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Abstract

The cerebellar cortex plays a key role in generating predictive sensorimotor associations. To do 

so, the granule cell layer is thought to establish unique sensorimotor representations for learning. 

However, how this is achieved and how granule cell population responses contribute to behavior 

have remained unclear. To address these questions, we have used in vivo calcium imaging and 

granule cell-specific pharmacological manipulation of synaptic inhibition in awake, behaving 

mice. These experiments indicate that inhibition sparsens and thresholds sensory responses, 

limiting overlap between sensory ensembles and preventing spiking in many granule cells that 

receive excitatory input. Moreover, inhibition can be recruited in a stimulus-specific manner 

to powerfully decorrelate multisensory ensembles. Consistent with these results, granule cell 

inhibition is required for accurate cerebellum-dependent sensorimotor behavior. These data thus 

reveal key mechanisms for granule cell layer pattern separation beyond those envisioned by 

classical models.

Introduction

Associative learning is an essential process linking sensation and action, providing a 

key mechanism to modify behavior. The cerebellum plays a central role in associative 

sensorimotor learning, both for generating coordinated movements and cognitive processes1, 

2. To do so, the cerebellum receives excitatory mossy fiber input from diverse sources3 that 

transmit sensory, motor, and cognitive information to granule cells in the granule cell layer4. 

Granule cells must integrate and relay these signals to Purkinje cells, the output neurons 
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of the cerebellar cortex, in a manner that establishes unique sensorimotor representations 

necessary for associative learning and the expression of learned cerebellum-dependent 

behaviors.

Classical models speculate that unique granule cell representations are generated through 

a process of “pattern separation”5, 6. Expansion recoding is one mechanism thought to 

enable pattern separation, because mossy fiber inputs are distributed onto a population of 

granule cells that is ~100-fold larger than the number of mossy fiber inputs6. Because 

each granule cell receives ~4 inputs that can transmit the same or different modalities7–10, 

random mixing is also thought to facilitate pattern separation. Another key mechanism 

proposed by classical theories is the thresholding of granule cell activity by local inhibitory 

interneurons in the granule cell layer called Golgi cells. Golgi cells exhibit spontaneous 

pacemaker activity, releasing GABA that acts continuously on granule cells to produce a 

tonic inhibitory current11, 12. This tonic inhibition regulates the spike threshold13 and gain 

of granule cell responses14. In addition, Golgi cells receive feedforward excitation from 

mossy fibers and feedback excitation from granule cells, thus allowing them to respond 

dynamically to the inputs and outputs of the granule cell layer. Together, this tonic and 

phasic Golgi cell inhibition has long been hypothesized as necessary for creating sparse, 

non-overlapping granule cell population codes.

In contrast with predictions of classical theories, modern calcium imaging approaches have 

shown that granule cell responses can be dense and redundant in some conditions15–18. 

These studies have indicated that complex behaviors requiring task engagement, learning, 

and compound body movements likely to involve sensory, motor, cognitive, and efference 

copy signals can result in relatively widespread granule cell activity. In such cases, where 

there are many complex granule cell representations evolving across time, it has been 

challenging to disentangle discrete sensory representations and how they combine to form 

complex multisensory codes that remain dissociable for learning and behavior. Moreover, it 

has been difficult to test what mechanisms shape these sensory representations, as there has 

been a lack of tools for acute, cell type-specific manipulations of granule cell GABAergic 

inhibition. Thus, how the granule cell layer encodes discrete sensory input at the population 

level, how local synaptic inhibition contributes to such representations, and what role 

granule cell inhibition plays in cerebellum-dependent behavior have remained unclear.

To address these long-standing questions, we have used an approach that allows in vivo 
measurement of cerebellar granule cell population responses while acutely blocking synaptic 

inhibition in a cell–type-specific manner. Specifically, we have used multiphoton population 

imaging and in combination with the DART system19, 20 (Drugs Acutely Restricted by 

Tethering) to acutely block synaptic inhibition onto granule cells. In response to discrete 

sensory input, we find that granule cell population activity is sparse, and can be variable 

in terms of response probability, neural ensemble identity, and response timing across 

trials. In contrast, acutely blocking synaptic inhibition dramatically enhances stimulus-

evoked responses, revealing a large population of previously inactive cells, suggesting that 

thresholding is a key mechanism for sparsifying granule cell population ensembles. In 

addition, thresholding establishes separable granule cell populations that can only respond 

to combined multisensory inputs, a property that would not be possible if ensemble sparsity 
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were determined by inputs alone. Surprisingly, we also find that inhibition can be recruited 

in a stimulus-specific manner, further enhancing pattern separation by removing cells from 

multisensory ensembles that are part of unisensory ensembles. In support of our finding 

that synaptic inhibition plays a central role in granule cell layer pattern identity and pattern 

separation, we find that blocking inhibition onto granule cells impairs the expression of a 

learned, cerebellum-dependent sensorimotor behavior. Together, these data reveal multiple 

distinct computations mediated by GABAergic inhibition onto granule cells that support 

sensory encoding, pattern separation, and behavior in ways that extend classical models.

Results

Inhibition sparsens population-level sensory representations

To measure sensory-evoked activity in populations of cerebellar granule cells, we performed 

two-photon calcium imaging of GCaMP6f, which has been shown to report spiking in 

granule cells in vitro16 (Fig. 1a-b). By crossing Ai14821 and BACα6Cre-A transgenic 

mice22, we observed dense labeling of granule cells, with only rare off-target labeling of 

Purkinje cells, which were excluded from imaging analysis (Methods, Supplementary Fig. 

1). Crus I of the lateral cerebellum is a major target of both auditory and somatosensory 

pathways23, and granule cells in this lobule are robustly driven by both auditory and 

somatosensory stimuli9, 24, 25. Thus, we imaged activity in Crus 1 in response to auditory 

stimuli (Fig. 1c-g, pure tones: 1, 5 and 10 kHz at 68 and 72 dB; Supplementary Fig. 

2) and somatosensory stimuli (Fig. 1h-l. gentle orofacial air puffs: 10, 15 and 20 PSI; 

Supplementary Fig. 3).

Our goal was to measure how discrete sensory inputs are encoded in the granule cell 

layer and could be used as an initial substrate for associative learning. While movement 

has been shown to enhance associative learning in one cerebellum-dependent behavior, 

it is not necessary for learning per se26. Thus, because Crus I receives input related to 

whisking and likely other movements27–31 that could confound our measures of sensory 

ensembles, we took multiple steps to isolate sensory-related granule cell activity (see 

Methods). First, animals were habituated to orofacial airpuffs, such that they produced 

reflexive whisker movements on only a minority of trials. Second, high-speed video 

was used to detect whisker and facial movements between trials and isolate responses 

related to these movements32 (Supplementary Fig. 4). Third, we controlled for spontaneous 

and reactive body movements using a sensitive piezo vibration sensor33, 34 (Fig. 1a, 

Supplementary Fig. 5). Together, these methods enabled us to discard trials with body 

movement and demonstrate that whisking-related activity does not significantly contaminate 

sensory responses (Supplementary Figs. 4, 5; Methods).

In control conditions, combining data across stimulus frequencies and intensities reveals that 

both auditory and somatosensory stimuli recruit population level granule cell activity in Crus 

I (Fig. 1). All stimuli evoke granule cell responses that begin near the time of stimulus onset 

(Fig 1c,d,h,i). For auditory stimuli, which could be delivered for a longer duration (1 s) than 

somatosensory stimuli, individual granule cells respond at times across the duration of the 

stimulus window (Fig. 1c, 6a), and many granule cells respond preferentially at the offset of 

the stimulus (Fig. 1c). Overall, granule cells in control conditions produce modest responses 
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(Fig. 1d,e,i,j) occurring with a low probability (Figure 1f,k; auditory: 0.14 ± 0.00, n = 3360 

cells; somatosensory: 0.06 ± 0.00, n = 815 cells) and small single trial amplitude (Fig. 1 g, 

l; auditory: 0.41 ± 0.01 ΔF/F, n = 1942 cells; somatosensory: 0.53 ± 0.04, n = 118 cells). 

These properties are consistent for all individual auditory and somatosensory stimuli tested 

(Supplementary Fig. 2,3).

Both classical models5, 6 and in vivo whole-cell recordings13 have suggested that inhibition 

restricts granule cell sensory responses due to spike thresholding. Therefore, local inhibition 

could explain the low probability and amplitude of individual granule cell trial-by-trial 

responses. To test how local synaptic inhibition regulates sensory-evoked granule cell 

responses, we used the DART system19 to selectively block GABAA receptors on granule 

cells (Fig. 1, Supplementary Fig. 1,6-8). Here, we expressed a GPI-anchored HaloTag 

Protein (HTPGPI) in granule cells to acutely and specifically antagonize GABAA receptors 

upon infusion of gabazine.1DART.2 (Fig. 1, “DART”). This manipulation dramatically 

altered responses to all sensory stimuli tested (Fig. 1, Supplementary Figs. 2,3), producing 

significantly larger mean population responses (Fig. 1d-e,i-j), increased response probability 

(Fig. 1f,k; auditory: 0.38 ± 0.00, n = 3360 cells, p<0.0001, paired t-test; somatosensory: 

0.31 ± 0.01, n = 815 cells, p<0.0001, paired t-test), and increased amplitude of single trial 

responses (Fig. 1g,l; auditory: 0.60 ± 0.02 ΔF/F, n = 1942 cells, p<0.0001, paired t-test; 

somatosensory: 0.88 ± 0.07, n = 315 cells, p<0.0001, paired t-test). These changes in single 

trial response probability and amplitude were observed across all individual variations of 

auditory and somatosensory stimuli tested (Supplementary Figs. 2-3).

