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Abstract

Computing the rate of evolution in spatially structured populations is difficult. A key quantity is

the fixation time of a single mutant with relative reproduction rate r which invades a population

of residents. We say that the fixation time is “fast” if it is at most a polynomial function in terms

of the population size N. Here we study fixation times of advantageous mutants (r > 1) and

neutral mutants (r = 1) on directed graphs, which are those graphs that have at least some

one-way connections. We obtain three main results. First, we prove that for any directed

graph the fixation time is fast, provided that r is sufficiently large. Second, we construct an effi-

cient algorithm that gives an upper bound for the fixation time for any graph and any r� 1.

Third, we identify a broad class of directed graphs with fast fixation times for any r� 1. This

class includes previously studied amplifiers of selection, such as Superstars and Metafunnels.

We also show that on some graphs the fixation time is not a monotonically declining function

of r; in particular, neutral fixation can occur faster than fixation for small selective advantages.

Author summary

Populations of reproducing individuals evolve by accumulating mutations. When a single

individual acquires a mutation, it takes some time until the mutation spreads across the

population. Depending on the structure of the population, this so-called fixation time

could be relatively short or exceedingly long. The structure of biological populations can

be represented by graphs. The vertices of the graph denote individuals and the edges indi-

cate possible reproductive events. Directed graphs are defined as those graphs that have

some one-way edges. It is known that very long fixation times can arise for certain

directed graphs. In this work, we consider a standard process of evolutionary dynamics.

We show that for many directed graphs the fixation time is short. We show that fixation

time is always short in the ecological scenario describing the spread of an invasive species

in an ecosystem. We also show that while advantageous mutations generally fixate faster

than neutral mutations, there are interesting exceptions. Finally, we provide concrete

bounds for fixation time on any population structure. Those bounds serve as guarantees

for simulation-based and computational explorations of the space of all directed graphs.
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Introduction

Evolution is a stochastic process that acts on populations of reproducing individuals. Two

main driving forces of evolutionary dynamics are mutation and selection [1–3]. Mutation gen-

erates new variants and selection prunes them. When new mutations are sufficiently rare, the

evolutionary dynamics are characterized by the fate of a single new mutant. The mutant can

either take over the whole population or become extinct. Even when the mutation grants its

bearer a relative fitness advantage r� 1, it might still go extinct due to random fluctuations

[4]. Two key parameters that quantify the fate of the newly occurring mutation are the fixation

probability and the fixation time [5, 6]. Here we study the effect of spatial structure on those

quantities.

Spatial models have a long history of investigation in ecology [7–13], population dynamics

[4], population genetics [6, 14–19], evolutionary game theory [20–24], infection dynamics

[25–28] and cancer evolution [29, 30]. The classical investigation in population genetics

includes the debate between Fisher and Wright [15] and hybrid zones [31]. A biological popu-

lation can be structured in the sense of geographical distribution, age structure, or specific

interaction patterns. Human populations structure is often studied in terms of social networks

[32].

Spatial structure has profound effects on both the fixation probability and the fixation time.

Those effects are studied within the framework of Evolutionary Graph Theory [33–36]. There,

individuals are represented as nodes of a graph (network). The edges (connections) of the

graph represent the migration patterns of offspring. The edges can be one-way or two-way.

Graphs can represent the well-mixed population, spatial lattices, island sub-populations, or

arbitrary complex spatial structures. Those directed graphs can arise by the flow from

upstream to downstream demes in meta-populations, by cellular differentiation in somatic

evolution, or in age structured populations. Also in human social networks many interactions

are one way—such as from influencer to follower or from teacher to learner.

Previous research investigated population structures with various effects on fixation proba-

bility and time [37–41]. For example, isothermal graphs have both the same fixation probabil-

ity and the same distribution of mutant population size changes over time as the well-mixed

population [33, 40]. Suppressors of selection reduce the fixation probability of advantageous

mutants [42], and amplifiers of selection enhance the fixation probability of advantageous

mutants [43]. Amplifiers are population structures that could potentially accelerate the evolu-

tionary search [44]. Known classes of amplifiers include families such as Stars [45–47], Comets

[48], Superstars [49, 50], or Megastars [51].

