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Abstract
Background.GlioblastomaMultiforme (GBM) is an aggressive formofmalignant brain tumorwith a
generally poor prognosis.O6-methylguanine-DNAmethyltransferase (MGMT) promotermethyla-
tion has been shown to be a predictive bio-marker for resistance to treatment of GBM, but it is invasive
and time-consuming to determinemethylation status. There has been effort to predict theMGMT
methylation status through analyzingMRI scans usingmachine learning, which only requires pre-
operative scans that are already part of standard-of-care forGBMpatients.Purpose.To improve the
performance of conventional transfer learning in the identification ofMGMTpromotermethylation
status, we developed a 3DSpotTune networkwith adaptivefine-tuning capability. Using the
pretrainedweights ofMedicalNet with the SpotTune network, we compared its performancewith a
randomly initialized network for different combinations ofMRmodalities.Methods.Using a
ResNet50 as the base network, three categories of networks are created: (1)A3DSpotTune network to
process volumetricMR images, (2) a networkwith randomly initializedweights, and (3) a network
pre-trained onMedicalNet. These three networks are trained and evaluated using a public GBM
dataset provided by theUniversity of Pennsylvania. TheMRI scans from240 patients are used, with 11
differentmodalities corresponding to a set of perfusion, diffusion, and structural scans. The
performance is evaluated using 5-fold cross validationwith a hold-out testing dataset.Results.The
SpotTune network showed better performance than the randomly initialized network. The best
performing SpotTunemodel achieved an area under the ReceiverOperating Characteristic curve
(AUC), average precision of the precision-recall curve (AP), sensitivity, and specificity values of
0.6604, 0.6179, 0.6667, and 0.6061 respectively.Conclusions. SpotTune enables transfer learning to be
adaptive to individual patients, resulting in improved performance in predictingMGMTpromoter
methylation status inGBMusing equivalentMRImodalities as compared to a randomly initialized
network.

1. Introduction

Glioblastoma Multiforme (GBM) is an aggressive
malignant brain tumor characterized by a generally
poor prognosis and low survival rate. While it has a
relatively low incidence compared to other forms of
cancers, it is the most common form of primary
malignant brain tumors, accounting for 45.6% of
them (Wirsching et al 2016).While there is one known
risk factor for GBM, namely from ionizing radiation to
the head, it does not account for all cases (Wirsching

et al 2016). Coupling this with indeterminate onset
symptoms, GBM is often diagnosed and treated late
into its progression. Generally the treatment will
involve surgical resection, radiation therapy, and
concomitant/adjuvant temozolomide (TMZ), but
even with these intensive treatments, the 2-year
survival rate is only 26.5% (Stupp et al 2005).
With such a low survival, especially with treatment, a
major focus GBM research is to identify clinical bio-
markers that can be used to predict how a patient will
respond to treatment. One potential bio-marker is the
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methylation status of the O6-methylguanine-DNA
methyltransferase (MGMT) promoter which provides
prognostic information on how a patient will respond
to TMZ (Butler et al 2020).

One challenge associated with utilizing MGMT
methylation as a clinical bio-marker is the complex
process required to assess themethylation status. Cur-
rent processes require biopsies or micro-surgical
resection followed by a time-consuming molecular
analysis, with no guarantees that there will be suffi-
cient tissue available to perform a full analysis
(Wirsching et al 2016). This lends to the need for a
quick non-invasive process to determine methylation
status. Several previous studies have explored poten-
tial in using deep learning to predict methylation sta-
tus onMR imaging. Depending on the data used, there
has been some success with using convolutional
neural networks (CNNs) to predict the methylation
status with a receiver operating characteristic (ROC)
area under the curve (AUC) ranging from 0.58− 0.91,
but due to the size of many of these study’s datasets,
ranging from 53− 498 patients, it is difficult to assess
their generalizability, but they indicate promise in
using machine learning techniques to identify features
correlated with MGMT methylation (Han et al 2018,
Li et al 2018, Le et al 2020, Zlochower et al 2020, Adam
Flanders 2021, Do et al 2022, Sakly et al 2023). There
are two analyses that we have found that use the same
dataset as this study. The first achieved an AUC of
0.598 while attempting to reduce their network’s para-
meter space through knowledge-based filtering of the
MR images (Capuozzo et al 2022). Using a smaller
number (182) of patients from the UPENN-GBM
dataset, another study achieved an AUCof 0.81 using a
radiomics based model that incorporates information
from diffusion-tensor imaging (DTI) and dynamic
susceptibility contrast (DSC) MR modalities (Tran
NguyenTuan et al 2023).

In contrast to many applications involving natural
images, the sample size of medical imaging is often
limited. To address this challenge and train a CNN-
based model effectively, transfer learning is widely
adopted. Transfer learning leverages domain knowl-
edge from a source task to enhance the performance of
a target task, a practice commonly applied when the
target task has a dataset that is limited in size (Guo et al
2018). Given that our classification task involves MR
volumes, a related source task with valuable domain
knowledge is medical image analysis/segmentation,
which can be accessed throughMedicalNet (Chen et al
2019), a collection of weights pre-trained on a multi-
class segmentation task using 3D medical images. In
this study, we employed transfer learning with adap-
tive fine-tuning to classify MGMT promoter status,
which enables evaluation tailored to individual
patients.

The concept of fine-tuning is closely related to
transfer learning, as it involves the optimization of the
transferred network weights. In the context of this

study, fine-tuning specifically refers to parameters that
are allowed to adjust during training, while freezing
refers to parameters that remain constant throughout
training. In conventional transfer learning tasks, the
choice of which parameters to fine-tune is manually
determined by trial-and-error, with the most com-
mon practice being to fine-tune parameters within the
last layer/s of the network. The choice of which para-
meters in a network to fine-tune involves a delicate
balance between enabling the network to learn more
about the target data by increasing the amount of fine-
tuned parameters (thus risking overfitting), and pre-
serving domain knowledge from the source task
through frozen parameters (potentially not effectively
learning the target dataset). To automate the choice of
which parameters to fine-tune, we turn to adaptive
fine tuning, eliminating the need for trial-and-error in
finding the best combination of fine-tuned para-
meters. Due to the small size of many medical image
datasets, coupled with the variability in patient char-
acteristics, it can be difficult to extract meaningful
image features in a network where all the parameters
are fine-tuned. With the addition of transfer learning,
image features found in the training of larger datasets
are extracted, while the adaptive fine-tuning intro-
duces a way to account for variability in image char-
acteristics by fine-tuning on a patient-by-patient basis,
allowing the network to extract the most applicable
features for each image.

