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Abstract

Modern histologic imaging platforms coupled with machine learning methods have provided new 

opportunities to map the spatial distribution of immune cells in the tumor microenvironment. 

However, there exists no standardized method for describing or analyzing spatial immune cell 

data, and most reported spatial analyses are rudimentary. In this review, we provide an overview 

of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then 

provide a compendium of spatial immune cell metrics that have been reported in the literature, 

summarizing prognostic associations in the context of a variety of cancers. We conclude by 

discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating 

lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to 

improve clinical utility of these spatial biomarkers.
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Introduction

With advances in technology, it is now possible to visualize the spatial interface between 

tumors and host immunity on the level of individual cells, thus generating vast spatial 

datasets that may contain clinically important prognostic and predictive information. 

However, this capability is accompanied by the challenge of developing rigorous and 

reproducible statistical methods for reporting and interpreting spatial immune cell (IC) 

data. Currently there is no standardized approach; most published analyses only scratch 

the surface of the rich information hidden within the spatial orientation of ICs. Here, 

we summarize published spatial IC analysis methods and future directions. The review 

is organized into three sections. First, we summarize the status of histologic imaging 

technology, including machine learning (ML) approaches to identify IC cancer cell spatial 

locations and their attributes, such as cellular phenotype. We also introduce the basic data 

structure, terminology, and analytic methods for spatial datasets. Second, we summarize 
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published research in the field, providing examples of different types of spatial metrics 

across categories including IC density, heterogeneity, clustering, colocalization, interfacing, 

and tissue segmentation. Finally, we conclude by discussing the spatial analytic methods 

of two leading IC prognostic biomarkers, the breast cancer stromal tumor infiltrating 

lymphocytes (sTIL) score [1] and the colon cancer Immunoscore [2], and propose how 

advanced spatial analysis methods could be applied to create new spatial biomarkers.

Data acquisition: technologies, ML, and spatial data structure

Here, we provide a summary of imaging technologies, methods of acquiring spatial data 

from images, and the organizational structure of spatial data.

Imaging technologies

Modern imaging technologies have permitted the acquisition of spatial datasets of 

ICs in cancer. The most common platforms employ high-resolution microscopy to 

evaluate the expression of multiple cell markers from a single tumor slide. A shared 

feature of these platforms (which include multiplex immunohistochemistry [mIHC] and 

immunofluorescence [mIF]) is the use of multiple antibodies that bind to and label specific 

cellular proteins, to visualize various cell types and identify their precise two-dimensional 

geographic location in relation to cancer cells. Analysis of multiple markers on a single slide 

ensures that spatial relationships of cell types are preserved, whereas single-marker analyses 

on sequential slides may be less accurate for characterizing spatial relationships between 

cell types. Great care must be taken to standardize and validate the assay workflow, which 

includes steps such as antibody/reagent selection, antibody staining order, sample storage, 

processing, and staining, and quality control steps employing positive and negative controls 

to ensure consistency. Best practices are summarized in an expert consensus statement by 

the Society for Immunotherapy of Cancer (SITC) [3]. In addition to mIF and mIHC, nascent 

technologies permit extensive characterization of protein or RNA differential expression 

on the level of individual cells, or within spatially defined subregions of the tumor. Such 

technological platforms include mass ion beam imaging, imaging mass cytometry, digital 

spatial profiling, or spatial single-cell RNA sequencing, which are summarized elsewhere 

[3–5]. Of note, older platforms, such as single-stain chromogenic IHC or H&E can still 

provide a wealth of spatial information, which can be leveraged using imaging software such 

as QuPath [6,7].

ML to extract spatial IC data from images

A shared and crucial step across all imaging platforms is to extract spatial data from raw 

images. High-resolution microscopy images are large datasets comprised of many pixel 

locations, each with associated intensity or color/hue values. Automated methods using 

ML are helpful in extracting spatial features from the imaging data that summarize the 

spatial distribution of cell and tissue types. Additionally, computational platforms are used 

to spectrally unmix multiplexed imaging data to accurately identify the spatial coordinates 

of the different biomarkers. Using various ML-based approaches, images can be used to 

generate data features such as tissue type (i.e. stroma, necrosis, fat, microvessels, cancer 

cell nest, blank/acellular) [8], region-specific features (such as the invasive margin [IM] 
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of the tumor), and cells (annotated by location and phenotype). ML methods can be 

either fully automated, such as with the Definiens imaging analysis platform for the 

colon cancer Immunoscore [2] (Developer XD, Definiens, Munich, Germany), or they can 

depend on user supervision to refine the classification of tissues or cells, as with the mIF 

InForm software package (Akoya Biosciences, Marlborough, MA, USA) [9,10]. A separate 

summary statement has been published that describes ML and computational methods for 

acquiring spatial IC data [11].

Structure and analysis of spatial IC datasets

Before the advent of these technologies, spatial IC data were reported descriptively, visually, 

or in the form of whole-slide summary metrics, such as cell count, intensity, density, 

or other textural features. These metrics are poor at characterizing heterogeneity of ICs 

across the span of the tumor. It is now possible to quantify IC densities precisely across 

multiple geographic subregions of the tumor. In the context of mIF/mlHC, this is often 

conducted across high-power microscopy fields (HPFs), determined by the field of view 

of the microscope lens [3,12]. When ICs are interrogated across multiple subregions, 

characteristics of subregions within a tumor can be compared. With these data, additional 

information, such as ‘hotspot zones’ or inter-region variability can be reported (described 

further below).

