of 
residue substitutions in proteins by categorising them as 
neutral or deleterious by combining sequential, structural, 

 
Fig. (2). Illustration of a linear regression model. Ellipses of uncertainty for different relative misfits ranging from 10% to 15% and different 
sets of models are shown. This simple case is very important to understand that the solution to the problem of prediction of nsSNV effects is 
not unique. There are sets of different nsSNV attributes that could predict the observed effect within a given tolerance. In our case, we intro-
duce the Holdout Sampler as a robust way of sampling the highly discriminatory attributes that best predict the observed effects of nsSNV. 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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and evolutionary information. The algorithm avoids overfit-
ting and underfitting problems.  
 The protein sequence profile is calculated by utilizing 
the Protein-Protein Basic Local Alignment Search Tool 
(BLASTP) algorithm [48] by searching for homologous 
protein sequences in the UniRef90 database in UniProt [37] 
with default parameters and a threshold e-value of 10-9. 
From each BLASTP run, we get (i) the sequence alignment 
score, (ii) the alignment ratio and (iii) the number of aligned 
sequences. The algorithm also calculates (iv) the sequence 
profile in the form of a 20-value array that shows the fre-
quency of each of 20 naturally occurring amino acids at 
every position in the protein sequence. Lastly, (v) the muta-
tion vector is calculated, defined as a vector of 20 values 
corresponding to each amino acid, where the wild-type resi-
due is assigned the value -1, the mutated one a value of +1, 
and the non-mutated ones the value of 0 at the given posi-
tion, respectively. 
 The evolutionary information is retrieved from the 
PANTHER (Proteins Annotation through Evolutionary Re-
lationships) database, which evaluates the preservation time 
of a given residue at a given position in phylogenetic trees; 
longer preservation time indicates a larger functional impact 
[49, 50]. The structural information is the Solvent Accessi-
ble Area computed for a given protein structure with the 
ASAquick tool [51]. The Holdout-nsSNV procedure com-
bines all this information in a matrix form and utilizes it for 
training, testing and validation. 

2.3. Consensus Holdout Training and Selection 

 Usually, holdout-based methods are used for model vali-
dation  (R, 1995). Nevertheless, here, we propose a different 
approach in which holdouts are additionally employed to 
optimally perform a consensus classification at the learning 
stage. This approach, based on the idea of bootstrapping  
(Efron B, 1993), has been earlier fruitfully used by us for 
phenotype prediction [52]. 
 We construct a classifier ��, that links the nsSNVs at-
tributes and the set of two classes {Deleterious, Neutral} 
dividing the mutants (Eq. 2): 

�
�
� �� � �

�
� � � ������������������� ,       (2) 

with s being the length of the attribute that has been selected 
for the classifier ��� 

 We have to find discriminatory attributes of the nsSNV 
corresponding to �� � �that better fit the observed class 
vector ����. Subsequently, modeling the consequence of 
nsSNVs consists of two steps: learning and validation. The 
learning stage comprises the selection of a subset of the 
training data set with a known class vector ����; i.e., finding 
the minimal subset of attributes that maximizes the learning 
accuracy (Eq. 3): 

��� � � ��� � �
�
� � �

���

�
        (3) 

where �� � � �
���

�
�means the prediction error in the L1 

robust norm. 
According to Bayes's rule (Eq. 4): 

� � �
���

�

� � �� �
���

�

� ���� �
                       (4) 

where � �  is named the prior probability, � �
���

�  
denotes the likelihood, and � �

���  means the evidence. 
The term � �

���
�  depends on the model accuracy 

��� � .  
 This approach is based on the statistical method of boot-
strapping, or arbitrary sampling with replacement [46], 
which is used to create confidence intervals and to estimate 
the sampling distribution of any statistics via a random sam-
pler. In our previous works, we used this methodology to 
optimally sample model parameter posterior distribution by 
the least squares fitting of different data bags [53-55].  
The Holdout algorithm is composed of three stages: 

i). Data bagging: We randomly divide the data into hold-
outs, where 75% of the data are used for learning and 
25% for testing/validation. In this work, 1000 different 
bags were generated, in each bag, a random selection of 
attributes (��) is performed before the classification of 
the proteins ��, according to the observations, ����.  

ii). Data Testing: After the completion of the learning stage, 
testing is performed to calculate the prediction accuracy 
of each holdout. Subsequently, we obtain a distribution 
of holdouts according to their predictive accuracy and 
select those performing best. 

iii). Holdout Selection: Once all mutants are classified using 
the testing data set, the holdout accuracy is calculated, 
and the best holdout predictors are used for blind valida-
tion. The holdouts that fulfill the condition: ������� �
���� � ��������� are selected for the blind validation. 