In this project, we developed a SpotTune-based
adaptive fine-tuning approach for methylation status
prediction in GBM using MRI, where the previously
developed SpotTune algorithm dynamically navigates
through the fine-tuned and frozen layers within a
Residual Network (Guo et al 2018). We specify a Resi-
dual Network, as it has been shown to be resilient to
the exchange of residual blocks since each block acts as
a shallow classifier (Guo et al 2018). In a SpotTune net-
work the dynamic navigation is implemented through
the exchange of residual blocks. Specific to SpotTune,
the dynamic routing is determined on a per image
basis, which is ideal for medical imaging due to patient
variability. As part of this study, the SpotTune frame-
work, originally developed for 2D imaging classifica-
tion tasks, was extended to handle full 3D MR
volumes. A key consideration in our approach is that
SpotTune use the Residual Network, which matches
the network that the transfer weights are sourced
from, and additionally has a straightforward imple-
mentation. With regards to its performance, in its
initial conception, SpotTune was compared against
other fine-tuning models in the Visual Decathlon
challenge, and achieved the highest score based on its
performance in 10 different image datasets (Guo et al
2018). To the best of our knowledge, this study repre-
sents the first use of transfer learning with adaptive
fine-tuning in MGMT promoter methylation status,
while other studies have only considered traditional
transfer learning (Sakly et al 2023).
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2.Methods andmaterials

2.1.Dataset
The University of Pennsylvania glioblastoma
(UPENN-GBM) cohort is a collection of 630 patients
that were diagnosed with glioblastoma, and is freely
available to use via TheCancer Imaging Archive (Clark
et al 2013, Bakas et al 2021, 2022). The dataset includes
magnetic resonance scans with perfusion and diffu-
sion derivatives, computational and manually derived
annotations of tumor regions, radiomic features of the
tumor regions, and clinical andmolecular information
(Bakas et al 2022). Included in the molecular informa-
tion is the mutational status of IDH and the MGMT
promotermethylation status.

Of the 630 patients, 611 have preoperative scans
comprising of four structural MRI scans: T1, post-
contrast gadolinium enhanced T1 (T1-GD), T2-
weighted, and T2 fluid attenuated inversion recovery
(FLAIR). A subset of these patients also have diffusion
tensor imaging (DTI) and dynamic susceptibility con-
trast (DSC) scans. The DTI scans have 4 derivative
volumes: tensor’s trace, axial diffusivity, readial diffu-
sivity and fractional anisotropy (Bakas et al 2022). The
DSC scans have 3 derivative volumes: peak height,
percentage signal recovery, and an automated proxy to
the relative cerebral blood volumes (Bakas et al 2022).
There are 291 patients that have theMGMT promoter
methylation status available, of these there are 262
who have the corresponding pre-operative scans with
151 notmethylated and 111methylated. The provided
images used were already converted from the DICOM
format into the Neuroimaging Informatics Technol-
ogy Initiative (NIfTI) format, following the processing
protocol of the Brain Tumor Segmentation (BraTS)
challenge (Bakas et al 2022). This preprocessing inclu-
ded de-identification, de-facing, re-orientation of
images to the left-posterior superior coordinate sys-
tem, registration and resampling to an isotropic reso-
lution of 1mm2 based on the SRI common anatomical
atlas, and anN4 bias field correction (Bakas et al 2022).
Additionally segmentation masks are provided for 3
tumor subregions, the enhancing tumor, necrotic

tumor core and the edematous tissue. These masks
were automatically generated with some manual
refinement where needed.

From the full cohort, 240 patients and their ima-
ging were selected for this study. These correspond to
the patients that have a pre-operative base scan and the
MGMT methylation status available, minus 22 that
were dropped due to how the training datasets
between different modalities were split. For the struc-
tural imaging modalities the 240 patients are used,
while for the DTI and DSC volumes, there are 208 and
189 patients respectively. Of the patients with a DSC
perfusion scan, 108 are not methylated and 81 are
methylated, and for those with DTI scans 127 are not
methylated and 91 aremethylated.

In table 1 we summarized some of the basic char-
acteristics of the 240 selected patients. In the selection
there are 1.7 times asmanymales as females. However,
the distribution ofmethylated and unmethylated sam-
ples is similar between the genders, with ratios of 0.7
for males and 0.8 for females. The age of the patients
ranges from 18 to 70+ years, with a majority of them
falling into the 50-69 years range. For the older age
groups there are similar numbers of methylated com-
pared to unmethylated patients, while for the younger
age groups (18-29 & 30-49 years) the distribution
favors the unmethylated class, with 83% and 73% of
the patients in these age groups, respectively, falling
under the unmethylated class.

2.2.Data preparation
The images provided in theUPENN-GBMdataset were
pre-processed following the protocol set forth by the
International Brain Tumor Segmentation (BraTS) chal-
lenge (Bakas et al 2021). This pre-processing made the
image dimensions and voxel sizes uniform across the
different scanners, acquisition protocols, and modal-
ities. These images weremanually inspected at different
steps, and were corrected or realigned when necessary.
Using the pre-processed NIfTI files provided in the
UPENN-GBMdataset, we applied a further pre-proces-
sing before the images were used for training and
testing. The images and masks were read in using the

Table 1.The patient characteristics of the 240 patients selected for analysis. The percentages
for the characteristics are relative to the total number, 240. The percentages for the
methylated and unmethylated are relative to the particular characteristic.