When a tumor is repeatedly sampled across HPFs, it is important to consider the underlying 

geographic interdependencies across the various HPFs. Summary statistics, such as mean IC 

density across multiple HPFs, can be confounded if sampling of subregions is non-uniform 

and/or if an insufficient proportion of the tumor is sampled. To build robust analytic 

pipelines using HPFs, it will be important to determine the number of HPFs required 

to accurately characterize the tumor and to ensure that the sampling distribution is not 

spatially biased toward certain tissue architectures. It was recently shown in the context 

of a breast cancer cytokine-based immunotherapy trial that at least 15 HPFs per patient 

were required to overcome the potential confounding effect of spatial heterogeneity and 

accurately characterize changes in IC density related to the cytokine treatment [12], This 

trial also illustrated how statistical models, such as hierarchical linear modeling, could be 

leveraged to better capture intratumoral heterogeneity and estimate IC density [12]. In a 

melanoma cohort it was demonstrated how HPFs could be tiled to cover the entirety of the 

tumor space and overlapped by 20% to permit correction of errors on the periphery of HPF 

images due to illumination and lens effects [13]. An alternative to tiling HPFs is to utilize 

whole-slide imaging platforms, such as the mIF Polaris (Akoya Biosciences); however, these 

platforms are still in development and the imaging can be time-consuming.

To fully utilize spatial data, observations must be annotated by their exact spatial/geographic 

position, so that both spatial interdependencies and heterogeneity can be fully explored. 

There are two distinct approaches for analyzing spatial data, raster analysis and vector 

analysis, each of which can be used in different contexts of spatial IC analysis (illustrated 

in Figure 1A–D). Vector-based datasets can be converted to raster-based and vice versa. 

However, when converting raster to vector, the resolution depends on the size of the raster 

cells.
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With raster-based datasets, spatial analyses are accomplished by partitioning the evaluable 

space by a grid of subregions or raster cells, each annotated by their geographic location. For 

each raster cell, measurements pertaining to IC infiltration (such as IC density, programmed 

cell death ligand 1 [PD-L1] intensity, percentage tumor/stroma) are individually estimated, 

thus generating a mosaic of estimations across the entirety of the tumor space (Figure 

1B). This method allows for the identification of hotspot zones, investigation of spatial 

relationships between ICs and locoregional anatomic structures, and evaluation of the 

heterogeneity of IC characteristics.

One important factor affecting raster analyses is the partitioning scale/grid size: if the raster 

cell size is too large, the resolution is poor for detecting locoregional variations (such as 

hotspots or variations in IC density); whereas if the raster cell size is too small, estimates 

of IC density become volatile due to inadequate sampling space within each cell. In a 

recent breast cancer prognostic evaluation, raster cell size affected the overall prognostic 

performance of IC hotspot analysis [14]. There are several proposed methods for optimizing 

raster cell size. One is to select a size that reflects underlying biological considerations, 

such as the span of cell-cell paracrine signaling [15]. An alternative to rectangular grids is 

provided by Voronoi tessellation [6], which can be used to subdivide the tumor space into 

uneven polygons that maximize grouping of cells with their nearest neighbors, and could 

be more flexible to adapt to underlying anatomic structures [7,16]. Superpixels is another 

method that segments tumors into raster cells according to similarities in adjacent pixel 

colors or other features [17,18]. Finally, approaches can be implemented that analyze tumors 

on different scales (multiscaling) or to optimize raster cell size as a hyperparameter, as it is 

effectively changing the resolution and accuracy of the statistical modeling [19].

Vector-based datasets are comprised of a set of unique observations corresponding to each 

visualized cell across the tumor space, with measured attributes such as cell type (cancer 

versus immune versus stromal cell) or protein expression (such as PD-L1 quantitative 

intensity by mIF). Each observation/cell is spatially annotated by its point location (x, y 
coordinates in two-dimensional space; Figure 1C,D) [20]. Locations of anatomic boundaries 

within the tumor, such as the IM or cancer cell/stromal interface, are defined as a series 

of (x,y) spatial points, that when connected linearly, create either a line or a polygon in 

two-dimensional space (Figure 1C,D). With these multi-featured vector datasets, software 

packages (such as Python or Simple Features sf package in R [20]) can efficiently calculate 

distances to the IM for each IC, calculate locoregional IC densities or PD-L1 expression, 

or label ICs according to the location within different tissue compartments (such as 

intraepithelial versus stromal). Another benefit of vector datasets is the ability to convert 

the data into detailed spatial maps that graphically illustrate the interrelationships between 

cancer cells and ICs (illustrated in Figure 1C).

Analysis of spatial data: overview of published research

Here we provide an overview of spatial IC analyses that have been conducted across a 

variety of cancer contexts and summarize their potential clinical prognostic and/or predictive 

utility. When possible, we describe these metrics using the terminology and framework 

of raster versus vector spatial analyses. We also describe the metrics as either global (i.e. 
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summarized across all spatial subunits) or local (i.e. metrics that are reported repeatedly 

across spatial subunits). These metrics are summarized in Table 1.