This algorithm is used with the ELM and Random Forest as 
classifiers. 

2.3.1. Extreme Learning Machines 

 The concept of Extreme Learning Machines ELM was 
proposed by Guang-Bin Huang in 2006 and became very 
popular in machine learning due to its very fast and efficient 
method of tuning the parameters of hidden nodes in a neural 
network. 

 ELM consists of a single or multiple layers of hidden 
nodes with hyper-parameters [56]. The weight of each hid-
den neuron can be learned [57]. ELMs can be trained faster 
than neural networks employing backpropagation by using 
the Moore-Penrose pseudoinverse [58]. Guang-Bin et al., 
demonstrated that ELMs could outperform Support Vector 
Machines (SVM) models, since SVM could provide subop-
timal solutions in regression and classification problems 
[59, 60]. 

 The input weights for the ELM are selected randomly, 
and the output weights are computed by solving a system of 
linear equations. Furthermore, ELM could also be used to 
select a linear or non-linear activation function (sigmoid and 
sinusoidal) [61, 62].  



Prediction of Deleterious Single Amino Acid Polymorphisms Current Genomics, 2024, Vol. 25, No. 3    175 

 Here, the architecture of ELM is undefined; subsequent-
ly, at each holdout, it is randomly sampled, trained, and 
tested. The ELM prediction is written as follows (Eq. 5): 

   �� � � ��� �� � �� � ��
�

��� � � ���� � �
�

���        (5) 

where L is the number of hidden neurons, and �� �  stands 
for the output of the i-th hidden node that has the form 
�� � � ����� � � ���, with g being the activation function 
and �� a set of randomly chosen weights of the same size of 
�, to perform the inner product ��� �, and �� is the bias of 
the i-th neuron. In our algorithm, the activation function �, 
and the number of hidden layers L are assigned at each 
holdout randomly [56]. 

 The methodology consists of giving a training dataset of 
size m whose classes are known and corresponding to dif-
ferent signatures ��, and observed classes 
� � �� ��

� �
�

�, finding � � �� �� � ��
�, 

such as (Eqs. 6 and 7): 

�� � �,            (6) 
with 

� �

�� �� � �� ��

� � �

�� �� � �� ��

�         (7) 

Linear system (6) is solved in the least-squares sense via the 
Moore-Penrose pseudoinverse [56].  

2.3.2. Random Forests 

 In addition to ELM, we used Random Forests (RF) in 
the consensus prediction. Random Forest is one of the most 
popular machine learning methods proposed in 1995 by Ho 
et al., utilizing an ensemble learning technique based on a 
multitude of decision trees for classification and regression 
[62]. 

 The Random Forest uses a bootstrap method for each 
holdout; therefore, a data bagging procedure (Random deci-
sion tree) is performed for each data holdout (bag). For a 
given training set �� � ��� ���� � ��  and a vector of obser-

vations����� �
��

�

��

, which are bagged repeatedly, RF se-

lects a completely random sample with replacement within 

the training data set in order to fit trees to this sample. Based 
on this, several classification trees are trained, and the over-
all prediction could be obtained by computing the average 

prediction of each B tree, ����
�
�

�
�

���

�

�
�

���

�

. 

 While the prediction for each tree is highly sensitive and 
noisy, and these individual predictions are diverse and un-
correlated, the global average over all the trees is robust and 
accurate with highly reduced bias.  