Patient characteristics

Number (%) Methylated (%) Unmethylated (%)

Gender

Male 150 (62.5%) 62 (41.3%) 88 (58.7%)
Female 90 (37.5%) 40 (44.4%) 50 (55.6%)

Age (years)
18-29 6 (2.5%) 1 (16.7%) 5 (83.3%)
30-49 23 (9.6%) 6 (26.1%) 17 (73.9%)
50-69 146 (60.8%) 64 (43.8%) 82 (56.2%)
70+ 65 (27.2%) 31 (47.7%) 34 (52.3%)

3

Biomed. Phys. Eng. Express 10 (2024) 055018 E Schmitz et al



SimpleITK software package (Lowekamp et al 2013),
and converted into numpy arrays for ease of use. The
image masks were applied, and the size of the images
were reduced by cropping following the largest tumor
among the patients, and down-scaling the images by a
factor of 2 to give a 2 mm spacing. The cropping was
done to both reduce the size of the image and to only
encompass the size of the largest tumors among the
available images. This reduced the dimensions of the
volumes respectively from 155× 240× 240→ 140×
172× 164→ 70× 86× 82. For thefinal image size, the
last dimension was padded to have a dimension of
70× 86× 86 to provide squared dimensions for the
slices to ease the accounting for dimensions in the
DNN. Lastly the images had a min-max scaling applied
separately for each patient, with a resulting image range
of [0, 1] inorder to preserve the shapeof thedistribution
of voxel values while maintaining the relative distance
between them.

The dataset was split into a training and testing set at
a 70:30 ratio, chosen to increase the size of the testing
dataset. For training and validation, we initially looked at
using a train/validation/test splitting where the valida-
tion was set as a quarter of the training set. In order to
increase the robustness of the model, we switched to
5-fold cross validation (CV) within the training dataset,
after the 70:30 split between the training and testing sets,
where four of the folds are used for training and the fifth
for validation. This came out to having a training set of
183, 151, and 132 patients for the structural, DTI, and
DSCmodalities respectively and a common testing set of
57 patients. The datasets were split such that the different
MR modalities would share patients in the training and
testing sets, i.e., the patients that are in the testing set for
the DSC derivatives will be the same set of patients con-
tained in the testing set of the structural modalities. So
that the results are directly comparable between mod-
alities, only the patients common to the DSCmodalities
were retained in the testing dataset for the structural and
DTI modalities. After the training set was split into its
5 folds, each set of 4 folds used for training were aug-
mented in four ways including flipping the images,
randomly rotating the images between −180 and
180 degrees, adding Gaussian noise, and applying an
elastic deformation (van Tulder 2022). Different combi-
nations and numbers of augments were assessed, and
based on validation performance, we chose one of each
of the four augments, where our initial choice of which
specific augments to apply came fromwhat is commonly
used in literature Chlap et al (2021). To account for the
class imbalance of the dataset, the augmented training
folds were randomly pruned until the ratio of the
MGMT classes were equal. The class imbalance was kept
in the validation and testingdatasets.

2.3.Model
The 3D SpotTune network developed for this study is
an amalgamation of three residual networks (ResNets)

that allows for a dynamic routing through sets of fine-
tuned and frozen pre-trained residual blocks. As
SpotTune was initially produced to run on 2D images,
it was further developed to run on 3D images. The bulk
of the conversion to a 3D network involved changing
out the 2D convolutional layers with their 3D counter-
parts. Additionally, the padding of the layers needed to
be adjusted for the shape of the 3D inputs, due to the
differences in the dimensions. The rest of the adjust-
ments for the 3D network were done during the
network training, involving the optimization of hyper-
parameters specific to a SpotTune network, detailed in
section 2.4. The optimization of these hyper-para-
meters ended up being the most challenging part of
implementing the 3D network, as the 3D SpotTune
network has 40.5 million more trainable parameters
than its 2D counterpart, increasing from 19.5 to 60
million.

The SpotTune network consists of three separate
ResNets, one agent and two base networks. The base
neural network used is a ResNet50 (He et al 2015),
which consists of 16 residual blocks adding up to 50
layers in total. Two of these networks make up the
main network, where one ResNet50 contains a set of
frozen residual blocks, while the other contains fine-
tuned blocks. The agent network is a ResNet10 and is
used to make the policy that the main network follows
in how to route the data through the frozen and fine-
tuned blocks. With 16 residual blocks for the
ResNet50, the agent network has 16 classes as output,
with 2 categories each corresponding to whether a
block is to be frozen or fine-tuned. The routing is
determined following (1), describing the ℓ-th residual
block, where x is the input image, Fℓ is the ℓ-th block
from the frozen ResNet50, F̂ℓ is the ℓ-th block from
the fine-tuned ResNet50 and a duplicate of Fℓ, and
Iℓ(x) is a binary variable taken from the policy output
by the agent network (Guo et al 2018).

= + - +- - -x I x F x I x F x x1
1

1 1 1( ) ˆ ( ) ( ( )) ( )
( )

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ

The policy output by the agent network is a collec-
tion of binary variables that is discrete and non differ-
entiable, so it is difficult to calculate the gradients of
the agent network based on the predictions of the full
network. In order to allow back-propagation of the
gradient through the full network a Gumbel Softmax
sampling approach is used (Guo et al 2018). In the for-
ward pass of the network a Gumbel distribution built
using the output by the agent network is used to pro-
duce the policy for the main network following (2),
where αi corresponds to the output of the agent net-
work, Gi is the standard Gumbel distribution, and X
corresponds to a discrete sampling of the policy, Il(x)
(Guo et al 2018). The purpose of this discrete sampling
is to provide the switches between the frozen and
tine-tuned blocks of the main network, giving a path
for the data to flow through. In the backward pass,
instead of the discrete values needed by the main
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network, what is instead needed is a continuous dis-
tribution for which the gradients can be calculated. To
do this the Gumbel Softmax distribution is used as a
continuous relaxation of (2), and is given in (3), where
τ is the temperature parameter that controls how dis-
crete the resulting distribution is and is an important
parameter in our tuning process (Guo et al 2018). By
sampling from this distribution, the originally discrete
policy is made continuous and differentiable, allowing
the back propagation of the policy through the agent
network. Figure 1 illustrates the SpotTune network
and how it would route inputs through the main net-
work based on a policy given by the agent network.