Interestingly, the amplification typically comes at a cost of increasing the fixation time [52],

sometimes substantially [53]. This is problematic, since when fixation times are extremely

long, fixation is not a relevant event any more, and thus the fixation probability alone is not

the most representative quantity [54, 55]. It is therefore paramount to understand how the

population structure affects the fixation time and, in particular, what are the population struc-

tures for which the fixation time is “reasonably fast.”

Borrowing standard concepts from computer science [56], in this work we say that fixation

time is fast if the fixation time is (at most) polynomial in terms of the population size N. Other-

wise we say that the fixation time is long, and the corresponding population structure is slow.

Two important known results are: (i) for all undirected graphs the fixation time is fast [57, 58];

and (ii) if some edges are one-way (if the graph is directed), then the fixation time can be expo-

nentially long [59]. The latter result has an important negative consequence: when the fixation

time is exponentially long, we know no tool to efficiently simulate the process. Therefore,
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computing or approximating any relevant quantities for realistic population sizes is in practice

infeasible.

In this work, we present three positive results that concern fixation times on directed graphs

(where some or all edges are one-way). First, we prove that for any directed graph the fixation

time is fast, provided that the mutant fitness advantage r is sufficiently large. Second, we devise

an efficient algorithm that gives an upper bound on the fixation time, for any graph and any

r� 1. The bound can be used to estimate how long one needs to run the simulations until they

terminate. Third, we identify a broad class of directed graphs for which the fixation times are

fast for any r� 1. This class includes many previously studied amplifiers of selection, such as

Superstars and Metafunnels. To conclude, we discuss important algorithmic consequences

that enable efficient computational exploration of various properties of directed graphs.

Model

In this section we define the notions we use later, such as the population structure (represented

by a graph), the evolutionary dynamics (Moran Birth-death process), and the key quantities

(fixation probability and fixation time).

Population structure

The spatial population structure is represented by a graph (network) G = (V, E), where V is the

set of N nodes (vertices) labeled v1, . . ., vN and E is the set of directed one-way edges (links)

connecting pairs of different nodes. A two-way connection between nodes u and v is repre-

sented by two one-way edges u! v and v! u. We assume that the graph is strongly con-

nected. For any node v, the number of edges incoming to v is called the indegree (denoted

deg−(v)), and the number of outgoing edges is called the outdegree (denoted deg+(v)). When

the two numbers coincide, we call them the degree (denoted deg(v)).

Graph classes

We say that a graph is undirected if for every edge u! v there is also an edge v! u in the

opposite direction. Otherwise we say that a graph is directed. We say that a graph is regular if

all nodes have the same degree, that is, there exists a number d such that deg−(v) = deg+(v) = d
for all nodes v 2 V. We say that a graph G is Eulerian (also known as a circulation) if deg−(v) =

deg+(v) for each node v. Finally, in this work we say that a graph is balanced if an equality

1

degþðvÞ
�
X

w2V:v!w2E

1

deg� ðwÞ
¼

1

deg� ðvÞ
�
X

u2V:u!v2E

1

degþðuÞ

holds for all nodes v. Here the left-hand side represents the average indegree of the successors

of v, whereas the right-hand side represents the average outdegree of the predecessors of v. It is

straightforward to check that the class of balanced graphs includes the regular graphs and the

undirected graphs, as well as other graph classes such as Superstars or Metafunnels [33], see S1

Appendix. Below we will prove that the fixation times on all balanced graphs are fast for any

r� 1.

Moran Bd process

To model the evolutionary dynamics we consider the standard Moran Birth-death process.

Each node of the graph is occupied by a single individual. Initially, some individuals are wild-

type residents with normalized fitness equal to 1, and some individuals are mutants with
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relative fitness advantage r� 1. Given a graph G and a relative fitness advantage r� 1, Moran

Birth-death process is a discrete-time stochastic process, where in each step:

1. First (Birth), we select an individual with probability proportional to its fitness. Suppose we

selected node u.

2. Second (death), we select an outgoing neighbor of u uniformly at random. Suppose we

selected node v.

3. Finally (update), we replace the individual at node v by a copy of individual at node u.

At each time-step, the current configuration is the subset of nodes occupied by mutants.

Since the graph is strongly connected, almost surely we eventually obtain a configuration

where either all nodes are mutants (we say that mutants fixed), or all nodes are residents (we

say that mutants went extinct) [57].