In addition to changes in sensory evoked responses, we also observed a significant 

enhancement of spontaneous activity when inhibition was blocked (Fig. 1c,h, control F: 

0.000 ± 0.000, DART F: 0.004 ± 0.001, n = 1616 cells, p<0.0001, paired t-test). This effect 

is consistent with previous data revealing that a non-specific block of GABAergic inhibition 

in the cerebellar cortex increases spontaneous granule cell spiking and can degrade the 

signal-to-noise ratio of sensory evoked responses35.

To test the selectively of these effects, we used a variation of gabazine.1DART.2 that cannot 

bind HTP (non-binding gabazine.1nbDART, “nbDART”) and a variation of HTP that cannot 

bind ligand (ddHTP). Neither nbDART infused into animals expressing HTP, nor DART 

infused into animals expressing ddHTP significantly changed auditory or somatosensory 

responses (Supplementary Figs. 6,7). Together, these results are consistent with a central 

role of GABAergic inhibition in enforcing granule spike thresholds to restrict population 

activity, maintaining sparsity of spiking both within and across trials.

Importantly, many granule cells that are silent in control conditions become responsive 

after blocking synaptic inhibition, resulting in a dramatic increase in the number of granule 

cells responsive to both auditory and somatosensory stimulation (Fig. 1c,h, Fig. 2a). We 

therefore compared the number of responsive cells to a conservative estimate of the total 

cells present in our field of view (based on the size of ROIs detected with our analysis, see 

Methods). This allowed us to estimate that, under baseline conditions, approximately 5.2 ± 

0.5% of granule cells in our field of view responded to any individual auditory stimulus and 

1.1 ± 0.2% of granule cells responded to any individual somatosensory stimulus (Fig. 2b). 
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Following block of synaptic inhibition, there was a large expansion in the fraction of granule 

cells responsive to both auditory (13.1 ± 1.3%, p<0.0001, n = 26 stimulus conditions, paired 

t-test) and somatosensory (7.7 ± 2.1%, p<0.01, n = 12 stimulus conditions, paired t-test) 

stimuli (Fig. 2b). Two points merit emphasis: First, these results indicate that the fluorescent 

granule cell responses we have measured are unlikely to reflect subthreshold activity, as 

the majority of granule cells were not responsive until inhibition was blocked. These cells 

necessarily received excitatory input in control conditions that was not reported by GCaMP 

activity. Second, the sparsity of granule cell population responses we have measured is due 

to local synaptic inhibition, not a sparsity of incoming mossy fiber input.

Inhibition establishes discrete unisensory ensembles

Given that each stimulus evokes sparse granule cell activity under control conditions, we 

next asked whether individual granule cells respond selectively to distinct stimuli. We find 

that granule cells prefer individual stimulus features, such that cells with robust responses 

to auditory stimuli of a given frequency respond more weakly to other frequencies (Fig. 

3a-g; n = 3 mice; all comparisons to preferred stimulus: p<0.0001, one-way ANOVA). 

Similarly, neurons that respond to a given somatosensory (Fig. 3i, Supplementary Fig. 10; all 

comparisons to preferred stimulus: p<0.05, one-way ANOVA) or auditory (Supplementary 

Figs. 9,10; all comparisons to preferred stimulus: p<0.0001, one-way ANOVA) stimulus 

intensity respond less strongly to other intensities. Notably, these stimulus preferences were 

graded, and across the population there was considerable variability in the responsivity to 

nonpreferred stimuli (Fig. 3b-d, Supplementary Fig. 10).

We next tested how GABAergic inhibition regulates stimulus preferences in granule cells. 

In neocortical cells, there is evidence that sensory tuning can by sharpened by local 

synaptic inhibition in some conditions36. For granule cells matched between control and 

after DART infusion (i.e. those responsive in both conditions), we find that removal 

of synaptic inhibition partially alters stimulus preferences (Fig. 3f,h,j), though mean 

population preferences remained significant when inhibition was blocked (Supplementary 

Fig. 10; auditory: all comparisons to preferred stimulus: p<0.0001, one-way ANOVA; 

somatosensory: all comparisons to preferred stimulus: p<0.0001, one-way ANOVA). 

Consistent with enhanced response probabilities in DART, which led to an increased fraction 

of cells responding to more than one stimulus (Supplementary Fig. 11), stimulus tuning 

was broadened modestly by blocking inhibition. Overall, however, these data suggest that 

granule cell stimulus preferences are largely inherited from presynaptic mossy fiber input, 

consistent with the small number of mossy fibers that impinge on individual granule cells 

and the lack of recurrent processing among granule cells.

To test how these stimulus preferences establish discrete population responses, we first 

measured the overlap across activated populations. We find that granule cells that respond to 

each stimulus feature establish ensembles with partial overlap (Fig. 4a,b; auditory fraction 

overlap: 0.53 ± 0.02, n = 6 stimulus conditions; somatosensory fraction overlap: 0.06 ± 0.01, 

n = 3 stimulus conditions).

On average, auditory ensembles contained 83.7 ± 14.7 cells, whereas somatosensory 

ensembles contained only 29.4 ± 6.5 cells. Therefore, the average overlap for auditory 
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ensembles was 44.3 ± 0.2 cells, but only 1.8 ± 0.1 cells for somatosensory ensembles. 

This was partly due to the smaller size of somatosensory ensembles and fewer stimulus 

conditions for this modality, but may also be partly due to their greater stability (Fig. 4c,d).

In the DART condition, where there is a large number of responsive cells that were 

unresponsive in control conditions, we find significantly more overlap between the 

ensembles that are responsive to each individual stimulus (Fig. 4a,b; auditory: 0.90 ± 0.02, 

n = 6 mice, p<0.0001, paired t-test; somatosensory: 0.16 ± 0.03, n = 3 mice, p = 0.03, 

paired t-test). Thus, blocking synaptic inhibition decreases the separability of the average 

population response to different sensory stimuli.

Sensory discrimination can also be influenced by trial-over-trial variability. Despite 

representing different stimuli with discrete ensembles, there was significant variability 

across trials within each ensemble of cells responding to any given stimulus feature (Fig. 

4c,d). On average, each ensemble of responsive granule cells was only weakly correlated 

across trials (Pearson correlation, auditory: ρ = 0.22 ± 0.00; somatosensory: ρ = 0.34 ± 

0.08). Thus, while the sparse population response allows for discrete granule cell ensembles 

to represent individual stimulus features on average, the ensembles can be somewhat 

stochastic across trials, a feature that may contribute to the relatively slow time course 

cerebellar learning as compared with some other forms of associative learning37, 38. Notably, 

despite the smaller ensemble sizes, we observed a higher correlation across trials within 

somatosensory ensembles.

Importantly, the large number of newly active cells in DART also added variability to 

ensemble identities, as ensembles became even less correlated across trials when inhibition 

was blocked (Fig. 4c,d; auditory: 0.12 ± 0.01, 21.9 ± 0.8 trials/ensemble, 6 mice, p<0.0001, 

paired t-test; somatosensory: 0.24 ± 0.06, 16.7 ± 2.9 trials/ensemble, 3 mice, p = 0.35, 

paired t-test). These results suggest that the higher mean response probability in DART (Fig. 

1) is not sufficient to counter the variability introduced by the large number of additional 

responsive cells when inhibition is blocked. Together, these results indicate that inhibition 

serves to segregate granule cell ensembles representing discrete stimulus features largely by 

thresholding population activity.

By limiting population overlap, we expect that inhibition increases granule cell pattern 

separation and thereby improves discriminability of sensory inputs. To determine whether 

inhibition in fact serves to increase the discriminability of sensory ensembles, we used the 

mouse with the largest number of trials per stimulus conditions to train a decoder to identify 

presented stimuli (Methods). Under control conditions, using a population of 321 granule 

cells, single trial auditory responses could be correctly categorized above chance according 

to their amplitude, their frequency, or the combination of amplitude and frequency (Fig. 

4e, amplitude p = 0.008, frequency p = 0.003, amplitude and frequency p = 6.26x10−5, 

Student’s t-test). When synaptic inhibition was blocked with DART, however, categorization 

was significantly impaired for all stimulus conditions (Fig. 4e, control vs DART; amplitude 

p = 4.14x10−7, frequency p = 0.004, amplitude and frequency p = 1.17x10−6, paired t-test), 

falling below chance performance. For somatosensory responses, the smaller ensemble sizes 

prevented robust decoding, but the same trends remained comparing control and DART 
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conditions (Control: 51.1 ± 12.9% correct DART: 42.2 ± 12.8% correct (chance = 33% 

correct), p = 0.2). Thus, while a dataset with more trials per stimulus condition is needed for 

a quantitative understanding for how the loss of inhibition alters the decoding of granule cell 

population responses, these results support a key role for granule cell synaptic inhibition in 

maintaining sensory pattern separation.