a= +X Garg max log 2i i[ ] ( )

a t
a t

=
+

å +=

Y
exp G

exp G

log

2 log
3i

i i

j j j1

(( ) )
(( ) )

( )

When the agent network creates a routing policy, it
does so for each image, x, provided as input. Thismeans
that each image gets a unique policy, I(x), that deter-
mines how blocks should be swapped in the main net-
work. In the forward pass of training, the agent network
will give a discrete policy for each input, that the main
network will then follow, swapping between the frozen
and fine-tuned residual blocks as designated. In the
backward pass the gradient from themain network will
be back propagated through the agent network allowing
it to refine the policy. The agent network is then jointly
trained with the main network to determine the opti-
mal fine-tuning strategy and thus maximize the perfor-
mance metric (Guo et al 2018). Additionally, with the

proposed adaptive fine-tuning, depending on the input
images, each patient will have a unique route through
the fine-tuned blocks of the pre-trained model, which
can lead to amorepersonalized prediction.

In addition to the SpotTune network, a regular
ResNet50 is used for comparison purposes. The
ResNet50 is initialized with two different sets of
weights, corresponding to random weight initializa-
tion following a uniform distribution and the trans-
ferred MedicalNet weights as used in the SpotTune
network. The ResNet50 with transferred weights is
initialized so that only the classification layer is fine-
tuned, keeping all other layers frozen.

2.4. Network training and evaluation
The networks were trained using the pytorch frame-
work (Paszke et al 2019) with a maximum of 90
epochs, a batch size of 12, and a starting learning rate
of 1e-5 for the main network and 1e-4 for the agent
network. The learning rate followed a decrease-on-
plateau based scheduler with a patience of 20 epochs
and a multiplicative factor of 0.1. Additionally, the
temperature, τ, of the Gumbel Softmax distribution
was set to 100. The objective function used in the
network was binary cross-entropy loss, with the Adam
algorithm used for optimization. The inputs to the
network are single channel volumes corresponding to
each available modality/derivative for a total of 11
modalities: 4 structural, 4 DTI, and 3 DSC. Before
deciding on training with a single channel, we also
looked at multi-channel inputs ranging from 3 up to

Figure 1.Adiagram illustrating the SpotTuneNetwork. TheAgent network produces the policy used by themain network. Themain
network takes this policy, shown as a vector of binary values, and routes inputs through the residual blocks of themain network, with
the routing illustrated using X’s andO’s.
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11 channels, with each channel corresponding to a
modality/derivative. In order to implement multiple
channels the MedicalNet weights had to be adjusted
since they assume single channel inputs. To accom-
plish this adjustment, we followed a weight inflation
method that duplicates weights along a desired axis,
and averages them over the number of duplications
(Zhang et al 2022). For example, for a 3-channel input,
the weights of the first convolutional layer are
duplicated 3 times along the channel axis, with those
weights averaged over the 3 channels. The network
was trained using 5-fold cross-validation and evalu-
ated using the average precision (AP), area under the
receiver operating characteristics curve (AUC), sensi-
tivity (SEN), and specificity (SPE) metrics from the
torchmetrics package (Detlefsen et al 2022). The AP
and AUC are the main metrics used in place of
accuracy due to the data imbalance, since higher
accuracies did not guarantee a high true positive rate.
The AUC gave us an overall performance for each
model, since it is ideal in showing performance for all
classification thresholds in a binary prediction. We
evaluated SEN and SPE to get a better of idea of how
balanced they were, since we found that choosing
models based on accuracy and AUC often gave highly
unbalanced results, with a low SEN and high SPE. The
best models to be used for the hold-out testing dataset
were determined by evaluating the performance of the
validation folds using an evaluation criterion,M, based
on the sensitivity and specificity, and given in (4)
(Chen et al 2021).

= ´ + ´ M SEN SPE0.6 0.5 0.4 0.5 4( ) ( ) ( )

As part of the training process the hyper-para-
meters were tuned using a random grid search to get
an initial parameter set. With this set as basis, further
independent scans were performed on a selection of
hyper-parameters. These independent scans included
the number of epochs with a range of 30− 200, learn-
ing rate with a range of 0.1− 1e− 8, andGumbel Soft-
max temperature, with a range of 1e− 4− 1e4. The
ranges for these scans were chosen to encompass their
likely values. For the learning rate we chose a max-
imum value close to 1 and minimum close to zero,
with the actual values being arbitrary. We gave the
learning rate special consideration as the network was
sensitive to overfitting, as a smaller rate reduced the
over-fitting but prevented the network from learning
as much of the target dataset, while a larger learning
rate allowed more learning on the target dataset, but
also caused it to move away from the source weights
and increasing the overfitting. The range of epochswas
chosen for a minimum where the trainings started to
stabilize up to amaximum beyond where the trainings
tended to plateau. The temperature range was chosen
to encompass multiple orders of magnitude in a
attempt to characterize how changes in the order
will affect the overall training. The metric used for

validation was initially a combination of ACC and
AUC, but discovered that this metric selected models
with a severely unbalanced sensitivity and specificity.
To rectify this, we changed to a metric that prefers a
balanced sensitivity and specificity, as seen in (4), fol-
lowing what was done in another study (Chen et al
2021). As mentioned previously, a major concern of
training with 3D inputs is the sensitivity to overfitting
due to the large number of parameters, so as part of the
hyper-parameter scan we looked at the degree of over-
fitting that was occurring on the training dataset.