IC counts/densities

The most basic spatial metric is IC count or density. Cell count is defined as the number 

of detected cells within a given spatial unit (i.e. HPF), whereas density is the cell count 

normalized by the two-dimensional area of the spatial unit. Cell counts can be influenced 

dramatically by tissue composition, which may be an admixture of cancer cells, non-

cancerous tissue (stroma, adipocytes, vessels/lymphatics), non-viable tissue (necrosis or 

artifacts), or empty space. Cell densities are preferred over counts when comparing IC 

infiltration across regions with a non-uniform evaluable tumor area. Densities of certain cell 

types have been shown across multiple studies to be prognostic of outcome or predictive of 

response to immunotherapy or chemotherapy. For example, CD8+ cell density within either 

the tumor compartment or the IM was shown to predict melanoma response to treatment 

with anti-PD-1 (pembrolizumab) [21]. In early-stage triple-negative breast cancer (TNBC), 

the TIL density within the stromal compartment in an H&E slide is prognostic of outcome 

[40], predictive of neoadjuvant chemotherapy response [22], and predictive of anti-PD-1 

response [23]. Interestingly, in a study on TNBC correlating TIL density assessed by AI in 

different tissue compartments (intratumoral, within the tumor stroma, at the tumor periphery, 

etc.) with patient outcome, it was shown that a similar prognostic value could be observed 

independent of the measurement region, indicating that for these tumors, TIL assessment 

may be less sensitive to variations between methods [41].

Once cell counts or densities are determined, derivative metrics, such as ratios, can be 

calculated. One example is the PD-L1 combined positive score (CPS), which uses single-

color IHC labeling of PD-L1 to identify patients who may benefit from anti-PD-1/PD-L1 

immunotherapy. The CPS is a ratio calculated as the PD-L1+ cell count (ICs or cancer cells) 

within the tumor region, divided by cancer cell count, on a single slide [24–26]. The PD-L1 

CPS can predict the response to PD-1 immunotherapy (pembrolizumab) in some disease 

contexts (such as with chemotherapy in first-line metastatic TNBC) [25], but fails to predict 

the response in other disease contexts (such as in stage II/III TNBC) [42]. One downside of 

the CPS method is that the score is capped at 100 and, therefore, has a more limited dynamic 

range for describing PD-L1 expression compared with other methods. Another downside is 

that the inclusion of cancer cells in the denominator makes the score particularly sensitive 

to variations in the ratio of cancer cells and other cells. In another example, a high ratio of 

cytotoxic CD8+ T cells to CD68+ macrophages within primary melanoma was found to be 

associated with distant recurrence-free survival [43].

IC densities and ratios can also be analyzed across tumor subregions as a local metric, 

using either raster-based or vector-based methods. As used in the colon cancer Immunoscore 

(discussed below), the Developer XD software (Definiens) can be used to estimate IC 

density across rectangular raster cells and to generate novel metrics, such as hotspot density, 

defined as the mean IC density across the three raster grid cells with the highest-ranked IC 

density. The hotspot density was shown to be prognostic in patients with metastatic colon 

cancer [2,29]. With vector datasets, IC densities across anatomically defined subregions 
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(such as stromal versus intraepithelial) can be efficiently calculated using statistical software 

(such as the sf or sp packages in R) [39].

Kernel density smoothing or estimation is another statistical method of estimating IC density 

across spatial subregions of a tumor. In kernel density estimation, vector datasets are 

used to estimate IC density as the sum of kernel functions centered in the IC locations. 

With this approach, a smoothed estimation of IC density can be calculated for each (x,y) 

coordinate within the tissue. This method was employed to create topographical maps of 

lymphocyte densities across breast tumors [28]. The method was also used to characterize 

lymphocytes according to the density of cancer cells within their locoregional environment. 

Lymphocytes were categorized into three spatial subtypes: intratumoral, adjacent to tumor, 

and distant to tumor [28]. The ratio of intratumoral lymphocytes to tumor cells, designated 

the intratumoral lymphocyte ratio, was prognostic of clinical outcome, independent of other 

clinical factors.

Metrics of spatial heterogeneity

Cell counts, densities, and ratios define IC patterns based upon the central tendency of 

immune infiltrates within a given tumor region. However, the underlying spatial distribution 

of IC across tumor subregions may provide additional prognostic/predictive information. 

Using raster analysis, once IC densities are estimated across raster cells/subregions of the 

tumor, spatial heterogeneity summary metrics can be calculated. One common metric is 

the standard deviation (SD), which indicates how much subregion IC densities differ from 

the mean IC density. In an analysis of metastatic colon cancer specimens, the SD of CD8+ 

cell density was shown to associate with inferior disease-free survival and overall survival 

[29]. SDs are influenced heavily by the underlying mean IC density (with densely infiltrated 

tumors having a greater tendency to exhibit higher SDs). An alternative statistic is the 

coefficient of variation (CV), which is the ratio of the SD to the mean. These statistics may 

also be influenced by the size of the subregion.

Another metric of heterogeneity is skewness, which is a measure of the asymmetry of 

distributions and can be calculated as the difference between the mean and the median, 

normalized by the SD (non-parametric skew). A positive skewness value indicates the 

occurrence of high-value outliers. In an analysis of tissue microarrays of 998 early-stage 

breast cancer specimens, high skewness of the lymphocyte/cancer cell ratio (indicating the 

presence of subregions with unusually high ratios) was prognostic for improved disease-free 

survival in HER2-positive breast cancer [31]. Shannon’s entropy metric provides a measure 

of randomness across the tumor subregions, with higher scores indicating a higher degree 

of heterogeneity of IC density. In a recent analysis of TNBC specimens, Shannon’s entropy 

was shown to be higher in tumor subregions adjacent to the IM of the tumor [6]. Other 

useful measures of species richness borrowed from the ecology field may be useful for 

describing heterogeneity, including the Gini Simpson, inverse Simpson, and hill numbers.

Cluster/hotspot analysis

Cluster analysis aims to define IC location along a spectrum that varies from clustered 

to dispersed. Cell type ‘clusters’ indicate that the cells of interest are more likely to be 
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colocalized with one another, whereas ‘dispersed’ indicates that cells are repelling one 

another. Following this paradigm, statistical testing can be employed to evaluate whether 

the ICs are clustered or uniformly dispersed versus the alternative hypothesis that ICs 

are spatially random (i.e. neither clustered nor uniformly dispersed). Because IC clusters 

may reflect underlying biological immune engagement, there is tremendous interest to 

identify tumor subregions with abundant IC density (‘hotspots’) versus areas with IC paucity 

(‘coldspots’).