Fixation probability and fixation time

The key quantities that we consider in this work are fixation probability and fixation time.

Given a graph G, a mutant fitness advantage r� 1, and an initial configuration S� V of

nodes occupied by mutants, the fixation probability fpr(G, S) is the probability that starting

from S, the mutants eventually fix (as opposed to going extinct). Morever, we define an auxil-

iary quantity fpmin that turns out to be useful later in our results. Formally, given a graph G
and r = 1, for i = 1, . . ., N denote by fp(i)(G) = fpr=1(G, {vi}) the fixation probability of a single

neutral mutant who initially appears at node vi. We define fpmin(G) = mini fp(i)(G) to be the

smallest of those N fixation probabilities.

To measure the duration of the process until fixation (or extinction) occurs, different

notions are used. The (expected) absorption time ATr(G, S) is the expected number of steps of

the Moran Birth-death process until the process terminates, regardless of what is the outcome

(mutant fixation or extinction). In contrast, (expected) fixation time Tr(G, S) is the expected

number of steps averaged over only those evolutionary trajectories that terminate with mutant

fixation. Similarly, one can define the (expected) extinction time ExtTr(G, S) averaging over

only those trajectories that terminate with the mutant going extinct. By linearity of expecta-

tion, the three quantities are related as ATr(G, S) = fpr(G, S) � Tr(G, S) + (1 − fpr(G, S)) �

ExtTr(G, S). Note that in this work, absorption time, fixation time, and extinction time are

mean times to absorption, making them scalar values rather than random variables. Informa-

tion about the random variable can be recovered from its expectation using concentration

bounds such as Markov’s inequality [57]. Our objective in this work is to provide upper

bounds on the absorption time and on the fixation time. To that end, given a graph G and a

mutant fitness advantage r� 1, let Tr(G) = maxS�V,S6¼; Tr(G, S) be the largest fixation time

among all possible initial configurations. In the limit of strong selection r!1 we also define

T1(G) = limr!1Tr(G). This regime is called the ecological scenario [60] and corresponds to

new invasive species populating an existing ecosystem.

Asymptotic notation

We say a function f(N) is (at most) polynomial if there exists a positive constant c such that f
(N)� Nc for all large enough N. Examples of polynomial functions are f ðNÞ ¼ 1

2
NðN þ 1Þ

and f2(N) = 10 � N log N, whereas functions such as g(N) = 1.1N and g2ðNÞ ¼ 2
ffiffiffi
N
p

are not poly-

nomial, since they grow too quickly. In computer science, problems that can be solved using

polynomially many elementary computations are considered tractable. In alignment with that,
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given a population structure G with N nodes, we say that fixation time is fast if it is at most

polynomial in terms of the population size N.

Results

We present three main types of results.

Fixation time is fast when selection advantage is strong enough

As our first main result, we prove that the fixation time on any directed graph is fast, provided

that the mutant fitness advantage r is large enough.

As an illustration, for every N = 4k we consider a graph GN depicted in Fig 1A. It consists of

four columns of k nodes each. The grey edges within the yellow region are two-way. The black

one-way edges point from the side columns to the middle columns. When mutants initially

occupy the left part of the graph, the only way forward for them is to progress upward through

the third column. But while there, mutants are under an increased pressure due to the resident

nodes in the rightmost column. The same applies to residents. They can only make progress

by climbing upward through the second column, but there they are under pressure due to

mutants in the leftmost column. As a consequence, the fixation time crucially depends on r.
When r = 1.1, Fig 1B shows that the fixation time scales exponentially in N (that is, it is long).

In contrast, in the limit of large r the fixation time is less than N2, that is, it is fast.

In general, we can prove the following result about an arbitrary population structure.

Theorem 1. Let GN be a strongly connected graph on N nodes. Suppose that r� N2. Then
ATr(GN)� 2N3 and Tr(GN)� 3N3.