The models chosen for evaluation on the testing
dataset were combined into various sets of ensembles
based on their imaging modalities and network used.
Due to the random sampling inherent to the Gumbel
Softmax distribution, each model created using the
SpotTune network was evaluated 100 times using a
random seed of 42. These 100 samples were combined
to form the chosenmodel for each of the folds in order
to better encompass the distribution of probabilities
possible from the random sampling. The chosenmod-
els for the CV folds were combined by taking themean
of the output probabilities to get a single model for
each imaging modality, and then the models for deri-
vatives of each modality were combined in the same
way to get overall models. Themodels presented in the
results fall under 3 categories: those using the Spot-
Tune network, those using randomly initialized
weights in a regular ResNet50 and those that use the
transferred weights in a regular ResNet50. For each of
these categories, the overall models that were eval-
uated are labeled as DSC, DTI, Structural, and then
combinations of the three. The DSC and DTI models
are ensembles of their derivative volumes, and the
Structural model is an ensemble of the four structural
modalities T2, FLAIR, T1, and T1GD. The additional
modality combinations correspond to DSC and DTI
(DSC+DTI), DSC and Structural (DSC+Struct), DTI
and Structural (DTI+Struct), and the three together
(DSC+DTI+Struct) in order to cover the possible
permutations of the three groupings. While no single
modality was excluded from the evaluation, the
groupings we chosemay not necessarily correspond to
the highest possible performance combinations. We
combine the similarmodalities together for three cate-
gories (structural, DSC, DTI) to simplify the number
of models, and to focus on comparing the different
architectures. This may end up biasing the perfor-
mance, as what we end up with is a combination of
each modality grouping, where individual modalities
may adversely affect the overall performance.

In addition to the deep learning models from this
study, we compared our results with another model
that achieved superior performance (AUC= 0.88 on a
private dataset) in predicting MGMT promoter
methylation status using a set of 6 radiomic features in
a random forest classifier (Li et al 2018). Rather than
directly comparing the published results with ours, we
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followed their workflow and attempted to reproduce
and train their model on our dataset, due to the differ-
ence in datasets. Following the published model, we
calculated the 6 radiomic features that were used: (1)
Skewness from the T1 core, (2) energy from the T1
edema invasion, (3) GLCM contrast from the FLAIR
necrotic core, (4) GLSZM gray level variance from the
T1GD enhanced area, (5) GLSZM low gray level zone
emphasis from the T2 edema invasion, and (6)
NGTDMbusyness from the T2 core. Each of these fea-
tures came from different modalities and masks,
where the core refers to the combination of the
enhanced area and the necrotic core (Li et al 2018).
The features were used as input to a random forest
classifier and trained with the same dataset splitting as
this study. The optimal hyperparameters of the ran-
dom forest were set as following: a number of estima-
tors of 10, 000, a maximum tree depth of 5, and a
minimumnumber of samples at a leaf node of 10.

3. Results

We compare ensemble models for three different net-
work categories. The main comparisons are between
models using the same inputs, only considering cross
modality comparisons for the top models for each
network category. Tables 2, 3, and4give the results for the
SpotTune, random weight initialization, and transferred

weight initialization respectively. Included in the tables
are the AUC of ROC curves and the Average Precision of
precision-recall curves (AP), with the AP given to show
how well the models classify the positive, i.e. methylated,
samples. Additionally the sensitivity and specificity are
included to better showany imbalance in how themodels
classify thepositive andnegative samples.

With the exception of the model using the struc-
tural modalities on their own, the SpotTune network
outperforms the randomly initialized network for
similar inputs. The highest overall performance is
given by the DSC+DTI SpotTune model with a ROC
AUC of 0.6604, and an AP of 0.6179. These results
outperform the corresponding DSC+DTI model
using the ResNet50 with randomly initialized weights,
which had a ROCAUC of 0.5707 and an AP of 0.5334.
The same DSC+DTI model using transferred weights
with a ResNet50 showed a slightly better performance
when only looking at the ROC AUC of 0.5808, but the
picture changes when also considering the AP of
0.4992, showing the the non-adaptive transfer learn-
ing is not sufficient on its own. ROC Curves of the
DSC+DTI models for each of the network categories
can be found in figure 2, and curves for the overall best
models for the three categories is found in figure 3.
Additionally the precision-recall curves are given for
the same ensembles infigures 4 and 5.

In addition to the improved overall performance
of the SpotTune models for similar inputs, there is a
noteworthy observation with regards to the sensitivity
and specificity. The SpotTune models have a better
balance and higher sensitivity than the randomly initi-
alized models in all of the ensembles. The sensitivity
for the randomly initialized model tends to be low,
with a SEN/SPE ratio as low as 0.5, with a maximum
sensitivity between the models of 0.4583, compared to
the maximum in the SpotTune models of 0.7500.
Applying traditional transfer learning as shown in
table 4 improves the sensitivity/specificity balance
over the randomly initialized weights and the addition
of the SpotTune network further improves it.

For the comparison radiomics model on the data-
set used in this study, the random forest classifier with

Table 2.TheROC AUC, average precision, sensitivity and
specificity evaluated on the hold out testing dataset usingmodel
ensembles createdwith the SpotTune network. The highest values
for the ROC AUCandAP are given in bold text.

SpotTune results

Model AUC AP SEN SPE

DSC 0.6124 0.5842 0.5000 0.6061

DTI 0.6654 0.6008 0.7500 0.6364

Struct 0.5707 0.5346 0.5833 0.4848

DSC+DTI 0.6604 0.6179 0.6667 0.6061

DSC+Struct 0.6073 0.5962 0.5417 0.5455

DTI+Struct 0.6376 0.5289 0.5833 0.6364

DSC+DTI+Struct 0.6389 0.5779 0.6667 0.5758

Table 3.TheROC AUC, average precision, sensitivity and
specificity evaluated on the hold out testing dataset usingmodel
ensembles createdwith aResNet50 initializedwith randomweights.
The highest values for the ROC AUCandAP are given in bold text.