Numerous hotspots/clusters analysis approaches have been reported in the literature. Visual 

characterization of H&E breast cancer TIL hotspots and coldspots (as binary ‘absent or 

present’ variables) were shown to predict progression-free survival, independent of clinical 

risk factors, in a cohort from the Cancer Genome Atlas and Carolina Breast Cancer Study 

[44]. A commonly adopted quantitative method for analyzing hotspots is to rasterize the 

tumor area, rank-order the subregions by IC density, and define hotspots as either a 

fixed number, fixed percentile, or a fixed SD cut-off of highest-density subregions (Figure 

2A) [13,29,34]. In a series of 53 melanoma patients treated with pembrolizumab, it was 

concluded that a hotspot definition of IC densities of 30% of the highest-ranking HPFs 

resulted in the best prediction of the clinical response to pembrolizumab and outperformed 

conventional assessments of mean IC density [13]. In another study of metastatic colon 

cancer using the Definiens platform, hotspot density was defined as the density within the 

three most densely infiltrated raster cells within the tumor area [29]. Using this definition, 

patients with high hotspot density tumors had improved survival.

One limitation of rank-order hotspot analysis is that it can be influenced by tumor size: 

larger tumors that have more extensive spatial sampling will have a higher inherent 

likelihood of having hotspots with greater IC density. This observation was noted in the 

colon cancer hotspot analysis [45]. Another limitation is that it rests upon the presumption 

that all tumors have hotspots, whereas it is biologically possible that IC hotspots occur at 

different frequencies across tumors. As an alternative, the Getis-Ord Gi* is a probabilistic 

approach for defining hotspots and coldspots within a tumor (Figure 2B). The approach 

involves defining neighbors for each tumor subregion (i.e. usually defined as immediately 

adjacent subregions) and conducting a formal hypothesis test using these data to estimate 

a likelihood that any given neighborhood is a hotspot, given the totality of the spatial 

data. With this approach, not all tumors will have hotspots, and derivative global metrics 

describing the relative proportion of hotspots (as a fraction of total tumor area) can be 

calculated. In a breast cancer dataset, fractional area of cancer/IC colocalization hotspots 

were found to be independently prognostic for clinical outcome in estrogen receptor-

negative breast cancer [14] and estrogen receptor-positive breast cancer [33]. This metric 

was only weakly correlated with lymphocyte density, indicating that the two metrics may 

be useful in conjunction for stratifying tumors by immune response. Figure 2 illustrates 

the top 3, top 30%, and Getis-Ord Gi* approaches for defining hotspots in a breast cancer 

specimen. In this example, the mean IC hotspot density varies substantially depending on 

the method (top 3: 3.6 × l0−3/μm2; top 30%: 1.6 × 10−4/μm2; Getis-Ord p < 0.1: 2.2 × 

10−4/μm2; Getis-Ord p < 0.05: 1.8 × 10−4/μm2).

Page et al. Page 7

J Pathol. Author manuscript; available in PMC 2024 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Once clusters are defined, they can be further characterized according to features such as 

size (e.g. number of cells, area, maximum diameter of perimeter), shape (e.g. convexity, 

circularity, eccentricity, dimensionality of the perimeter), or IC phenotype/composition [6]. 

Clusters could also be characterized by their spatial relationships to other neighboring 

clusters while using different distance metrics like Euclidean norm, correlation, or nearest 

neighbors [35]. In a study of lung cancer specimens, cluster analysis was used in 

conjunction with supervised ML to generate a spatial score called the spaTIL score, which 

was shown to be prognostic of recurrence-free survival in non-small cell lung cancer 

(NSCLC) [35].

There are numerous hotspot/clustering metrics employed in the literature (some listed in 

Table 1), highlighting the lack of standardization in the field. Efforts should be made by 

investigators to justify their selection of hotspot method and to conduct sensitivity analyses 

to evaluate the impact of the hotspot method on their conclusions.

Metrics of cellular colocalization

Vector analysis of spatial IC data allows for efficient calculation of pairwise distances 

between individual cells, which is particularly useful for characterizing cell–cell 

interactions. One metric for describing colocalization of cells is the nearest neighbor 

distance metric. The nearest neighbor distance is calculated for each IC in the specimen 

and is defined as the shortest pairwise Euclidean distance between two cell types of interest. 

Similarly, with vector datasets, one can calculate the locoregional density of cells found 

within a specified radius of each cell. This method was employed to explore the relationship 

between clinical outcome and T-regulatory (Treg) suppressor cells in oral squamous cell 

carcinoma [27]. The authors posited that the density of FoxP3+ T-cells within a 30-μm radius 

of CD8+ effector cells (a biologically plausible distance for cell–cell interactions) could 

serve as a metric for Treg suppressor engagement with effector T-cells. They found that high 

Treg/CD8+ radial densities were associated with inferior overall survival, whereas the simple 

density ratio of Tregs to CD8 cells was not prognostic.