Multiple inhibitory computations shape multisensory ensembles

Our data indicate that excitatory inputs from mossy fibers and local synaptic inhibition can 

establish ensembles of granule cells that encode individual sensory stimuli. However, it has 

also been demonstrated anatomically and physiologically that some granule cells receive 

mossy fiber input from more than one source7–9, and it is thought that integration of these 

inputs can enhance the diversity of granule cell encoding5–7. Therefore, we next tested the 

principles that govern this integration by examining population responses to overlapping 

stimuli of two different modalities (Fig. 5).

Consistent with previous single cell recordings showing enhanced spiking in response 

to convergent multisensory mossy fiber input7, 9, we find that some cells exhibit larger 

responses to combined auditory and somatosensory input than to somatosensory input alone 

(Supplementary Fig. 12, “facilitated”, n = 161 cells, p<0.01, RM ANOVA with Tukey’s 

multiple comparisons). Thus, part of the population code representing multisensory stimulus 

combinations is reflected by increased activity within the same cells that respond to each 

stimulus in isolation.

We also find, however, that the identity of cells that define multisensory ensembles differ 

with respect to the ensembles representing each stimulus in isolation in two important 

ways: First, we find that many granule cells with no significant responses to either stimulus 

alone became active in response to combined auditory and somatosensory stimulation (Fig. 

5a,b,g and Supplementary Fig. 19, “emergent”, n = 488 cells, tone or puff vs. tone + 

puff: p<0.0001, RM ANOVA with Tukey’s multiple comparisons). These data suggest that 

integration of both stimulus modalities is necessary to drive these granule cells above spike 

threshold. These ‘emergent’ cells thus generate a novel multisensory ensemble by adding 

new cells that are not present in the ensembles representing each stimulus in isolation.

Second, we also observed a large population of granule cells that are suppressed in response 

to combined somatosensory and auditory stimulation (Fig. 5c,d,g and Supplementary Fig. 

19, “suppressed”, n = 355 cells, puff vs. tone + puff: p<0.0001, RM ANOVA with Tukey’s 

multiple comparisons). Many of these cells are completely silenced, thus subtracting them 

from the ensembles representing individual stimuli in isolation. This effect therefore further 

separates the new, multisensory ensemble from the unisensory ensembles. Together, the 

emergent and suppressed populations of granule cells represent the vast majority of total 

granule cells in our measurements (Fig. 5g), suggesting that whatever mechanism is 

responsible for these computations is critical for the encoding of complex multisensory 

stimuli in the granule cell layer.

To test whether local synaptic inhibition provides the necessary mechanism to establish 

suppressed and emergent populations, we again utilized the DART system to acutely block 
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inhibition. An analysis of matched cells between control and DART conditions revealed that 

inhibition powerfully shapes both the emergent and suppressed granule cell populations 

(Fig. 5e,f,g). Specifically, though emergent cells had no significant response to either 

stimulus alone in control conditions, we find that blocking synaptic inhibition revealed 

responses to each individual stimulus (Fig. 5e, tone = 0.8 ± 2.9% ΔF/F, puff = 2.1 ± 0.6% 

ΔF/F, n = 79 cells, p<0.0001, paired t-test), again consistent with a spike thresholding effect. 

These data also contextualize the strategy of utilizing widespread subthreshold input instead 

of sparse, high-fidelity suprathreshold input, as it would not be possible to generate these 

unique emergent multisensory ensembles with the latter strategy.

We also find that the suppressed population was dependent on synaptic inhibition, as 

suppression was abolished in the presence of DART (Fig. 5f, n = 43 cells, puff vs. tone 

+ puff: p = 0.38, RM ANOVA with Tukey’s multiple comparisons). These data indicate that 

inhibition can be recruited in a stimulus-specific manner, where in this case, auditory input 

can recruit inhibition that suppresses responses to somatosensory input, but does not directly 

excite these granule cells even in the absence of inhibition. In this manner, local inhibition 

can mediate subtractive stimulus integration, operating to suppress the response of one input 

when another is present. Consistent with theoretical work, which has hypothesized that 

such a mechanism could act to diversify granule cell representations by reducing ensemble 

overlap during combined stimulus presentations39, our data indicate that stimulus-specific 

suppression provides a widespread and powerful means to generate unique multisensory 

ensembles.

To further explore this computation, we varied the features of co-presented stimuli. We find 

that suppression can be specific even within the same modality during co-presentation of 

stimuli with different features (Fig. 5h,i and Supplementary Fig. 19). These data suggest 

that local synaptic inhibition is a crucial source for generating diversity in granule cell 

population responses during complex sensory input, segregating multisensory ensembles 

from each other and from those representing each stimulus in isolation (Fig. 5j).

To test this directly, we trained a decoder to categorize a stimulus as either unisensory 

(auditory or somatosensory), or multisensory. Stimuli were correctly categorized on 70% 

of trials (Fig. 5k, decoding 521 granule cell responses from 30 unisensory and 30 

multisensory trials, 3 mice). To determine how stimulus-specific inhibition and thresholding 

of emergent cells contribute to discrimination of multisensory ensembles, we synthesized 

multisensory population responses that consisted exclusively of the linear summation of 

measured unisensory responses (see Methods). We find that these synthetic multisensory 

responses are significantly less discriminable from the unisensory responses as compared 

to measured multisensory responses (Fig. 5k, p = 0.0023). This reveals that the population 

diversity generated by the novel multisensory interactions identified here (stimulus-specific 

suppression and emergent responses) serve to significantly enhance pattern separation in the 

granule cell layer.

Sensory responses can exhibit temporal variability

In addition to population identity, the timing of granule cell activity has been hypothesized 

to play an important role in behavior and learning4, 40, 41. Therefore, we also tested 
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how granule cells represent the timing of sensory input and how this depends on local 

synaptic inhibition. We find that the average responses of individual granule cells during 

a 1-second auditory stimulus forms a population response that tiles the duration of the 

stimulus (Fig. 6a)42. Surprisingly, however, we find that many granule cells do not respond 

with reproduceable timing across trials (Fig. 6a). Because the peak of mean ΔF/F responses 

can be biased by a small number of trials with large responses, we also computed response 

timing according to the onset of fluorescent responses during the stimulus window on 

individual trials (Fig. 6b,c). This measure again supports the conclusion that the timing of 

most granule cell responses is not reproduceable across trials (Fig. 6c). To quantify this 

variability, we measured the jitter in response onset across trials (Fig. 6d). While a subset 

of granule cells (17.6%) responded with relatively low jitter, exhibiting a S.D. less than 100 

ms across trials, we found that most granule cells have an onset time that varies by hundreds 

of milliseconds across trials (Fig. 6f; control onset S.D. = 0.77 ± 0.02). These results 

suggest that a large fraction of granule cells do not exhibit a high degree of across-trial 

consistency during a 1-second stimulus, which is on the longer range for stimuli that drive 

robust cerebellar learning. Notably, however, we did find that earlier responding granule 

cells exhibited higher response probabilities and less jitter on average (Supplementary Fig. 

13), supporting the hypothesis that they may receive stronger inputs. In line with this idea, 

earlier responding cells were also less sensitive to blocking inhibition (Supplementary Fig. 

13). Together, these results may support the idea that reduced across-trial consistency of 

granule cell responses at longer intervals could degrade learning for prolonged stimuli43.

We find that blocking synaptic inhibition shifts the distribution of response onset times 

earlier (Fig. 6d,e and Supplementary Fig. 14-15; first event times: control, n = 1631 cells, 

DART, n = 3718 cells; Kolmogorov-Smirnov p<0.0001). Surprisingly, however, we do not 

observe a corresponding reduction in response jitter (Fig. 6f, Kolmogorov-Smirnov p = 

0.9859). This was due to the higher response probability across trials in the DART condition, 

where there were many more total trials with significant stimulus responses (Fig. 6d). As 

a result, while there were more trials with earlier response times when inhibition was 

blocked, there were also more trials with late responses, preventing an overall change in 

mean response jitter (Fig. 6d,f). These data are consistent with previous results suggesting 

that response timing in granule cells is not exclusively regulated by synaptic inhibition44 

and must, therefore, also reflect parameters such as variability in input timing, and cellular 

properties such as short-term plasticity of mossy fiber input7 and the intrinsic membrane 

properties of granule cells45.