3. RESULTS 

 The Holdout- nsSNV algorithm combines sequential, 
structural, and evolutionary features and stability attributes. 
The algorithm uses the sequence of a given mutant protein, 
determines all the attributes, and performs the classification 
by using the Holdout Sampler as a consensus classifier. 
Consensus classifiers rely on the principle of Condorcet; for 
independent decision-makers, the dominant decision tends 
to be right when the number of decision-makers increases. 
Consensus classifiers are accurate and reliable alternatives 
to individual and traditional ML-based algorithms [24]. 
 Table 1 presents the performance of our Holdout-nsSNV 
algorithm: 
 We observe a high dispersion and uncertainty in the test-
ing accuracy for individual holdouts, as seen in Fig. (3). The 
cumulative distribution function for the Holdout Sampler 
clearly shows the occurrence of two classes of holdouts in 
terms of accuracy.  

 When the holdouts with higher performance are selected, 
by applying a threshold ���� � ���� � ��������, the algo-
rithm is blindly validated using a k-fold (1 ≤ k ≤5) cross-
validation procedure to ensure that most of the variations 
across the datasets are utilized both in the training and in the 
blind validation. Table 2 presents the results of blind valida-
tion for each individual K-Fold (Supplementary Materials 2-
6 show additional data for each K-Fold): 
 As expected, the algorithm is very robust, providing sim-
ilar accuracies regardless of the K-Fold. This is further sup-
ported by the fact that the median and the average accura-
cies are very close, combined with low standard deviations

Table 1. Training performance of holdout- nsSNV prediction tool in each individual K-Fold. 

K-Fold Mean Accuracy Median Accuracy Accuracy Std 
Accuracy  

Uncertainty 
Minimum  
Accuracy 

Maximum  
Accuracy 

1 75.40 80.99 15.56 28.82 48.63 90.86 

2 74.31 68.58 16.36 32.55 50.11 91.04 

3 74.46 70.08 15.98 30.98 49.22 91.03 

4 72.93 67.52 16.08 31.11 49.63 90.83 

5 74.97 68.83 15.78 28.72 50.16 90.83 

Overall 74.41 71.20 15.95 30.44 49.55 90.92 
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Fig. (3). Holdout sampler training and testing accuracy distribution functions. It is possible to visualize two clear performance behaviours 
depending on the choice of the classifier (ELM or RF) and protein attributes that are selected to represent single amino acid polymorphisms. 
It is important to note that, in this case, the classifier in each data bag has been chosen randomly among these two classifiers. Besides, alt-
hough not shown, the holdout RF approach provides better results than the simple RF. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 
Table 2. Blind validation performance of the holdout- nsSNV for each individual K-Fold. 

K-Fold Mean Accuracy Median Accuracy Accuracy Std Accuracy  
Uncertainty 

Minimum  
Accuracy 

Maximum  
Accuracy 

1 90.38 90.38 0.26 0.35 89.85 90.95 

2 90.21 90.27 0.27 0.34 89.66 90.83 

3 90.05 90.06 0.26 0.27 89.4 90.58 

4 90.12 90.12 0.23 0.28 89.61 90.63 

5 90.20 90.15 0.22 0.27 89.63 90.74 

Overall 90.19 90.20 0.25 0.30 89.63 90.75 

 
and low uncertainties (interquartile range). The cumulative 
distribution function of accuracies in blind validation is pre-
sented in Fig. (4), which shows smooth curves within a very 
small range of possible accuracies.  
 Additional information about the performance of the 
algorithm for cross-validated testing is shown in Figs. (5 
and 6), which display a Receiver Operating Characteristic 
(ROC) performance curve (Fig. 5) and the Confusion Matrix 
(Fig. 6), respectively. In summary, the algorithm gives an 

overall accuracy of 90.2% and an average value of Mathews 
Correlation Coefficient (MCC) of 0.80 with the Areas Un-
der the Curve (AUCs) that range between 0.9005 and 
0.9041. 
 In addition to providing a robust method to predict the 
effects of nsSNVs, this manuscript aims to provide bench-
marks to describe the performance of the algorithm and 
benchmarks for possible future development. 
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Fig. (4). Cumulative distribution function of accuracies for the blind validation for the holdout sampler. The robustness of the algorithm and 
the lack of bias are manifested by the fact that the CDFs are smooth over a small accuracy range for different folds. The median accuracy in 
the different folds is given by the percentile 50, which is always higher than 0.9. (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 

 

 
Fig. (5). (Left). Holdout sampler overall receiver operating characteristics curve for each K-Fold. We also show the different groups of the 
confusion matrix. The number of examples in the False groups (false positive and false negative) are very balanced (445 vs 502). (A higher 
resolution / colour version of this figure is available in the electronic copy of the article). 