Using the G and cross-G function method, with vector datasets one can calculate the 

likelihood that ICs colocalize with themselves or other cell types at specified distances 

[36]. The likelihoods are plotted as a curve, with the x axis representing distance and the 

y axis representing the cumulative probability density of the nearest IC being within that 

distance (Figure 3A–D). This provides a graphical representation of colocalization (blue 

line) compared with what would be expected by random chance (calculated as a Poisson-

distributed homogenous point process, red line). For example, in Figure 3C, for cancer cells 

the red line exceeds the blue line between distances of 0 and 13 pixels, suggesting that 

cancer cells tend to repel each other at these distances, whereas at distances >13 pixels, the 

cancer cells tend to group together. In Figure 3D, the red line exceeds the blue line across all 

distances, suggesting that cancer cells and ICs do not colocalize. The area under the curve 

(AUC) can be calculated to provide a global metric of colocalization of two cell types within 

a certain proximity range (e.g. 50 pixels, as illustrated in Figure 3D). With this approach, 

in a NSCLC cohort, AUC scores of cross-G functions between Treg or CD8+ ICs to cancer 

cells were prognostic for survival [36]. As a raster-based alternative to the G function, 
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Ripley’s K function quantifies colocalization across specified distances by comparing IC 

densities across neighboring raster cells. In an analysis of H&E breast cancer specimens, 

extremes in the K function for stromal cells were associated with improved prognosis [32].

Another proposed colocalization metric borrowed from the ecology literature is the 

Morisita-Horn index. The method is raster-based and generates a scaled score between 0 

and 1 based on the calculated ratios of cell densities for two cell types within each raster cell 

[7], with scores close to 1 indicating colocalization and scores close to 0 indicating spatial 

independence of the two cell types. In a breast cancer cohort, higher Morisita-Horn indices 

between ICs and cancer cells were prognostic for disease-free survival, particularly in 

HER2-positive breast cancer. This metric outperformed IC density or hotspot analyses [16]. 

Numerous alternative methods for quantifying colocalization patterns have been reported, 

again highlighting the lack of standardization in the field and the need for investigators to 

justify their selection of test [6].

Using multiplex assays, recurrent structures of complex cell–cell spatial interactions can 

be uncovered within the tumor microenvironment. Using a spatial database of 458 breast 

tumors, hierarchical clustering methods were used to uncover 10 cell–cell interaction 

profiles, defined by unique clustering patterns of mixtures of cell types [46]. Examples 

of profiles include a tertiary lymphoid structure-like profile and a regulatory-cell profile 

that included Tregs combined with cells with upregulated checkpoint proteins such as PD-1. 

Classification of tumors according to the presence/absence of these structures was found to 

predict long-term survival [46]. In another study, a graph neural-network ML approach was 

used to analyze patterns of cell–cell distances and predict long-term survival in a cohort of 

gastric carcinomas [47].

Segmentation and interface metrics

Segmentation of a tumor into biologically distinct tissue compartments (such as epithelial 

nest versus stroma) is a crucial component of spatial IC analysis. The segmentation process 

can be either manual (e.g. via visual pathologist inspection, as exemplified in the breast 

cancer sTIL score, or by using pan-cytokeratin stains to identify epithelial populations) 

[1,48], semi-automated using supervised ML (e.g. using the InForm package for mIF or 

QuPath) [9,12,49], or fully automated with novel ML platforms [8,50]. In the breast cancer 

sTIL score, ICs are separately scored across stromal versus intraepithelial compartments, 

providing a powerful prognostic tool (described below) [1,40].

In many epithelial cancers, such as invasive ductal carcinoma of the breast, the epithelial/

stromal boundary is well-defined and can be further characterized according to the 

distributions of cellular phenotypes at various distances from the boundary or by the 

geometric shape of the boundary. Using multiplex staining it has been shown that certain cell 

phenotypes (such as myofibroblasts) are enriched at the stromal boundary of breast cancers, 

whereas other phenotypes (including B-cells) are depleted [46]. With fractal dimension 

analysis, the geometric complexity of the interface is quantified (with a simple line receiving 

the lowest score and jagged interfaces receiving higher scores) [7,34]. The epithelial/stromal 

fractal dimension may reflect differences in underlying tumor biology. For example, a 

high fractal dimension in breast cancer is associated with higher cancer cell proliferation 
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indices (measured by Ki67 labeling) [38]. Because a high fractal dimension results in 

increased stroma/cancer cell surface area, it has been proposed that the fractal dimension 

could modulate suppressive immune reactions between stromal fibroblasts that reside at the 

interface [34]. Supporting this hypothesis, the fractal dimension of NSCLC specimens was 

higher in immune cold regions compared with immune hot regions [34]. Fractal dimension 

analysis of fibers of the extracellular matrix, and other features of matrix fibers, can be 

quantified with image analysis software, and may contain prognostic information [51].

In breast, colon, and other cancers, ICs congregate in greater density at the IM of the 

tumor relative to the tumor center [2,37] and thus the margin could influence overall IC 

density within a specimen. This is especially relevant for the formation of tertiary lymphoid 

structures that form IC ‘hotspots’ found preferentially near the IM and provide relevant 

insights into activation of the immune system [52,53]. Biologically, differences at the IM 

could be related to physical impediments such as desmoplastic/fibrous stroma or interstitial 

pressure, versus chemical barriers related to secreted factors such as chemokines [37,54]. 

The IM is most commonly identified by pathologist visual annotation [6,37]; however, ML 

approaches are also being developed to automate this process [2,8]. In spatial analyses, 

the IM is often defined as a subregion of tissue spanning a fixed distance from the 

invasive edge. The colon cancer Immunoscore uses 360 μm, but other cut-offs have been 

proposed, including 500 or 100 μm [6,37,55]. Once these regions are defined, metrics can 

be calculated, such as the IM cell density [2] or ratios of densities [37]. These metrics 

can also be used to categorize tumors according to the degree of infiltration at the IM 

tumor center (i.e. ‘immune desert’, which describes low IC density at both, versus ‘immune 

excluded’, which describes low IC density in the tumor center but higher IC density at 

the IM surrounding the tumor). Using vector datasets, more sophisticated metrics, such as 

density gradients, can be calculated [39]. One proposed method is to partition the tumor area 

into bands defined by Euclidean distance from the IM and to estimate IC densities and 95% 

CIs of density across each distance range [6,56].