In control conditions, we also find that many granule cells respond at or near the offset of 

the auditory stimulus (Fig. 1c, 6a,g). These ‘off’ cells represented 5.4% of the responsive 

population. When inhibition was blocked, these cells responded much earlier during the 

auditory stimulus (Fig. 6g-h; n = 47 cells, p<0.0001, paired t-test). This indicates that, under 

control conditions, recruitment of inhibition during the sensory stimulus prevents these 

cells from responding immediately, even though they receive sufficient excitation during the 

stimulus to drive spiking if inhibition is removed. Together, these data suggest that inhibition 

serves to diversify the temporal responses of granule cells by both limiting the number of 

early responses during a stimulus presentation and establishing a population of cells that 

selectively represents the late component of sensory input.
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Inhibition is required for cerebellum-dependent behavior

Our data reveal that synaptic inhibition powerfully restricts the population of granule 

cells recruited by sensory input and shapes many features of the population ensembles 

that encode sensory stimuli. In principle, these effects may support the predictions of 

classical and recent computational models5, 6, 46 proposing that granule cell inhibition acts 

to segregate the population codes necessary for both learning and the expression of learned 

behaviors. To test this hypothesis directly, we utilized the cerebellum-dependent task delay 

eyelid conditioning. For this task, mice were trained on a freely moving treadmill47 to 

associate a brief corneal air puff (unconditioned stimulus, “US”) with a co-terminating 

neutral auditory tone (5 kHz, 250 ms; conditioned stimulus, “CS+”; Fig. 7a-d). We first 

trained mice until the probability of conditioned responses (“CR”) in each session had 

plateaued (0.80 ± 0.06, n = 8 mice; Fig. 7d). In a subset of mice, infusion of muscimol into 

the eyelid conditioning region of the cerebellar cortex at the floor of the primary fissure, 

which spread into the anterior interpositus47, abolished conditioned responses, confirming 

cerebellar dependence (n = 3 mice; Fig. 7c and Supplementary Fig. 16). Notably, this is 

a different area than we used for our imaging experiments since it is too deep for optical 

access. We expect, however, that the principles by which synaptic inhibition influences 

sensory integration are conserved, given the stereotyped circuitry of granule cell layer.

To test whether mice could discriminate between the learned CS+ and similar auditory 

stimuli that had not been paired with a US during learning (CS−), we next measured 

responses in a cohort of mice for which two different CS− tones (1 and 10 kHz) and the 

CS+ tone were presented on randomly interleaved trials. In these experiments, consistent 

with previous work in rabbits48, 49 and mice50, we find that the response probability 

and amplitude of CRs were significantly and equivalently reduced for both CS− tones as 

compared to the CS+ tone (Supplementary Fig.17; n = 4 mice; CR probability: CS+ vs. 

CS− (1 kHz or 10 kHz): p<0.005; RM ANOVA with Dunnett’s multiple comparisons; 

CR amplitude: CS+ vs. CS− (1 kHz or 10 kHz): p<0.05). Because we obtained the same 

result for two different CS− tones, we moved forward in testing a single CS− for DART 

experiments to maximize trial numbers.

To test whether granule cell inhibition is critical for sensory integration in this cerebellum-

dependent task, we again utilized the DART system to block GABAARs. In a well-trained 

cohort expressing HTP in granule cells in the eyelid conditioning region of the cerebellar 

cortex (Fig. 7e), mice were subjected to 3 test sessions, each one week apart with daily CS+ 

only training in between (Fig. 7f). Test sessions with control infusions of saline or nbDART 

into the eyelid conditioning region revealed that trained mice effectively distinguished the 

CS+ from a single tone with a different frequency (10 kHz, 250 ms; “CS−”) (Fig. 7g-h; 

n = 5 mice; CS+ vs CS− in saline: CR probability: p<0.005, paired t-test; CR amplitude: 

p<0.0005; CS+ vs CS− in nbDART:, CR probability: p = 0.03, paired t-test, CR amplitude: 

p = 0.03, paired t-test). However, blocking synaptic inhibition to granule cells in the eyelid 

conditioning region with functional DART reduced conditioned response probability and 

amplitude during CS+ trials such that behavior was indistinguishable from CS− trials (Fig. 

7i; n = 5 mice; CS+ vs CS− in DART: CR probability: p = 0.19, paired t-test; CR amplitude: 

p = 0.25). DART infusion did not significantly impact responses to the CS− (saline vs 
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DART: CR probability: p = 0.89, paired t-test; CR amplitude: p = 0.69). Interestingly, 

we did not observe an effect on the trajectory of CRs when granule cell inhibition was 

blocked (Supplementary Fig. 18), suggesting that response kinematics may be largely 

shaped downstream, perhaps by inhibition and excitation onto Purkinje cells or elsewhere in 

the circuit. Together, these data indicate that granule cell inhibition is necessary for accurate 

cerebellum-dependent sensorimotor responses by shaping the contextual representations that 

are harnessed for behavior.

Discussion

By imaging granule cell responses to discrete sensory input while manipulating local 

synaptic inhibition, we have revealed multiple key computations that extend classical Marr-

Albus models of granule cell layer processing. First, we find that local synaptic inhibition 

can enforce sparse granule cell population activity in terms of both response probability 

and cell number. Moreover, consistent with its role as a pattern separation layer, we find 

that granule cells represent sensory stimuli as discrete ensembles that also depend on 

inhibition to limit overlap. For multisensory ensembles, inhibition defines population codes 

by establishing multisensory-only cells and suppressing responses of unisensory cells in a 

stimulus-specific manner. In these ways, which extend the predictions of classical models, 

inhibition can generate novel multisensory granule cell ensembles that enhance pattern 

separation. Finally, in agreement with our imaging data suggesting that inhibition serves 

a central role in establishing discrete sensory representations, we find that granule cell 

inhibition is required for accurate sensorimotor behavior in a cerebellum-dependent task.

Recent work has shown that, during complex behaviors, granule cell activity can be denser 

than was predicted by classical Marr-Albus models15–18. In contrast, our goal was to 

isolate discrete sensory responses, independent of motor-related signals and contextual 

modulation26. With this experimental design, population responses were relatively sparse 

for auditory and somatosensory stimuli. It is possible that when combined with motor inputs, 

these stimuli would activate denser sensory representations as seen during complex behavior. 

However, the cells recruited during whisking were largely distinct from those activated by 

tones and orofacial puffs. This supports an alternative interpretation, where the density of 

responses observed during complex behaviors may represent the joint activity of different 

motor and sensory ensembles.

The sparsity of sensory ensembles depended on synaptic inhibition. For unisensory stimuli, 

inhibition acted primarily via spike thresholding, as blocking inhibition dramatically 

increased the responsive population, producing large scale overlap across ensembles. Spike 

thresholding also played a key role in generating multisensory ensembles by establishing 

cells that only respond to specific input combinations. Notably, this would not be possible 

with sparse mossy fiber input that instead drove high fidelity granule cell spiking. Thus, we 

speculate that it may be more appropriate to consider thresholding inhibition as a mechanism 

to enhance combinatorial diversity of granule cell responses than to enforce population 

sparsity per se.
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While the thresholding effects of calcium indicators might artificially sparsen 

representations and enhance the effects of blocking inhibition, the stimulus-specific 

inhibition we observe is not sensitive to this caveat. This subtractive mechanism regulated 

a large fraction of cells in our multisensory experiments, representing a powerful additional 

means of pattern separation. Such lateral inhibition may explain early measurements 

showing that inhibition can vary according to the specific combination of vestibular nerve 

stimulation51, and is supported by in vitro measurements suggesting that Golgi cells can be 

recruited in a pathway specific manner52. Moreover, recent experiments have revealed that, 

while many Golgi cells are coordinated during behavior, a large fraction can also display 

diverse activity patterns that may reflect stimulus specific drive53. Indeed, our measurements 

reveal that stimulus-specific recruitment of inhibition is a widespread mechanism that shapes 

multisensory population activity in vivo. Notably, this mechanism is in direct opposition to 

the concept of Golgi cell inhibition of granule cells acting exclusively as a broad, general 

feedback system proposed by classical Marr-Albus theories.

Together, these findings suggest that inhibition can provide the granule cell layer with an 

even greater capacity for pattern separation than was described by classical Marr-Albus 

models. Based on these properties, we speculate that inhibition may serve to counteract 

the intrinsic limitations on combinatorial diversity that are imposed by the anatomical 

architecture of mossy fiber input to granule cells54. Our simple decoders argue that 

inhibition is important for pattern separation. However, future work is needed to test whether 

inhibition shapes higher dimensional activity structures55, for instance by decorrelating 

sensory representations56, 57. Together, these computations have the potential to support 

effective pattern separation even if granule cell activity exceeds the levels proposed in 

classical models during behaviors involving diverse cerebellar input.

Typically, models of cerebellar learning assume consistency of individual granule cell timing 

across trials, at least for stimulus durations that are appropriate for learning43. Here, we 

find that a minority of granule cells (~20%) exhibited low temporal jitter across trials, with 

the remainder exhibiting higher temporal variability. While previous measurements have 

shown that the timing of mossy fiber input can be highly reproduceable across trials58, 

this may not translate into a consistency of granule cell spike timing due to pre- or post-

synaptic regulation44, 45, 59, 60. The reliability of inputs may also be modality specific61, 

as different mossy fibers can have different strengths and short-term plasticity, and likely 

have different temporal consistency depending on source. Our data support this possibility, 

as somatosensory ensembles exhibited less variability than auditory ensembles, despite 

their smaller size. Moreover, we found that earlier responding granule cells exhibited less 

temporal variability, perhaps related to the inverse relationship between cerebellar learning 

and stimulus duration62.