 First, as pointed out in Section 2, the cumulative distri-
bution function of accuracy of the Holdout Sampler experi-
ences a sharp increase around the 50th percentile. This fea-
ture is due to the difference in accuracy between the hold-
outs that use ELM and RF as classifiers. Fig. (7) shows the 
cumulative distribution functions of accuracies for training 
and testing for the holdouts separately employing ELM and 
RF classifiers.  
 It is possible to observe in each subplot that the disper-
sion of accuracies for the RF holdouts is much smaller than 
for the ELM holdouts. This result is expected since RF is a 
consensus classifier itself, which reduces bias while increas-

ing robustness and accuracy. On the other hand, the accura-
cies for ELM holdouts are more dispersed because they are 
subjected to more bias when varying the decision bounda-
ries (different on each holdout). This is especially critical 
for the calculation of the ELM Moore-Penrose 
pseudoinverse, which is sensitive to attributes that introduce 
noise in the classification learning process. 
 In addition to the classifier utilized, the selection of at-
tributes or boundary conditions plays a crucial role in the 
overall performance of the algorithm. Deep learning algo-
rithms perform very well when boundary conditions intro-
duce limited variability or bias. To avoid this problem, we
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Fig. (6). Confusion Matrix for each specific K-Fold. In each confusion matrix table, the rows indicate the predicted class via the Holdout 
Sampler, and the columns correspond to the targeted classes. The diagonal cells (green colour) refer to the observations that are correctly 
classified, whereas the red diagonal cells in red refer to those that are not properly classified with the Holdout Sampler. Both the number of 
observations and the percentage of the total number of observations are shown in each cell. The third column represents the percentage of all 
the examples predicted to belong to each class (properly predicted in green and wrongly predicted in red). This metric is sometimes referred 
to as precision and false discovery rate. The third row shows the percentages of all the examples belonging to each class that are correctly 
and incorrectly classified. These parameters are also known as recall and false negative rates. The cell in the bottom right shows the overall 
accuracy. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

K-Fold 1 K-Fold 2

K-Fold 5

K-Fold 3 K-Fold 4
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Fig. (7). Performance of ELM and RF holdouts at the training and testing stages. It is possible to observe the remarkable difference in the 
performance of both classifiers, where the inherent robustness of RF significantly outperforms ELM. The testing median accuracy of ELM 
is around 0.6, while for RF, it is greater than 0.9. Therefore, the holdout RF algorithm clearly outperforms the ELM holdouts. (A higher reso-
lution / colour version of this figure is available in the electronic copy of the article). 

proposed an approach that can be considered as deep sam-
pling. We perform a training stage of a deep learning algo-
rithm without fixing the architecture of the classifier and by 
a random selection of the attributes utilized to infer the 
class. This feature is clearly observed in Fig. (8), which de-
picts the frequency (posterior analysis) of the high discrimi-
natory attributes (Evolutionary, Mutation, Sequence Profile, 
Sequence, Stability, Structural attributes) identified in the 
sampling for the ELM or RF classifiers. Mutation and se-
quence attributes are the most frequently sampled discrimi-
natory attributes regardless of the classifier. Conversely, the 
stability seems to be the less crucial (or sampled) in high 
performing holdouts. One of the advantages of the holdout 
sampler is that it allows this kind of posterior analysis. 
 Our deep sampling approach utilizing the Holdout Sam-
pler helps us to intuitively discriminate variables that are the 
most discriminatory. Histogram plots in Fig. (8) show that 
for high-performing holdouts, we observe more frequent 
presence of certain attributes, such as mutation, sequence, 
and structural features, which are the most determinant, re-
gardless of the used classifier. For low-performing holdouts, 
the attributes are more equally sampled, which introduces a 
bias and decreases the classification accuracy. 
 This feature could be formally analysed by calculating 
the Fisher’s ratio and the fold change of the attributes to 
construct the discriminatory plot, as shown in Fig. (9). The 