Case discussions: the breast cancer sTIL score and colon cancer 

Immunoscore

Here, from a spatial data perspective, we summarize two leading IC clinical biomarkers, 

breast cancer sTIL score and the colon cancer Immunoscore, and describe future 

enhancements that could be achieved by applying advanced spatial analysis techniques, such 

as those described above.

sTIL score in breast cancer

The breast cancer sTIL score is a visual estimation of the mean proportion of stromal 

area occupied by lymphocytes from a single H&E slide. Based upon early observations 

of the prognostic significance of sTILs [22], the International Immuno-Oncology Working 

Group (TIL working group or TIL-WG) was created to standardize and validate a method 

of scoring sTILs [1], which has since been shown in multiple datasets to be prognostic 

[40,57,58] and predictive of chemotherapy ± immunotherapy response [23,59]. These efforts 

have contributed to the endorsement of the sTIL score for clinical use in early-stage 
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breast cancer by the St. Gallen International Consensus Guidelines [60]. Because the 

TIL-WG sTIL score relies on visual estimation, it exhibits only modest interobserver 

scoring concordance [61]. The RING studies demonstrated a modest concordance score 

(intraclass correlation of 0.70 by untrained pathologists [95% CI 0.62–0.78]), which was 

improved to 0.89 (0.85–0.92) with the incorporation of training, additional safeguards 

including visual controls/scales, and the requirement for sub-sampling or the evaluation 

of at least three regions of tumor. An intraclass correlation greater than 0.8 is generally 

considered to be sufficient for adoption in clinical practices. Many of these safeguards 

are addressed in a continuing medical education (CME)-accredited FDA course on TILs 

available on the TIL-WG website [62]. A root-cause analysis identified the following 

recurring contributors to discordance: intratumoral heterogeneity of sTIL density, poor-

quality staining, misclassification of cell type or cell segment, and insufficient spatial 

sampling (in biopsies with minimal evaluable tumor area).

Ongoing efforts are underway to evaluate whether novel imaging platforms or spatial 

analyses could produce spatial metrics that perform similarly or superior to the H&E sTIL 

score for clinical prognosis/prediction (illustrated and summarized in Figure 4) [3,11,63–

65]. These can be summarized across several discrete steps of the sTILs scoring process: 

(1) segmentation; (2) subregion sampling and density estimation; and (3) calculation of 

an overall sTIL score. In the segmentation step, a tumor must be accurately separated 

into stromal and non-stromal compartments, and cells must be accurately categorized as 

lymphocytes versus other cells. This step was identified as a frequent source of discordance 

in the RING studies, with pathologists erroneously categorizing intraepithelial TILs as 

sTILs, or categorizing neutrophils, histocytes, and apoptotic cells as sTILs [66]. Proposed 

methods for improving segmentation involve the use of automated image analysis/ML 

methods that can more accurately classify tissues and cell types (summarized in [11]) or 

the use of mIF/mIHC to enable more precise segmentation through the use of cytokeratin 

staining of cancer cell-containing regions, as well as multiple cellular markers to discern 

lymphocytes from non-lymphocytes [12,63].

In the subregion sampling step, pathologists must sample enough subregions of the tumor 

space to reflect the entirety of the specimen. In the RING studies, interobserver concordance 

improved substantially when pathologists were explicitly required to evaluate at least three 

tumor subregions [66], thus raising the hypothesis that pathologists, when unassisted, may 

not visually assess enough areas of the tumor. In this regard, automated imaging and/or 

multispectral imaging would provide a clear advantage over H&E visual sTIL estimation. 

ML-based software platforms could permit efficient sampling across the entirety of the 

tumor slide or even provide whole-slide analysis. However, further work is necessary to 

optimize the accuracy of these platforms and to evaluate their prognostic/predictive utility 

in comparison with the standard visual TIL-WG method [11]. Alternatively, high-resolution 

multispectral imaging permits sampling of many HPFs across a specimen. In a recent 

evaluation of mIF in breast cancer, using Monte Carlo simulation studies, it was shown that 

at least 15 HPFs per patient would be required to adequately characterize changes in sTILs 

in the context of an immunotherapy clinical trial [12]. Before mIF can be used clinically, 

significant progress must be made to standardize the mIF/mIHC workflow across institutions 

and validate the assay [3,67].
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When TIL densities are estimated for each subregion, pathologists must accurately visually 

estimate the proportion of stromal area occupied by sTILs within a given subregion. This 

was a frequent cause of interobserver discordance. However, it was improved in the second 

RING study, when pathologists were provided standardized images of various sTIL scores 

for visual comparison [66]. Nonetheless, this step can be improved tremendously with 

automated analysis and/or mIF, which has adequate resolution to localize individual TILs, 

their precise geometric location in relation to the stromal compartment, and to compute the 

overall stromal area for each subregion.