We find that the variability in granule cell spike timing was not dramatically altered 

when inhibition was blocked. While feedforward inhibition can play a powerful role in 

establishing spike timing in some circuits63, the mossy fiber recruitment of Golgi cell 

inhibition onto granule cells is relatively weak and inconsistent64. Moreover, inhibitory 

postsynaptic currents onto granule cells often occur before the arrival of excitatory input in 
vivo65. Such inhibition evoked before or during excitation likely serves primarily to increase 
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granule cell spike thresholds13, 35, 66 rather than as a timing mechanism, consistent with our 

current observations. As such, refinement of spike timing may not be a primary function of 

synaptic inhibition in the granule cell layer.

In addition to temporal variability, we observe variability in the identity of granule cell 

ensembles representing sensory stimuli across trials, an effect primarily due to the relatively 

low probability of responses on single trials. This low response probability may provide part 

of the explanation for why cerebellar learning can be slow to accumulate across trials, at 

least as compared to the requirements for induction of synaptic plasticity in the cerebellum 

when inputs are highly reproduceable67. Behavioral states that accelerate the acquisition of 

cerebellar learning, such as locomotion, may therefore act by increasing the reliability of 

granule cell responses. Investigating how granule cell sensory responses are modulated by 

behavioral state is thus an important future direction.

While our measurements support mechanisms of pattern separation, most analogous learning 

circuits are also thought to involve a secondary process called pattern completion that 

stabilizes representations. Notably, our observations have been made in the absence of 

learning, and we speculate that a pattern completion processes in the cerebellum could serve 

to stabilize representations in space and time during learning. Indeed, the cerebellar cortex 

includes sites of plasticity at almost every node in the circuit, as well as a feedback pathway 

that provides the type of recurrent structure necessary for pattern completion circuits68, 69. 

Future measurements will be necessary to test how granule cell representations are altered 

across learning.

We have also demonstrated that sensorimotor behavior in a cerebellum-dependent eyelid 

conditioning task relies on granule cell inhibition. Specifically, conditioned responses to a 

CS+ and CS− become indistinguishable when inhibition is blocked. If this change were 

simply due to mice equally associating the CS+ and CS−, one might expect an increase in 

the probability of conditioned responses to the CS−. Instead, we observed only a decrease in 

the response probability to the CS+. This result is consistent with several observations from 

our imaging data.

First, granule cell tuning was only partly reduced when inhibition was blocked, suggesting 

that the impairment of sensory discrimination is not solely due to a loss of tuning of the 

‘learned’ granule cell population. However, our data also show that blocking inhibition 

greatly increases the number of responsive cells (Figure 1). Because these emergent cells 

were not active during conditioning, they were not part of the circuit pathway modified 

during learning. In addition, spontaneous activity is greatly enhanced when inhibition 

is blocked, degrading the signal-to-noise ratio of granule cell sensory encoding35. We 

therefore speculate that the enhanced spontaneous activity and the emergent, unlearned 

CS+ responding cells act to bombard downstream Purkinje cells with non-specific signals 

that dilute those from the pathways modified during learning. Such results are consistent 

with a model in which the cerebellum implements a probabilistic binary choice to recognize 

learned patterns70, producing fewer CRs as the learned pattern becomes less discernable. 

Such a decreased discriminability of the new CS+ ensemble from the learned CS+ ensemble 

is consistent with the observation that the behavior does not revert to the unlearned condition 
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(i.e. where there is no CR), but instead becomes more similar to the CS− response. Loss of 

synaptic inhibition therefore leads to both a degraded CS+ representation and a decrease in 

discriminability with the CS−, both of which likely contribute to the behavioral effect.

Our inferences about the circuit responses that mediate behavior rely on recordings from a 

nearby part of the cerebellum to the one necessary for this behavior47, 71. Given the highly 

conserved anatomical and physiological properties of the cerebellum, we expect that the 

function of inhibition will also be conserved. Nonetheless, new tools will be needed to 

investigate the activity of large populations of granule cells in the region of the cerebellum 

required for eyelid conditioning, and to track their activity across learning.

Together, our results reveal several mechanisms of cerebellar granule cell layer sensory 

encoding that depend on local synaptic inhibition. In addition, we find that behavior 

associated with these patterns is highly dependent on inhibitory tone, consistent with 

findings that chronic hyperexcitability of granule cells can lead to diverse behavioral 

changes72–74. These findings thus significantly extend long-standing predictions of classical 

Marr-Albus models for how the cerebellar cortex establishes and utilizes discrete sensory 

representations to guide behavior.

Methods:

Mice

All experimental procedures using animals were performed with approval of the Duke 

University Animal Care and Use Committee. Experiments were conducted during the light 

cycle with both male and female adult mice (>P60). All mice were housed in an animal 

facility with standardized temperature and humidity, with 12 h light/dark cycles with food 

and water ad libitum. Imaging experiments were performed with Ai148 (TIT2L-GC6f-ICL-

tTA2)-D (Jackson Labs 030328) mice crossed with BACα6Cre-A22 (n = 21, female n = 12, 

male n = 9). Eyelid conditioning experiments used BACα6Cre-A mice (n = 5, female n = 3, 

male n = 2). C57/B6J (Jackson Labs 000664) was the primary background for all mice, with 

up to 50% CBA/CaJ (Jackson Labs 000654) for eyelid conditioning experiments.

Surgical procedures

Animals received dexamethasone (3 mg/kg) 3–4 h before surgery. All surgeries were 

performed under anesthesia, using an initial dose of ketamine/xylazine (50 mg/kg and 5 

mg/kg) 5 min before, and 1.0-2.0% isoflurane throughout surgery. Breathing rate and toe 

pinch responsivity were continuously monitored during surgeries. A heating pad (TC-111 

CWE) was used to maintain body temperature. For imaging and eyelid conditioning mice, 

titanium headplates (HE Parmer) were attached to the skull with Metabond (Parkell). 

Animals received buprenex (0.05 mg/kg) and cefazolin (50 mg/kg) twice daily for 2 d after 

surgeries.

For imaging experiments, adult mice (P50–60) were given a 3-mm diameter craniotomy 

over Crus I at approximately 3.0 mm lateral and 4.3 mm posterior to lambda. Crus 

I was injected (WPI UMP3) with 150 nL of either AAV7m8-X0117-CAG-DIO-[+HTP-

GGSGG8-GPI-2A-dTomato]-WPRE-pA (HTPGPI) (1 × 1012; Duke Viral Vector Core) or 
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AAV7m8-6360D-CAG-DIO-[ddHTP-GGSGG8-GPI-2A-dTomato]-WPRE-pA (ddHTP) (1 × 

1012; Duke Viral Vector Core) at a rate of 30 nL/min and a depth of 350 μm at 2–3 sites. 

Glass windows consisting of two 3-mm coverslips bonded to a 5-mm coverslip (Warner 

Instruments No. 1) with index matched adhesive (Norland No. 1) were installed in the 

craniotomy using Metabond. Imaging mice receiving saline and drug infusions received a 

plastic cannula (Plastics One; C315GS/PK length 0.5 mm) positioned immediately rostral 

to the imaging window and attached with Metabond. All mice were given 8 weeks to allow 

viral expression, including 1-2 weeks of habituation to head restraint.

For eyelid conditioning experiments, adult mice (P50–60) were given 0.3-mm diameter 

craniotomies at approximately 1.8 mm lateral and 5.85 mm posterior to bregma. Three 

equidistant 80 nL injections of either AAV-DIO-+HTPGPI (1 × 1012) or AAV-DIO-ddHTPGPI 

(1 × 1012) were performed at a rate of 30 nL/min and a depth of 4.0 mm. Mice receiving 

saline and drug infusions were implanted with a plastic cannula (Plastics One; C315GS/PK 

length 3.0 mm) over the injection site that was secured with Metabond. A subset of wild 

type mice (n = 3) received cannulas but no virus injection at the same location. Mice were 

given 8 weeks to allow viral expression, including a minimum of 2 weeks for recovery 

before habituation to head restraints and training.

Calcium imaging

Two-photon imaging was performed with a resonant scanning microscope (Neurolabware) 

using a 16X water immersion objective (Nikon CFI175 LWD 16xW 0.8NA). A polymer 

(MakingCosmetics, 0.4% Carbomer 940) was used to stabilize the immersion solution 

during imaging. For GCaMP and TdTomato imaging, a Ti:Sapphire laser tuned to 920 nm 

(Spectra Physics, Mai Tai eHP DeepSee) was raster scanned via a resonant galvanometer (8 

kHz, Cambridge Technology) onto the cerebellum at a frame rate of 30 Hz and a field of 

view of 278 μm × 117 μm (796 × 264 pixels) (Supplemetary Video 1). Scanbox software 

(Neurolabware) was used to collect data through a green filter (510 ± 42 nm band filter 

(SEMrock)) onto GaAsP photomultipliers (H10770B-40, Hamamatsu).