Randomly initializedweights results

Model AUC AP SEN SPE

DSC 0.5051 0.4872 0.3750 0.5758

DTI 0.6023 0.5159 0.3750 0.6364

Struct 0.6061 0.5334 0.4167 0.6061

DSC+DTI 0.5707 0.5127 0.3333 0.6364

DSC+Struct 0.5669 0.5271 0.3750 0.6667

DTI+Struct 0.5997 0.5187 0.4167 0.6667

DSC+DTI+Struct 0.5783 0.5018 0.4583 0.6364

Table 4.TheROC AUC, average precision, sensitivity and
specificity evaluated on the hold out testing dataset usingmodel
ensembles createdwith aResNet50 initializedwith transferred
MedicalNet weights, while onlyfine-tuning the classification layer.
The highest values for the ROC AUCandAP are given in bold text.

Transferredweights results

Model AUC AP SEN SPE

DSC 0.5303 0.4421 0.5000 0.6970

DTI 0.5947 0.5445 0.5833 0.4848

Struct 0.4722 0.4250 0.5417 0.4242

DSC+DTI 0.5808 0.4992 0.5417 0.5455

DSC+Struct 0.5051 0.4296 0.5000 0.5455

DTI+Struct 0.5732 0.4869 0.6250 0.6061

DSC+DTI+Struct 0.5682 0.4788 0.5000 0.6061
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Figure 2.ROC curves for theDSC+DTImodel ensembles for the three network categories.

Figure 3.ROC curves for the best overallmodel ensembles for the three network categories.

Figure 4.Precision-recall curves for theDSC+DTImodel ensembles for the three network categories.
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6 chosen radiomic features achieved a ROC AUC of
0.5764, an AP 0.4886, a sensitivity of 0.2174 and a spe-
cificity of 0.9355. Since this comparison model only
made use of the structural modalities we can compare
it to the SpotTune model that used the structural

modalities as input. The ROC AUC of the two models
are similar at 0.5707 and 0.5764, but the SpotTune
gave a better AP of 0.5346 compared to the 0.4886 of
the comparison radiomics model. For the best overall
SpotTune model, both the ROC AUC and AP showed

Figure 5.Precision-recall curves for the best overallmodel ensembles for the three network categories.

Table 5. p-values calculated from the Friedman chisquare and nemenyi tests for comparing the spottune, randomly initialized and non-
adaptive transfer learning networks. Comparisons are betweenmodels that used the same inputs, and then one for the best overall model
from each network. The best overall models compared are theDSC+DTI, Struct, andDTI for the SpotTune, randomly initialized and non-
adaptive transfer learning networks, respectively. Comparisons that show significance, p < 0.05, are shown in bold.

Friedman chi-square&Nemenyi p-values

Model Friedman p-value Networks compared Nemenyi p-value

DSC 0.108 SpotTune, Random 0.177

Random, Transfer 0.147

SpotTune, Transfer 0.9

DTI 0.128 SpotTune, Random 0.121

Random, Transfer 0.339

SpotTune, Transfer 0.822

Struct 0.0970 SpotTune, Random 0.0982

Random, Transfer 0.249

SpotTune, Transfer 0.876

DSC+DTI 0.0131 SpotTune, Random 0.0103

Random, Transfer 0.147

SpotTune, Transfer 0.554

DSC+Struct 0.0222 SpotTune, Random 0.0503

Random, Transfer 0.0395

SpotTune, Transfer 0.9

DTI+Struct 0.00606 SpotTune, Random 0.00567

Random, Transfer 0.0635

SpotTune, Transfer 0.661

DSC+DTI+Struct 0.0180 SpotTune, Random 0.0181

Random, Transfer 0.0982

SpotTune, Transfer 0.768

BestOverall 0.0636 SpotTune, Random 0.0181

Random, Transfer 0.0982

SpotTune, Transfer 0.0768
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an improved performance. Additionally the SpotTune
models had a better balance between the sensitivity
and specificity, compared to the high imbalance for
the comparison radiomicsmodel.

The significance, p< 0.05, of the results was
checked by performing a Friedman chi-square test fol-
lowed by a post-hoc Nemenyi test should the Fried-
man test prove significant. The p-values for the two
sets tests are given in table 5, and compare the models
that share the same input between the SpotTune, non-
adaptive transfer learning, and randomly initialized
networks. From the Friedman test, four sets of models
were significant with p< 0.05: The DSC+DTI, DSC
+Struct, DTI+Struct and DSC+DTI+Struct. Of
these four sets of models, four specific comparisons
showed a significant difference in the results following
the Nemenyi test. Three of the comparisons corre-
sponded to the SpotTune and randomly initialized
networks, with the last between the non-adaptive
transfer learning and randomly initialized networks. It
is noteworthy that each SpotTune network that
showed significance involved the DTI modalities as
part of their input, but only when coupled with other
modalities. If we loosen the significance to p< 0.1 the
best overall models then pass the Friedman test, with
each set of comparisons showing significance using
theNemenyi test.

4.Discussion and conclusion

In this study we examine how transfer learning with
adaptive fine-tuning has the potential to improve the
prediction of MGMT methylation status over the use
of randomly initialized weights in similar networks.
Using the SpotTune network, we showed improved
results compared to randomly initialized counterparts
for various model ensembles. It is well known that the
volume of data in a machine learning experiment can
greatly affect performance, and dataset size is an
especially important concern with relation to medical
imaging (Chen et al 2019). Through the use of transfer
learning, the lower level information that is gained
from a large dataset can be applied to a smaller dataset
with varying degrees of fine-tuning. With transfer
learning specifically, a concern in medical imaging is
the availability of weights trained on a sufficiently large
dataset that also contains necessary domain knowl-
edge. While it is possible to use non-medial domain
pre-trained weights, there is no guarantee that the low
level features that can be extracted are applicable to the
medical images, especially in the 3D domain where 2D
pre-trained weights are missing important spatial
information that associates the slices of the 3D image.
Additionally pre-trained weights from datasets of
videos and 3D objects do not translate as well to 3D
medical images due to their structure. In essence, the
dataset characteristics inform on what type of pre-
trained weights would have the largest impact on the

training performance. This concern is partially abro-
gated through the MedicalNet weights which are
trained on 3D segmentation tasks using MRI and CT
scans from eight public medical datasets. While the
dataset is not as large as the ImageNet dataset, which is
more commonly used in transfer learning tasks, it
contains 3D domain knowledge more specific to the
target task. As the weights are produced from a multi-
institutional dataset the method of adaptive fine-
tuning could generalize to other tasks involving
medical imaging. Closely tied to this is the choice of
architecture where, specifically for adaptive fine-tun-
ing, the resilience of the network to be able to swap out
layers can greatly impact performance. With the
ResNet, the residual blocks act as distinct networks
daisy-chained together, so swapping blocks does not
negatively affect the training. The addition of adaptive
fine-tuning to the tranfer learning works to remove a
layer of complexity in the training, namely optim-
ization of which layers to fine-tune and freeze. This
difference between traditional fine-tuning and adap-
tive fine-tuning is seen in the improvement of results
in table 2 over table 4, not including the reduction in
the usage of computational resources since there was
no need to run dozens of trainings to optimize the
selection offine-tuned layers.