The last step is calculation of overall sTIL density, which is where spatial data analysis 

can provide the largest gains for accuracy and precision. In the RING studies, pathologists 

were instructed to report the arithmetic mean of sTIL scores across the various tumor 

subregions. However, from a spatial analytic perspective, this method relies on a simplistic 

assumption that IC density is homogenous, when in fact biologically the IC density can 

vary tremendously across various subregions of the tumor, and can be influenced by spatial 

interdependencies (i.e. spatial autocorrelation) as well as anatomic features (such as the IM, 

which exhibits inherently higher IC density relative to the tumor center). Using vector-based 

datasets that include (x, y) coordinates of ICs as well as anatomic landmarks (such as the 

IM), spatial regression methods (such as inhomogeneous Poisson process models) [20] could 

be used to generate adjusted sTIL scores that may more accurately reflect the intrinsic 

immunogenicity of the tumor. With inhomogeneous Poisson process models, IC densities 

are estimated repeatedly across the tumor sample (using kernel density smoothing, radial 

densities, or other methods). Furthermore, for each observation, spatial covariates such as 

proximity to the IM can be estimated and included as parameters in a regression model, thus 

allowing for a spatially adjusted estimation of IC density. Other variables of interest could 

also be included in the model, such as local PD-L1 protein expression or treatment exposure 

[20].

Whole-slide TIL density metrics have also been shown to be prognostic in melanoma, and 

there are ongoing efforts to standardize and automate scoring. Recently, automated TIL 

density estimation using ML classifiers (NN192 or QuIP TIL CNN) has been shown across 

multiple datasets to improve prognostication compared with the historical Clark grading 

system for TILs [68–71]. A detailed analysis of the potential pitfalls of ML assessment is 

provided in a companion article [72].

The colon cancer Immunoscore

Immunoscore was developed as a prognostic biomarker in the context of early-stage colon 

cancer. It differs from the breast cancer sTIL score in several regards. First, it is based upon 

quantification of T-cell populations using IHC staining of CD3 and CD8. The selection of 

these markers was based upon expert consensus, genomic studies illustrating the prognostic 

value of Thl-type gene signatures (that would correlate with CD3 and CDS infiltration 

and initially also on T-cell activation reflected by granzyme B expression) [73], and the 

relative stability and quality of staining of these antigens. Second, whereas the H&E sTIL 

score aims to characterize the mean cell density across the entirety of the tumor stroma, 

Immunoscore addresses spatial heterogeneity by segmenting and quantifying IC densities 
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within two compartments, the tumor center and the IM, with the margin defined as a region 

surrounding the border between normal cells and cancerous cells. Analysis of these two 

distinct compartments was shown in a large cohort to better predict colon cancer outcomes, 

compared with single-region analysis. Third, Immunoscore relies on image analysis software 

(Immunoscore Analyzer, HalioDx), and the coding and detailed methods are not available 

publicly.

Extensive collaborative efforts by a SITC consortium have been undertaken to clinically 

validate Immunoscore as a prognostic biomarker for colon cancer [2]. In this study, 

Immunoscore was found to be prognostic across a training set, a validation set, and 

an external validation set. Consistency of staining was established through the use of a 

biomarker reference center that disseminated an optimized immunostaining protocol and 

control specimens. Cut-offs for high versus low Immunoscore were defined using the 

training set. Cut-offs of 25% and 70% were selected to create a three-tier Immunoscore 

(low versus intermediate versus high). A cut-off of 25% was selected for a two-tier 

Immunoscore (low versus high). Using this methodology, Immunoscore was proven across 

training and two validation cohorts to be highly prognostic of disease-free and overall 

survival, independent of other clinical factors. Recently, Immunoscore was also shown to 

have prognostic significance in the context of metastatic colorectal carcinoma [29].

Reframed using spatial metrics, the Immunoscore method includes the following steps: 

(1) segmentation of the tumor into IM versus tumor center; (2) rasterization of each 

compartment and estimation of IC densities in each raster cell; (3) calculation of mean IC 

densities for each compartment and calculation of a composite Immunoscore. Like the breast 

cancer sTIL score, Immunoscore could be enhanced by leveraging novel spatial analytic 

techniques across each of these steps. In the segmentation step, tumor regions are segmented 

into one of two tissue types, IM or tumor center. This is conducted by defining an IM buffer 

zone as 360 pm spanning each side of the border separating tumor from normal tissue. 

This approach is reasonable, albeit arbitrarily defined, but there exist alternative methods for 

adjusting spatial heterogeneity in relation to the IM. Across multiple tumor types, ICs have 

been shown to exhibit a density gradient according to distance from the margin. To capture 

the data inherent to the density gradient, IC and IM spatial locations could be collected 

in vector dataset format, allowing for computation of densities across regions spanning 

various distances from the margin. These densities could then be assessed for prognostic 

significance using regression modeling. One caveat of Immunoscore is that the IM may not 

be adequately sampled in every biopsy.

In the rasterization step, the tumor is divided into rectangular subregions. Each subregion 

is labeled as margin or center, and the IC densities are estimated within each subregion. 

Because raster grid size or shape (e.g. rectangular, hexagonal, Voronoi polygon) has been 

previously shown to influence overall IC estimation and prognostic outcome, in the context 

of the SITC Immunoscore validation project [2], it would be of interest to use this dataset 

to conduct a sensitivity analysis that illustrates the impact of rasterization method on 

Immunoscore. These data may be helpful for improving the performance of Immunoscore 

but may also enhance other investigations in the field of spatial IC analysis.
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In the calculation step, raster cell IC densities are used to calculate the sample’s overall 

Immunoscore. First, for each cell type (CD3 and CD8) and compartment (IM and tumor 

center), the mean IC density across all raster cells is computed. The mean is then 

converted into a percentile score by comparing against scores across the entire cohort 

of samples. Finally, the percentiles across the four cell types (CD3/margin, CD3/center, 

CD8/margin, CD8/center) are averaged, creating a single Immunoscore for each patient, 

which is prognostic of survival. Using the clinically annotated SITC Immunoscore dataset, 

alternative spatial metrics could be developed and tested for clinical utility. Examples 

would be to explore the prognostic significance of colocalization metrics of ICs with tumor 

cells (as summarized above), to evaluate the significance of the shape of the IM (i.e. 

fractal dimension, as described above), or to evaluate the prognostic impact of IC hotspots/

coldspots (as described above). A ML approach could be adopted to identify a unique 

combination of spatial metrics that confers the optimal prognostic utility.