Behavior

During imaging, animals were head-fixed in a custom sled atop a piezoelectric sensor 

(C.B. Gitty, 41 mm ‘jumbo’ piezo) read from and triggered through a multifunction data 

acquisition device (90 Hz, USB X, National Instruments) to measure animal movement33, 

34. In a subset of experiments, whole-body motion was simultaneously recorded from a 

CMOS camera (60 Hz, Genie Nano M640 NIR, Teledyne Dalsa) with a fixed focal length 

lens (6 mm f/2.8, Edmund optics). During imaging, frame-by-frame whisker and facial 

movements were monitored with the aid of IR LEDs (Swann) from a CMOS camera (60 

Hz, Genie Nano M640 NIR, Teledyne Dalsa) with a fixed focal length lens (6 mm f/2.8, 

Edmund optics) positioned 13 cm above the animal’s head. Piezoelectric and video data 

were acquired and aligned to imaging data using Scanbox software (Neurolabware) and 

custom code written in MATLAB (Mathworks). For imaging experiments, sensory stimuli 

were delivered in pseudorandomized 167 s blocks with randomized inter-trial intervals (ITI) 

using Mworks (http://mworks-project.org). For somatosensory stimulation, low intensity air 

puffs (10, 15, or 20 psi, a range of intensities found to produce little or no behavioral 
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response after habituation, delivered block-wise) were delivered from a metal tube 5 cm 

from the center of the vibrissae (5630–10200 ms ITI; 18–29 trials/block). Pure tones of 

either 68 or 72 dB with frequencies of 1, 5, or 10 kHz were delivered individually block-

wise or in randomized pairs for single auditory stimulation (3800–15000 ms ITI; 9–23 trials/

block). While we did not detect audible responses from somatosensory air puffs or reliable 

movements such as inspiration during stimulation, we cannot rule out possible contributions 

of these or other such effects in our measured granule cell responses. Imaging sessions 

lasted between 1.25–2.25 hours.

For eyelid conditioning, the behavioral setup was constructed according to Heiney et al. 

(2014). Prior to experiments, all mice were habituated to head restraint on the same wheel 

used for training for 30–60 min/day until they calmly entered head restraints and walked 

comfortably on the wheel (5–10 d). Stimulus delivery and frame acquisition for video 

monitoring were triggered with an Arduino Uno microcontroller board (Arduino) controlled 

with modified Arduino and Matlab code written for Neuroblinks software (Medina lab). 

Mice were trained during daily sessions of 100–300 trials in which a 50-ms air puff (30 

psi) was delivered 3 mm from the mouse’s cornea (unconditioned stimulus, US) and paired 

with a co-terminating 250-ms, 5 kHz, 70 dB tone (conditioned stimulus, CS). Each session 

contained one randomly delivered CS only test trial and one US only test trial. Trials were 

only initiated if the eyelid was open >70–80% for at least 200 ms and at a minimum of 10 s 

apart47.

In vivo pharmacological infusions

Saline and drugs were infused into awake, head-fixed mice using an automated pump (WPI 

UMP3), a Hamilton syringe (10 μl Gastight model 1701 RN) and a plastic internal cannula 

(Plastics One, C315IS) threaded into the guide cannula. All infusions had a total volume 

of 1 μl delivered at a rate of 1 μl/min. To estimate the spread of pharmacological agents 

under the imaging window, 10 mM fluorescein dye (Sigma-Aldrich #F6377) dissolved in 

sterile artificial cerebrospinal fluid (aCSF; 150 nM NaCl, 4 mM KCl, 2 mM MgCl2, 2 

mM CaCl2, 10 mM HEPES, 10 mM glucose, pH 7.4) was infused through the cannula 

rostral to the imaging window, followed by a 1 h rest and perfusion. For all other imaging 

and behavior experiments, aCSF only or either 1 μM non-binding gabazine.1nbDART or 1 

μM gabazine.1nbDART.2 was dissolved in sterile aCSF and applied, followed by a 20-min 

rest. Infusions were delivered at least 1 d apart for each animal. At least one day after 

gabazine.1nbDART administration, 1 μM Alexa647.1DART.2 was dissolved in sterile aCSF and 

infused, followed by 1 h rest and perfusion. In a subset of eyelid conditioning experiments, 

fluorescent muscimol (1 mM; BODIPY TMR-X muscimol conjugate; Invitrogen) was 

infused in wild type mice, followed by a 3-min rest period.

Histology

Mice were anaesthetized with an IP injection of ketamine/xylazine (200 mg/kg and 30 

mg/kg, respectively) prior to perfusion with PBS and 4% paraformaldehyde. 50 μm sagittal 

sections were cut using a vibrotome (Pelco 102). Slices were mounted using Southern 

Biotech DAPI-Fluoromount G or Vectashield Vibrance (Vector labs) then imaged using an 

upright confocal microscope (Leica SP8).

Fleming et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Slice Electrophysiology

Acute brain slices and associated whole-cell electrophysiological recordings (pClamp v10.3) 

of synaptic inhibition were performed as described previouslyi40. Synaptic inhibition was 

measured at the reversal potential for excitation (0 mV).

Data Analysis

Multi-photon imaging: All acquired two-photon images were processed using the 

opensource Python toolbox for large scale calcium imaging data analysis CaImAn75. First, 

images were corrected for motion over 60 × 60-pixel patches using a piecewise rigid 

motion correction algorithm (NoRMCorre76). All videos were manually screened to ensure 

adequate motion correction. Whole experiments that could not be made to produce a stable 

averaged image were excluded from further analysis. Images collected before and after 

drug infusions, without displacing the objective, were motion registered and segmented 

together to enable reliable comparison between conditions. Then, source separation was 

performed using constrained non-negative matrix factorization (CNMF77). This algorithm 

includes exclusion of fluorescence changes originating in the neuropil. Regions of interest 

(ROI) identified by CNMF were then sorted according to spatial stability, transient signal-

to-noise ratio, and performance in a CNN based classifier75 (Supplementary Fig. 20). 

ROIs were then excluded based on their proximity to the edge of the FOV and overlap 

with non-specifically labelled structures (i.e., anything other than putative granule cells) 

in motion-registered, averaged images using custom MATLAB code. Remaining raw Ca2+ 

time courses computed by CNMF were screened for periods in which the signal exceeded 6 

standard deviations from the mean of either the first or last 20,000 imaging frames for >2 s, 

as such changes were noted to occur in cells that become bright and swell over the course 

of an experiment and were presumed to be unhealthy/dying. ROIs with this fluorescence 

signature and a bright, swollen appearance in motion-registered, averaged images were 

excluded from further analysis. Additionally, raw Ca2+ time courses lacking stability by 1) 

slowly drifting in magnitude or 2) transiently or permanently losing all signal were excluded 

from further analysis to allow reliable comparison of responses throughout each experiment. 

Fluorescence changes (ΔF) were normalized to a 1-s window of baseline fluorescence prior 

to stimulus onset for each trial. Individual cell responses were considered significant if 

they surpassed 2 standard deviations (SD) from the baseline period between 90–180 ms 

after stimulus onset (somatosensory stimulation), or if any sliding window beginning at 

stimulus onset and ending 0.1 s after stimulus offset surpassed 2 SD of any equal-length 

window during the baseline period (auditory stimulation). Even though we do not make 

any corrections for multiple comparisons, this 2 SD threshold puts our false positive rate 

below 5%. Some cells with significant responses in the control condition no longer achieved 

significance after DART infusions due to high levels of activity in the baseline period, 

despite having activity during the stimulus windows. Because this reduced signal-to-noise 

impaired accurate measurement of sensory responses, cells that lost significance in DART 

were not included for condition-matched analyses (Fig. 3,5, Supplementary Figs., 9-13). 

The fraction of responsive granule cells (% responsive) for each condition was estimated 

by calculating the number of granule cell sized ROIs (~14.7 pixel diameter) that would tile 

the FOV (796 x 264 pixels) without overlap. First and peak event times and amplitudes 
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during individual trials were calculated using trapezoidal numerical integration, identifying 

peaks ≥120 ms. ‘Off’ cells were defined as cells having a mean first peak time at or after 

stimulus offset. Response probability was calculated as the fraction of trials that a cell was 

significantly responsive to the sensory stimulus. Fraction overlap quantifies the proportion of 

responsive cells that respond to multiple stimulus conditions.

Unisensory stimulus classification

To classify auditory stimuli, calcium signals from populations of granule cells were used. 

First, noise was removed in two steps. 1) Smoothing: calcium signals were first smoothed 

by a 3-frame boxcar filter. 2) Threshold: after smoothing, baseline noise was estimated 

from 25 frames (30 Hz sampling) preceding the stimulus. Events that exceeded 2-SD 

above the baseline noise were retained, signals below this threshold were set to zero. A 

granule cell response was defined as the peak calcium signal (between the initiation of 

the sound and 5 frames after it ended) on each trial after smoothing and thresholding. 

A population response was defined by accumulating this peak calcium signal across all 

granule cells for a given trial. This created a matrix of responses that was [cells x trials]. 