We compared our results to multiple studies, two
of which used the same dataset (Capuozzo et al 2022,
Tran Nguyen Tuan et al 2023), and another in which
we attempt to reproduce their results on the dataset
used in this study (Li et al 2018). Capuozzo et al (2022)
reported a ROC AUC of 0.5980, a sensitivity of 0.4535
and a specificity of 0.7403. Their strategy involved
using 2D and 3D image and knowledge based filtering
in place of a segmentation mask to define a region of
interest. Since the study only looked at the structural
modalities, they were able to cross validate their results
with an external dataset, the BraTS 2021 challenge
dataset (Menze et al 2015, Bakas et al 2017, AdamFlan-
ders 2021, Baid et al 2021), though their results
showed poor generalization between models trained
on one and tested on the other. This is also shown in
the other study using the UPENN-GBM dataset (Tran
Nguyen Tuan et al 2023), where they found the model
based on a genetic algorithm random forest (Bakas
et al 2017), performed worse on the UPENN-GBM
dataset compared to Bakas et al (2017)ʼs private data-
set. By using features from the DTI and DSC mod-
alities, Tran Nguyen Tuan et al (2023) achieved a ROC
AUC of 0.81, a sensitivity of 0.78 and a specificity of
0.84 using 182 patients from the UPENN-GBM data-
set. This particular study ended up with similar find-
ings to our own, but with a better performance. Both
studies found that the DSC and DTI modalities had
better discriminating power compared to the use of
only structural modalities, which could explain some
of the differences between our results, and the results
of Capuozzo et al (2022). There are two main differ-
ences between our study and the radiomics based
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study from Tran Nguyen Tuan et al (2023), the overall
patient selection and the chosen testing cohort. Tran
Nguyen Tuan et al (2023) selects 182 patients, com-
pared to our 240, where the difference arises from the
number of patients that have a DSC modality in addi-
tion to the structural or DTI. Additionally, differences
in performancemay be related to the differences in the
testing cohort between the two studies, with both hav-
ing small testing cohorts where the differences in
selection can change the evaluation.

Themodel we attempted to reproduce fromLi et al
(2018) originally had a ROC AUC of 0.88, a sensitivity
of 0.70 and a specificity of 0.86, while our model only
produced a ROC AUC of 0.5764, an AP of 0.4886, a
sensitivity of 0.2174 and a specificity of 0.9355. This is
a stark difference to what was originally reported, and
could be due to bias in the datasets, since they come
from different institutions. The difference could also
be attributed to our reproduction as the original study
only mentioned the names of the features and what
classification models were used, but there was not fur-
ther information on how the images were processed
before calculating the features and there were not any
comments on what hyper-parameters were used,
necessitating our own parameter tuning, and produ-
cing radiomics features using images that were not
necessarily pre-processed in the same way. From these
results, along with the results from Capuozzo et al
(2022) who used an external dataset, even though our
results do not necessarily perform as well as the studies
mentioned in the introduction section, (Han et al
2018, Li et al 2018, Le et al 2020, Zlochower et al 2020,
Do et al 2022, Sakly et al 2023), it is important to note
that the differences in datasets make direct compar-
isons difficult. This denotes a need for an increase in
reproducibility and data availability to determine the
actual relative performance between these different
models.

The data availability problem was partially solved
through the BraTS 2021 challenge, which provided a
large multi-institutional dataset of over 600 training
cases for the identification of MGMT methylation
with a separate external testing dataset (Menze et al
2015, Bakas et al 2017, Adam Flanders 2021, Baid et al
2021). This challenge, though, did not give optimistic
results, with the bestmodel only having a ROCAUCof
0.62, denoting a lack of underlying features that can
help with the identification of MGMT methylation.
One problem, though, is that the provided images do
not have manually refined segmentation masks, and
the dataset only contains the structural modalities
which we have found to have a worse performance in
MGMT methylation identification. Other studies
besides ours, including the study that uses the same
UPENN-GBMdataset (Tran Nguyen Tuan et al 2023),
have found that DSC and DTI modalities apart from
the normal structural ones show correlations between
features of these modalities and the occurrence of
MGMT and IDH-1mutations (Moon et al 2012, Ryoo

et al 2013, Choi et al 2021, Ozturk et al 2021, Tran
NguyenTuan et al 2023).

With regards to optimizing the fine-tuned layers in
traditional transfer learning, it may be noticed that
there is one outlier in table 4, where the Struct model
shows a performance less than 0.5 for the AUC. One
potential reason for this is that the lower level features
selected by the transferred weights do not correlate as
well with the structural modalities, since the classifica-
tion layer is the only one that is fine-tuned. Due to this,
there were a number of training folds that were not
able to produce a model that passes the selection cri-
teria, forcing the training to use the model from the
last epoch. For the Struct model, there were 5 training
folds that were not able to produce models that passed
the selection criteria, whereas this number was only 3
and 1 for the DSC and DTI models, respectively. To
address this a second round of training was done for
the structural modalities using the ResNet50 with
transferred weights that relaxed the number of frozen
layers, allowing the last two residual blocks, in addi-
tion to the classification layer, to be fine-tuned. The
resulting model gave a more reasonable performance
with an AUC of 0.5341, an AP of 0.5134, a SEN of
0.5417, and a SPE of 0.4848. These results support the
idea that the strictness of the fine-tuning posed chal-
lenges for the Struct model, and that the transferred
weights used were not as useful for these modalities.
This also points to adaptive fine-tuning as a useful
alternative as it will determine the best order of frozen
and fine-tuning based on a machine learning archi-
tecture, rather than by hand. Should the transferred
weights not be as useful for extracting meaningful fea-
tures for a given input, the adaptive fine-tuning will
allow the network to rely solely on the fine-tuned para-
meters. Other alternatives would amount to trying dif-
ferent sets of pre-trained weights and network
architectures, apart from the MedicalNet weights and
ResNet, to see if the inputs will generalize better with
those. Determining if there is a better combination of
network architecture and pre-trained weights is a pos-
sible avenue of future research.