Fisher’s ratio (Eq. 8) is defined as the ratio of the variance 
between classes to the variance within classes: 
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                            (8) 

 In other words, Fisher’s ratio detects the attributes that 
best separate the classes and are homogeneous within clas-
ses (with low intra-class variance). On the other hand, the 
fold change measures the inter-class distance between the 
distribution centers in both classes (Eq. 9):  

��� � ����
���

���
�                                     (9) 

 Fig. (8) shows that the sequence profile has very high 
variability in the Fisher’s ratio but almost no variability in 
the fold change. This implies a very high intra-class varia-
tion, while the mutation attributes have very high inter-class 
variations. Because of that, the combination of mutation 
attributes and attributes of the sequence offers high discrim-
inatory power. It also explains why the high-performing 
holdouts contain these attributes, as shown in Fig. (8). Fur-
ther, in the ranking of discriminatory power are evolutionary 
information and structural information attributes, both 
providing strong inter-class discrimination. 
 Analysing the discriminative power of various attributes 
provides deeper insights into the performance of other popu-
lar bioinformatics tools published in the literature compared 
to Holdout nsSNV. Table 3 summarizes the results of this
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Fig. (8). Frequency (posterior analysis) of the high discriminatory attributes (Evolutionary, mutation, sequence profile, sequence, stability, 
structural attributes) identified in the sampling for the ELM classifiers (upper figures) or RF classifiers (upper figures). The figures on the 
right correspond to a training stage of a deep learning algorithm without fixing the classifier’s architecture and on the left to a random selec-
tion of the attributes utilized to infer the class. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (9). Discriminatory plot of the attributes utilized as boundary decision attributes in the holdout sampler. The combination of mutation 
information and sequence attributes and profile offers the most discriminatory power in the training and blind validation as measured by 
Fisher’s ratio. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

comparison with other publicly available algorithms, such 
as PROVEAN, Mutation Taster, CADD, PPH-2, SNP&GO, 
PhD-SNP, PredictSNP, MAPP, Meta-SNP and CONDEL. 
Our holdout SAV algorithm ranks first among the methods 
listed in Table 3 and is mainly based on a similar philoso-
phy.  
 The holdout nsSNV method is followed in terms of per-
formance by the tools PhD-SNP, Meta-SNP and SNP&GO. 

The PhD-SNP and SNP&GO algorithms use a combination 
of sequence and mutation information to train the classifiers. 
Based on the distinctiveness analysis, both algorithms use 
the variables with the greatest predictive capacity. In our 
opinion, the Holdout nsSNV algorithm outperforms PhD-
SNP and its performance due to the use of consensus, which 
reduces bias and increases precision. On the other hand, 
despite the use of mutation and sequence information, the 
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SNP&GO algorithm also includes other features, such as 
evolutionary, stability or structural information, which in-
troduce some bias due to noise or uncertainty. Therefore, the 
performance of this method is slightly lower than that pre-
sented here. The fact that Meta-SNP uses consensus could 
explain its better performance. It would be interesting to 
further investigate meta-SNP, including Fisher index analy-
sis, to improve prediction accuracy. 
 PROVEAN, CADD MAPP, and PolyPhen-2 use the 
variables with the greatest discriminatory power. However, 
its accuracy is lower than ours due to the use of classifiers 
that are relatively sensitive to noise. Finally, it is worth 
mentioning the tools PredictSNP and CONDEL, which, 
despite using consensus, have no way to distinguish be-
tween high and low prediction variables. Therefore, the 
overall accuracy of this method is reduced due to the intro-
duction of noise into the classification. An interesting fea-
ture, further supported by the analysis of the training per-
formance of the Holdout Sampler, is the fact that the least 
squares classification methods, such as ELM or those in-
cluded in CADD, PROVEAN, PPH-2, show lower accuracy 
compared to other RF-like methods. The comparison of the 
performance of different methods is based on the results 
published in the corresponding references. Ideally, a com-
parison would be made using the same data set applied to 
each method. In practice, this is very difficult for various 
reasons and is very rarely done in the literature (unavailabil-
ity of the codes, unavailability of the data used for training 
with other methods to eliminate bias, etc.). Perfect blind 
testing must be performed on a completely new data set that 
has not been used by existing machine learning-based meth-
ods in the past. The best option would be to apply our meth-
od in the context of the Critical Assessment of Genome In-
terpretation (CAGI), a community experiment to objectively 
evaluate computational methods for predicting the pheno-
typic effects of genomic variation. CAGI participants re-
ceive experimentally studied genetic variants (not yet pub-
lished) and make blind predictions about the resulting phe-
notype. We plan to participate in the CAGI experiment to 
blindly test the performance of our method and compare it 
with other leading methods. This is a perfect way to blind-
test our methodology. The field of computational genomics 
is rapidly developing, with a variety of new databases, tools, 
and novel machine learning-based approaches being pub-