Given a limited number of trials in many experiments (~20) and a large population response 

(~300 cells), response classification was performed using a non-parametric nearest-neighbor 

approach78. This approach computed the distance of a test trial to all training trials. While 

the correlation structure of the data was preserved in this analysis, the decoder assumes 

no trial-by-trial correlations, and therefore is insensitive to this structure. The test trial was 

classified according to the stimulus condition that produced the nearest response among the 

training trials. Test-trials were selected from a ‘hold-one-out’ approach and the remainder of 

the data was used for training. Three classification tasks were run: identify the frequency of 

the stimulus (three categories, Fig. 4e left); identify the amplitude of the stimulus (two 

categories, Fig. 4e middle); and identify the amplitude and frequency of the stimulus 

(six categories, Fig. 4e right). Classification was performed across all trials. For stimulus 

classification under control conditions, responses from 328 granule cells were used with 23 

trials for each condition. For the gabazine.1DART.2 discrimination, 319 granule cells were 

used with 22 trials for each condition.

Several control analyses were run to ensure the discrimination results were not overly 

sensitive to changes in the procedure described above. First, half the number of cells 

were tested in each condition, to make sure the results were relatively insensitive to 

this parameter. The results in Figure 4 were qualitatively similar; none of the trends 

or statistically significant differences changed. Second, we defined responses in several 

different ways. In addition to using the peak amplitude (described above), we also used: 1) 

the time of the peak response; 2) the time and amplitude of the peak response; 3) the time 

the response initially crossed 2-SD above baseline; 4) the time and amplitude the response 

initially crossed baseline; 5) the integrated calcium signal between frame 30 (when tone 

was initiated) and 65 (five frames after it ceased); 6) the integrated calcium signal from 

‘5)’ and the initial time it crossed the significance threshold. The results in Figure 4 were 

qualitatively similar; none of the trends changed, but under some response definitions, some 

differences failed to clearly reject the null hypothesis (p-values were > 0.05). In Figure 
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4, error bars represent SEM and were computed by using the Wald method of confidence 

interval estimation for binomial distributions.

The same procedures were used to classify puff stimuli. Responses were classified using a 

population of 275 granule cells with 15 trials for each stimulus amplitude under control and 

DART conditions. Decoding was performed on the peak response between frames 27 and 37 

on each trial.

Unisensory versus multisensory response discrimination

Actual multisensory (sound and puff) responses were not the linear combination of 

unisensory (sound or puff) responses. To examine the consequences of this deviation from 

linear signal summation on stimulus discrimination (multi- versus unisensory), we simulated 

linear multisensory responses by summing unisensory responses sampled from responses to 

either auditory stimulus with responses to the puff stimulus for each cell. Discrimination 

performance (correctly discriminating between unisensory and multisensory responses) was 

then measured using multisensory responses or the simulated linear multisensory responses 

(Fig. 5). Response classification was performed using a non-parametric nearest-neighbor 

approach78. Responses were derived from 521 granule cells and 30 multisensory and 30 

unisensory trials (10 auditory trials at two frequencies and 10 puff). Calcium signals were 

smoothed and thresholded as described in the previous subsection. Responses were defined 

as the integrated calcium signal starting at the time the signal crossed threshold after the 

initiation of the auditory stimulus until 5 frames (30 Hz sampling) after the termination 

of the auditory stimulus. Qualitative results and significance tests were robust to halving 

the number of cells and/or using other definitions of ‘response,’ such as the amplitude of 

the peak response and the time-of-peak response. Notably, our resampling approach for 

simulating multisensory responses has the added consequence of disrupting the correlation 

structure. Thus, it could be either the loss of non-linear interactions or the correlation 

structure that impairs discrimination. However, given that the nearest-neighbor decoder has 

limited knowledge of the correlation structure, it is more likely that the impaired decoding is 

due to the decrease in sparsity of responses in DART.

Behavior Analysis:

For imaging experiments, a machine-learning-based algorithm (DeepLabCut32) was used to 

automatically track components of the face, whiskers, and head in accompanying high-speed 

videos. Tracked features were initially labeled manually in a small portion of frames (30) to 

train the algorithm, then x and y locations of each feature were automatically determined for 

all remaining frames. Motion was evaluated as cumulative displacement of these coordinates 

during aligned calcium imaging frames.

To validate the effectiveness of the piezo sensor at detecting motion, the same sensory 

stimuli used in imaging experiments were delivered while collecting high-speed video of 

each mouse’s head and limbs. Machine learning-based motion tracking with DeepLabCut32 

revealed that the sensor reliably detects limb motion and other movements such as grooming 

(Supplementary Fig. 5). Specifically, limb and facial movements were aligned with piezo 

traces, revealing that piezo measurements reliably reflect movements of all four limbs, as 

Fleming et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



well as fine movements of the ears and face. Video detected motion and piezo recordings 

do not have a one-to-one relationship, however, and some changes in piezo voltage do 

not correspond with any visible movement detected by video. We interpret these changes 

in piezo voltage as likely to reflect muscle tension as the mouse prepares to move, as 

they generally occur immediately preceding video detected movements. However, nearly all 

video-detected movements are less than 5 frames away from piezo deflections that are >1 

standard deviation from the mean, so this threshold was used to segregate imaging frames 

recording during movement. Trials were excluded from analysis if movement occurred 

anytime between the second before stimulus onset and 300 ms after stimulus offset.

In addition to removing signals related to movement, piezo voltage traces identify frames 

in which significant animal movement causes failures of imaging motion correction. Two-

color imaging of both neural activity with GCaMP6f and tdTomato indicates that instances 

of tdTomato fluorescence fluctuations (indicating Z-motion or another motion correction 

failure) are also excluded from analysis using the above criteria (Supplementary Fig. 5).

Because mice whisk frequently, and granule cells in Crus I can be tuned to whisker 

movements27, 29 , we used a different approach to segregate cells that are modulated 

during whisking. During imaging, videos of the head and whiskers were used to align 

whisker movements to changes in granule cell activity. Because some granule cells can 

be tuned for whisker deflection angle27, whisker movements were then parsed according 

to movement amplitude, and whisks that occurred between trials and in the absence of 

whole-body movement were used to identify granule cells that were modulated specifically 

by whisking. Whisk modulated cells overlapped very modestly with ensembles responsive 

to auditory or somatosensory stimulation (7.7 ± 4.5% of sensory and whisking responsive 

cells). Accordingly, inclusion of whisk modulated cells had no significant effect on auditory 

(unpaired t-test, P=0.9686) and somatosensory (unpaired t-test, P=0.4864) responses on 

average. (Supplementary Fig. 4).

For eyelid conditioning experiments, behavioral data were analyzed using modified Matlab 

code written for Neuroblinks software (Medina lab). Briefly, fraction of eyelid closure 

was calculated for each video frame by generating a binary image of a region of interest 

surrounding the eye, thresholded to provide maximal discriminability for each experiment, 

then summing pixel counts for each frame. Conditioned responses (CRs) were defined by 

eyelid closure >10%. CR probability for a given session was calculated according to all 

paired trials during that session. CR amplitudes were calculated as the mean closure during a 

4-frame window preceding the US.

Statistics and Reproducibility

Sample sizes were similar to sample sizes used for comparable studies in the field15, 34: 

3 mice or more per condition were used for imaging and eyelid conditioning experiments, 

with the exception of only 2 mice used for ddHTP imaging experiments. Each imaging 

experiment included over 150 active cells. No statistical methods were used to select 

sample sizes. Data exclusions and rationale are indicated in relevant sections above. Data 

distributions were assumed to be normal but this was not formally tested. All paired and 

unpaired t-tests were two-sided. The students t-test in figure 4e was one-sided. Adjustments 
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for multiple comparisons were performed for ANOVAs. Exact p-values for all tests are 

reported in Supplementary Table 1. All major results were replicated in multiple mice. 

Additionally, major results were replicated in mice with viral, rather than transgenic, 

calcium indicator expression and using different analytical approaches. Mice were randomly 

selected for experimental groups. Trial types were pseudo-randomized during imaging 

experiments and randomized by behavioral software for eyelid conditioning experiments. 

Investigators were not blinded to mouse group during experiments or analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Local synaptic inhibition sparsens and thresholds cerebellar granule cell sensory 
responses.
a. Schematic of experimental approach. b. Example average field of view across trials of 

granule cells expressing GCaMP6f during presentation of a somatosensory stimulus in the 

absence of whole-body movement. Yellow arrows designate significantly responsive cells. 

c. Top, example calcium traces (ΔF/F) from a granule cell on sequential tone presentation 

trials before (black) and after (red) gabazine.1DART.2 infusion (“DART”, 1 μM). Bottom, 

mean responses of all cells with significant responses to a tone before (left) and after DART 
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application (right) in an example mouse with granule cell HTP expression. Example cell 

above is cell 46. d. Mean time course of responses during tone presentation before (black,) 

and after (red) DART infusion (n = 3360 cells). Error is SEM across cells from 6 mice. e. 
Mean response amplitudes for individual cells before (black) and after (red) DART infusion. 

Black lines are mean ± SEM across cells. f. Same as e, for response probability. g. Same as 

e, for mean responses on all trials with significant responses (n = 1942 cells). h-l. Same as 

c-g, for responses to somatosensory stimuli from 6 mice (i-k, n = 815 cells, l, n = 315 cells). 