Conclusion

Modern histologic imaging combined with ML has provided the opportunity to evaluate not 

only the overall IC density of tumors, but also the degree of heterogeneity of IC infiltration, 

the absence/presence of IC clustering, patterns of cell–cell colocalization, the complexity of 

the tumor/stromal interface, and the gradient of IC density in relation to the IM of the tumor. 

Two complementary analytic approaches, raster-based and vector-based, can be leveraged to 

generate spatial biomarkers that offer a more fine-grained picture of tissue architecture. An 

important future step is to amalgamate spatial and transcriptomic data using next-generation 

spatial sequencing technologies, which provides us with the challenging opportunity to 

analyze all cell types of a tissue in their spatial context. Although most of the available 

technologies focus on analysis of two-dimensional images, in the future, strategies may 

be developed to analyze TIL patterns in three-dimensional space. Additionally, sustainable 

strategies for cohort generation, data sharing, and dimensionality reduction methods to 

decrease data storage requirements are becoming more crucial than ever.

In this nascent field, a key deficiency is the lack of an investigative path to establish that 

novel spatial biomarkers can improve clinical prediction/prognosis beyond that of existing 

biomarkers. With the advent of cloud computing and with increasing emphasis on data 

sharing by regulatory agencies and editorial boards, in the future it may be possible to 

leverage shared databases that contain digitized imaging files and outcomes data from 

pivotal clinical trial datasets. Such databases could provide necessary standardization, 

quality control, and sample sizes to permit the validation of clinical utility of a novel spatial 

biomarker. Efforts should be made by industry, consortia, investigators, and other agencies 

to contribute to these databases. Oversight by a committee may be required to ensure that 

the data are used efficiently, without bias, and without compromising patient privacy. An 

additional validation step for a novel biomarker is external quality assessment, whereby 

multiple laboratories replicate and confirm findings. In the context of mIF/mIHC-based 

biomarkers, external validation might be achieved via multi-institutional consortia sponsored 

by the National Institutes of Health, SITC, and other organizations.
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Figure 1. 
Raster versus vector spatial data structure. (A) An example of a TNBC specimen imaged by 

H&E, with high-resolution multi-color images obtained using mIF (Vectra platform). High-

resolution images are used to obtain cell coordinates and phenotypes. (B) In raster-based 

spatial analysis, the tumor is divided into small subregions (usually by a rectangular grid) 

and spatial metrics are calculated independently across each subregion, allowing for analysis 

of spatial metrics such as average cell count, deviation/skewness, and hotspot analysis. 

(C and D) In vector-based spatial analysis, cells are annotated by their phenotype, (X,Y) 
geographic location, and other attributes, such as PD-L1 expression. These data can then be 

analyzed using statistical software to calculate a variety of metrics.
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Figure 2. 
Illustration of various hotspot metrics. Various methods of calculating IC hotspots have been 

described in the literature, and include methods based upon rank-ordering of IC density 

across subregions, or based upon inferential testing. (A) Rank-order-based approaches, 

which define hotspots as either ‘top 3’ (the three most densely infiltrated subregions) or ‘top 

30%’ (the top 30% most densely infiltrated subregions). (B) The Getis-Ord Gi* method, 

which uses inferential statistical testing to estimate p values indicating the likelihood 

of each subregion being a hotspot or a coldspot. The Getis-Ord test statistic follows a 

normal distribution and can be thought of as a measure of local IC density in neighboring 

subregions, relative to overall IC density. IC, immune cell; TC, tumor cell.
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Figure 3. 
G and cross-G function for describing cellular colocalization. (A) The (X,Y) locations of ICs 

in relation to cancer cells of an early-stage breast cancer specimen. Colocalization of cells at 

specified distances can be illustrated using (B and C) the G function (colocalization of the 

same cell type) and (D) the cross-G function (colocalization of two distinct cell types). The 

blue lines illustrate the observed colocalization patterns of the sample, whereas the red lines 

illustrate the expected colocalization under the assumption of randomness/homogeneous 

point pattern. In (D), the AUC is illustrated in green and is used to provide a global metric 

of colocalization of two cell types within a certain proximity range (<50 pixels in this 

example). TC, tumor cell.
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Figure 4. 
sTILs score and Immunoscore: methodology and opportunities for spatial applications. (A) 

Segmentation step: for the sTILs score, the intraepithelial versus stromal tumor compartment 

are visually determined by a pathologist, whereas for Immunoscore, the IM versus tumor 

center is determined using an automated ML platform. (B) Sampling and density estimation 

steps: for the sTIL score, several representative subregions are visually selected and sTIL 

counts are estimated across each subregion, whereas for Immunoscore, the entirety of the 

tumor area is divided by a rectangular raster grid, and CD3+ and CD8+ ICs are counted 

for each raster cell. (C) Calculation step: for the sTIL score, the arithmetic mean of sTIL 

densities for each subregion is calculated, whereas for Immunoscore, the arithmetic mean of 

cohort-level percentile scores across the four cellular compartments is calculated (CD3+ IM, 

CD3+ TC, CD8+ IM, CD8+ TC). (D) Advanced ML, histologic imaging, and spatial analytic 
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approaches can be applied to the sTIL score and Immunoscore to potentially improve 

predictive/prognostic utility.
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