lished regularly. Since it is difficult to cite all recently pub-
lished papers, we refer the reader to several review papers, 
including papers that review applications of AI deep learn-
ing-based methods in this field [63-67]. 
 It is worth also mentioning the Genomic Evolutionary 
Rate Profiling (GERP) [68] strategy for creating position-
specific metrics of evolutionary constraints and the Var-
Some tool for the analysis of human genetic variations. The-
se methods are very important in studying human genetic 
variants. 

4. DISCUSSION 

 This paper presents a method that can predict the deleteri-
ous effects of certain types of SAVs by utilizing an advanced 
deep sampling procedure. Due to the high degree of uncer-
tainty, this method is important for reducing bias and improv-
ing the accuracy of predictions. The strategy comprises of 
examining a set of classifier structures and boundary condi-
tions for diverse holdouts (data bags) during the training 
phase. The finest performing holdouts are chosen to develop a 
consensus-based classifier. Our prediction system has been 
trained and blindly validated utilizing a k-fold (1 ≤ k ≤5) 
cross-validation method. Our methodology beats other con-
sensus-based methods and gives strong, highly accurate out-
comes with small standard deviations among folds. The pre-
dominance of our approach is based on the utilization of a 
tree of holdouts, where distinctive machine learning methods 
are inspected with diverse boundary conditions or distinctive 
predictive characteristics. This pre-parametrization permits us 
to construct a consensus classifier based on the leading hold-
outs. Nevertheless, it is important to keep in mind the inherent 
limitations of the proposed methodology that is based on AI 
algorithms, that is, no physical model exists to predict the 
effect of a mutation. In this way, its performance will be 
clearly impacted by the database that we have at our disposal. 
The main problems encountered in using machine learning 
models include the sparsity of the data, i.e., a situation where 
a large amount of data is missing or incomplete, resulting in 
gaps in a dataset, and imbalanced data, i.e., with skewed class 
proportions between elements in the dataset. These are good 
news since machine learning methods typically improve 
when the data available for sampling increases, and rapid 
growth of genomic data significantly improves the reliability 
of AI big data-based methods. 

Table 3. Comparison of performance of holdout- nsSNV sampler with other most popular prediction tools. 

Performance 
Metrics 

PROVEAN CADD PPH-2 SNP&GO PhD-SNP PredictSNP MAPP Meta-SNP CONDEL 
Holdout-

SAV 

Dataset SwissProt 
UniProt 

HumVar 
SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt SwissProt 

Swis-
sProt 

Accuracy 79% 76% 70% 83% 88% 75% 71% 87% 75% 90% 

MC 0.74 
*Not 

reported 
0.41 0.67 0.72 0.49 0.41 0.74 0.51 0.80 

AUC 0.85 0.86 0.78 0.91 0.91 0.81 0.77 0.91 0.82 0.90 

Refs. [13] [20] [21] [22] [23] [24] [25] [35] [36] - 
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CONCLUSION 

 Our Consensus Holdout Sampler outflanks other popular 
algorithms, and gives excellent results, highly accurate with 
low standard deviation. The advantage of our method 
emerges from using a tree of holdouts, where diverse 
LM/AI-based programs are sampled in diverse ways. 
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