Example cell in h is cell 192 in the heatmap. ****p<0.0001, paired t-test (e-g, j-l).
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Figure 2. Synaptic inhibition restricts the number of granule cells recruited by sensory input.
a. Number of responsive cells in each mouse before and after DART for each auditory 

(left, n = 6 mice) and somatosensory (right, n = 6 mice) stimulus. Colors represent specific 

stimulus conditions; note that not all stimulus conditions were tested in each mouse. Error 

is SEM across conditions. b. Same as a, for fraction of total responsive cells. **p<0.01, 

****p<0.0001, paired t-test (a-b).
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Figure 3. Cerebellar granule cells exhibit stimulus feature preferences that are not abolished by 
blocking synaptic inhibition.
a. Average change in fluorescence (ΔF/F) for an example cell in response to pure tones at 

1 kHz (light blue), 5 kHz (dark blue), and 10 kHz (magenta). Note that the cell responds 

preferentially to a 1 kHz tone before (left) and after (right) DART infusion. b. Maximum 

responses for cells significantly responsive to 72 dB tones that prefer 1 kHz. Error is SEM 

across cells (control: n = 184 cells, DART: n = 170 cells; n = 3 mice). c. Same as b, 

for cells preferring 5 kHz (control: n = 141 cells, DART = 331 cells). d. Same as b, for 
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cells preferring 10 kHz (control: n = 313, DART: n = 224). e. Normalized responses in 

control conditions for all granule cells responsive to 72 dB tones, grouped according to the 

frequency that drove the maximum response: 1 kHz: n = 184 cells; 5 kHz: n = 141 cells; 10 

kHz: n = 313 cells; n = 3 mice. Error is SEM across cells. f. Same as e, for tone-responsive 

granule cells before and after DART infusion (red): 1 kHz: n = 170 cells; 5 kHz: n = 331 

cells; 10 kHz: n = 224 cells. g. Same as e, for granule cells responsive to 68 dB tones 

preferring: 1 kHz: n = 227 cells; 5 kHz: n = 211 cells; 10 kHz: n = 166 cells; n = 3 mice. h. 
Same as e, for tone-responsive granule cells before and after DART infusion (red): 1 kHz: n 

= 250 cells; 5 kHz: n = 297 cells; 10 kHz: n = 169 cells. i. Same as e, for all puff responsive 

cells preferring: 10 PSI: n = 45 cells; 15 PSI: n = 47 cells; 20 PSI: n = 74 cells; n = 3 mice. 

j. Same as i, for puff responsive cells before and after DART infusion (red): 10 PSI: n = 

100 cells; 15 PSI: n = 69 cells; 20 PSI: n = 202 cells). *p<0.05, **p<0.01, ***p<0.001, 

***p<0.0001, one-way ANOVA.
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Figure 4. Synaptic inhibition facilitates pattern separation for auditory and somatosensory 
responsive granule cell ensembles.
a-b. Fraction of overlap for each stimulus condition (colors) and across all conditions (black) 

before and after DART for auditory (a; n = 6 stimulus conditions, each in 3 mice) and 

somatosensory (b; n = 3 stimulus conditions, each in 3 mice) stimuli. Error is SEM across 

conditions. c-d. Same as a-b for the Pearson correlation of neuronal identity across trials. 

*p<0.05, ****p<0.0001, n.s.; p = 0.35, paired t-tests (a-d). e. Classification performance 

for an example mouse under control (328 cells, 23x6 trials) and gabazine.1DART.2 (319 
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cells, 22x6 trials) conditions for correctly identifying the sound amplitude only (left; p = 

4.14x10−7), frequency only (middle; p = 0.0039), and amplitude and frequency (right; p 

= 1.17x10−6). Dashed lines indicate chance performance. Error bars are SEM estimated 

using the Wald method for binomial distributions. p-values calculated from the Wald Test 

(one-sided). **p<0.001, ***p<0.001.
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Figure 5. Coincident stimuli create unique granule cell ensembles.
a. Time course of responses to uni- (tone: gray; puff: blue) and multisensory (tone + 

puff: green) stimuli for an example emergent cell (puff n = 17 trials, tone n = 13 trials, 

tone+puff n = 24 trials). Error is SEM across trials. b. Left, same as a, for all emergent 

cells (n = 79 cells, subset matched to DART condition, n = 3 mice). Right, amplitude 

of responses to tone, puff and tone + puff for all matched emergent cells. Error is SEM 

across cells. c-d. Same as a-b, for matched suppressed cells (n = 43 cells, n = 3 mice). 

e-f. Same as b and d, for matched cells after DART infusion. g. Pie charts illustrating 

relative prevalence of each response category before (top; facilitated: n = 161, unchanged: 

n = 158, suppressed: n = 355, emergent: n = 488) and after (bottom; facilitated: n = 172, 

unchanged: n = 93, suppressed: n = 63, emergent: n = 676) DART infusion. h-i. Example 

cells illustrating stimulus-specific suppression. Both cells respond robustly to the puff alone 

(blue), but each is suppressed in response to a specific combination of puff and tone of a 

given frequency and amplitude (dark green), but not a different frequency and amplitude 

(light green) (h, puff n=17 trials, puff+1kHz 72dB n = 24 trials, puff+10kHz 72dB n = 24 

trials; i, puff n = 17 trials, puff+1kHz 68 dB n = 24 trials, puff+10kHz 68dB n = 24 trials). 

Error is SEM across trials. j. Granule cell layer circuit motif that would produce emergent 

responses (left) and stimulus-specific suppression (right). GrC- granule cell; GoC- Golgi 

cell. k. Black line indicates uni- vs. multisensory discrimination performance from granule 

cell population responses. Distribution shows discrimination performance for 200 sets of 

simulated multisensory responses generated by linearly combining random draws from two 
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unimodal responses (one auditory and one somatosensory). The classification performance 

indicated by the black line has a z-score of 3.21, corresponding to p = 0.0023. ***p<0.001, 

****p<0.0001, RM ANOVA with Tukey’s multiple comparisons (b,d,e,f).
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Figure 6. Cerebellar granule cells respond with temporal variability to auditory stimuli.
a. Left, mean tone-evoked responses on the first half of trials for all cells ordered by peak 

response time (n = 478 cells, n = 3 mice). Right, same as on left for the second half of 

trials, ordered according to peak responses during the first half. b. Example calcium traces 

(ΔF/F) from a granule cell during sequential tone presentation trials. Arrow notes first event 

following tone onset. c. Left, first event times for all cells during the first half of trials 

ordered by timing of earliest first event. Right, first event times during the second half of 

trials ordered the same as on left. d. First event times for significant trials of an example 

cell in control (top) and after DART infusion (bottom). e. Cumulative distribution of mean 

first event times for all cells in control (black; n = 1631) and after DART infusion (red; n 

= 3718; Kolmogorov-Smirnov p<0.0001). f. Same as e, for mean standard deviation of first 

event times (Kolmogorov-Smirnov p = 0.9859). g. Example traces in control (black) and 

after DART infusion (red) for two example cells. Note the cell on the top has an increase in 

peak activity without a change in onset, while the cell on the bottom responds to tone offset 

in control but tone onset in DART. h. Mean response time in control (black) and after DART 

(red) for cells with a mean first peak time at or after tone offset in control conditions (n=47; 

paired t-test p<0.0001).
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Figure 7. Local synaptic inhibition is necessary for expression of a sensorimotor association.
a. Schematic of experimental design. CS: conditioned stimulus (tone); US: unconditioned 

stimulus (corneal air puff). b. Sample frames before (top) and after (bottom) air puff 

delivery. Blue oval indicates ROI analyzed to evaluate conditioned responses. Insets show 

thresholded binary image used for calculating fractional eyelid closure. c. Top, example 

consecutive eyelid traces from a trained mouse. Blue line marks onset of tone (CS). Red 

line marks onset of US. Note the eyelid begins to close before the US. Bottom, time 

course of conditioned response (CR) amplitude for a trained mouse on trials before and 

after local infusion of muscimol (1 mM). d. Average CR probability (top) and amplitude 

(bottom) during training (n=8 mice). Error is SEM across mice. e. Example confocal 

images (scale 50 μm) of a representative mouse expressing HTP (red) in granule cells 

in the eyelid conditioning region with bound Alexa647.1DART.2 (cyan). Top, pl: posterior 

lobe; al: anterior lobe; pf: primary fissure. Bottom, ml: molecular layer; gc: granule cell 

layer. f. Experimental time course. CS+: tone frequency paired with air puff (5 kHz); CS−: 

unpaired tone frequency (10 kHz); nbDART: non-binding gabazine.1nbDART. g. Average 
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CR probability (top) and amplitude (bottom) for individual mice during presentation of 

CS+ and CS− trials after saline infusion (n = 5 mice). h. Same as g, after infusion of 

gabazine.1nbDART (1 μM). i. Same as g, after infusion of gabazine.1DART.2 (1 μM). *p<0.05, 

**p<0.01 ***p<0.001, paired t-test (g-i). Error bars are SEM.
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