In addition to the use of adaptive fine-tuning for
improved results, the choice of imaging modalities
also plays an important role in performance. In this
study, each ensemble model was made by combining
models trained on separate imaging modalities made
available in the UPENN-GBM dataset. Important
decisions included whether these different modalities
should be included as separate channels in a single
training, and which combination of models, if any,
would yield optimal results. When considering the
number of channels, it was found that keeping
the trainings to a single channel was optimal,
especially with regards to the MedicalNet weights,
which assumes a single channel. This can be seen in a
separate training done using the 3 DSC derivatives as
3 channels in a single training, resulting in an AUC of
0.5758, compared to the AUC of 0.6124 given in
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table 2 for the DSCmodel, which is an ensemble of the
3 DSC derivative models. For the 3-channel case the
weights were generated using a technique known as
weight inflation (Zhang et al 2022), where the single
channel weights were duplicated and normalized for 3
channels. An interesting outcome related to the choice
of imagingmodality was the improved performance of
models that used the diffusion and perfusion mod-
alities over the more common structural modalities.
While we give an overall performance for each mod-
ality grouping, one limitation of this study is that we
do not fully explore the possible single modality com-
binations. The reasoning for this was to focus on the
overall modality groupings rather than individual
modalities, as it is easy to get bogged down in the pos-
sible permutations of 11 total individual modalities/
derivatives. Future studies could explore this aspect to
determine which single modality combinations pro-
vide the best performance and from this, which types
of features correlate better with the MGMT methyla-
tion status, especially when looking at combinations of
the DSC and DTI derivatives. One possible avenue to
explore this is to do a ranked scoring of the individual
modalities,much howonewould rank the features in a
radiomics based analysis, and then make an ensemble
based on the highest rankedmodalities

The main limitation of this work is the size of the
dataset, with only 262 patients having the MGMT
methylation status labeled. With the small sample size
and the large heterogeneity present in GBM cases, the
results of this study may not be generalized well to other
datasets, as the training samples can affect the stability of
themodel.One such example of the lack of stability is the
need for taking multiple samplings of a model to get an
average prediction from a sparse Gumbel distribution.
While transfer learning was used to counteract the small
dataset size, it still proved an issue. To increase the size of
the dataset, it would be possible tomove fromprediction
of MGMT methylation status to one of treatment
response in a future study. Such a course would have the
potential of doubling the size of the dataset with respect
to this study, since the overall dataset has 630 patients.
For theMGMT classification task, someways to account
for the small dataset size would be to further increase the
number of augmentations or to change the augmenta-
tion strategy. In this study, we did a single iteration of 4
different types of augmentations, but another strategy is
to do multiple iterations of augmentation on the base
dataset, such as applying a random rotation to all of the
imagesof a dataset for a predefinednumber of angles.

With regards to the dataset itself, there are some
limitations corresponding to it being a public dataset
from a separate institution. As a public dataset it is dif-
ficult to supplement with any extra information since
we do not have access to the original patient data, and
additionally it is difficult to cross check the accuracy of
the supplied data, and instead must be taken on good
faith. A potential bias that arises from the public data-
set corresponds to the labels provided for the

methylation status. The methylation status is deter-
mined from a well accepted method by studying CpG
sites for methylation, but there does not seem to be a
set standard for how much methylation should con-
stitute a methylated label, where there is a possibility
that what would be considered methylated could be
slightly different depending on the dataset and institu-
tion. For example, the UPENN-GBM dataset uses a an
average percentage of 4 CpG sites to determinemethy-
lation. For an average methylation greater than 10%
the patient is given amethylated label, while an average
methylation less than 4.5% is negative, with additional
cutoffs for a low positive and indeterminate label
(Bakas et al 2022). Another study uses a cutoff value
8% to determine a positivemethylation status, with no
mention of averaging amongmultiple CpG sites (Bady
et al 2012, Le et al 2020). These small differences in
labeling could produce a bias in different datasets,
affecting their comparability. Additionally, since
methylation is a percentage rather than strictly a yes or
no, a binary label is not necessarily ideal.

Other biases in the dataset generally correspond to
the present imbalances, mostly with regards to the
demographics and the MGMT methylation status
label. For the MGMT status, we try to account for this
through artificially balancing the classes before train-
ing through sample augmentation. This is done by
augmenting more of the smaller class of samples than
the larger class, until the two have the same numbers.
A second approach to this is applying a class weight
that places more emphasis on the smaller class, mak-
ing them more important in the training. Two other
imbalances that could bias the results are gender and
age, where there are more examples of males than
females, and a larger population of patients over the
age of 50. For both of these cases the most common
way to account for these would be to concatenate the
features with the extracted image features in the classi-
fication layers. There is also the option of treating both
age and gender as categorical features, and augment-
ing the dataset further to balance out these classes,
similar to what we did for the MGMT methylation
classes.

In the future, more can be done to study the corre-
lations between the perfusion and diffusionmodalities
and MGMT methylation status, especially with
regards to the base images, where current studies
mostly look at radiomics features produced from these
modalities. Further studies can be done to predict
overall survival using the imaging features, perhaps
incorporating pre-trained features related to MGMT
methylation status prediction should there be further
improvements.
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