Theorem 1 implies that while the fixation time on certain graphs can be long for some val-

ues of r, this effect is inevitably transient, and the fixation time becomes fast once r exceeds a

certain threshold. The intuition behind the proof is that if r is large enough, the size of the

Fig 1. Long and fast fixation times on a four-column graph GN. a, For N = 4k, a graph GN consists of four columns of k nodes

each (here k = 4 and N = 16). The grey edges within the yellow region are two-way, the black edges going from the side columns

to the corresponding vertices of the middle column are one-way. The fractions shown highlight the probability that a step of the

Birth-death occurs between the start and end vertex on the corresponding edge given the individual at the start vertex is selected

for birth. Initially mutants occupy the left half and residents occupy the right half. As mutants (red nodes) spread upward

through the third column, they can propagate along only one edge (red), whereas residents (blue nodes) fight back along

multiple edges (blue). b, The timescale to fixation crucially depends on the mutant fitness advantage r. When r = 1.1 and the

initial configuration S is all of the nodes on the left half, the fixation time Tr(GN, S) is exponential in N, whereas when r = 100 it is

polynomial. Each data point is an average over at least 103 simulations.

https://doi.org/10.1371/journal.pcbi.1012299.g001
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mutant subpopulation is always more likely to increase than to decrease, regardless of which

nodes are currently occupied by mutants. Thus, the evolutionary process can be mapped to a

random walk with a constant positive bias. It is known that such biased random walks absorb

polynomially quickly. See S1 Appendix for details.

An attractive feature of Theorem 1 is that it applies to all directed graphs. An obvious limi-

tation is that the condition r� N2 is unrealistic, except possibly for the regime r!1 that has

been studied under the name ecological scenario [60]. Therefore, as our second result, we con-

siderably relax this condition for graphs with certain structural features. A directed graph is

said to be Eulerian (also called a circulation) if each node has the same indegree as outdegree.

In that case, we refer to the number deg−(v) = deg+(v) simply as a degree of node v.

Theorem 2. Let GN be a strongly connected Eulerian graph on N nodes with smallest degree δ
and largest degree Δ. Suppose that r � D

d
� ð1þ εÞ for some ε> 0. Then ATrðGNÞ �

2þε
ε � N

3 and
TrðGNÞ �

ð1þεÞð2þεÞ
ε2 � N3.

To illustrate Theorem 2 we point out two special cases (for the full proof see S1 Appendix).

First, consider any regular graph GN, that is, a graph where all nodes have the same indegree

and outdegree equal to d. Then, the graph is Eulerian and we have d = Δ = δ, and thus Theorem

2 implies that Tr(GN) is at most a polynomial in N and d for any r� 1. In other words, fixation

time on any regular graph is fast for any r� 1 (we note that this result is known [59]).

Second, consider an Eulerian graph that is “close to being regular”, in the sense that each

node has degree either 4 or 5. An example of such a graph is a square lattice with several addi-

tional long-range connections. Then, Theorem 2 implies that the fixation time is fast for every

r> 5/4 = 1.25.

Fixation time for small selective advantage

The above results show that for any fixed graph G, the fixation time is fast when r is sufficiently

large. It is natural to hope that perhaps for any fixed graph G the fixation time is a monotoni-

cally decreasing function of r for r� 1. However, this is not the case, as shown in Fig 2.

Fig 2. Fixation time is not monotone in r. a, In an (undirected) star graph S4 on 4 nodes, one node (center) is connected to three leaf nodes by two-

way edges. When the initial mutant appears at a leaf v, the fixation time Tr(S4, {v}) increases as r increases from r = 1 to roughly r = 1.023. Then it starts

to decrease. b, Normalized fixation time Tr(G, {v})/Tr = 1(G, {v}) as a function of r 2 [1, 1.3], for all 83 strongly connected graphs G with 4 nodes, and all

four possible mutant starting nodes v. As r increases, the fixation time goes up for 182 of the 4 � 83 = 332 possible initial conditions. The increase is

most pronounced for the so-called lollipop graph L4 and a starting node u. In contrast, for the same lollipop graph and a different starting node w, the

fixation time decreases the fastest.

https://doi.org/10.1371/journal.pcbi.1012299.g002
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Briefly speaking, the effect responsible for the increase in fixation time when r = 1 + ε is

that by increasing the mutant fitness advantage, certain evolutionary trajectories that used to

lead to mutant extinction instead lead to mutant fixation. Since those “newly fixating” trajecto-

ries might generally take relatively long to fix, the average length of the fixating trajectories can

go up. Similarly, the absorption time can also go up as we increase r. Those findings are in

alignment with the stochastic slowdown phenomenon [61].

Despite the lack of monotonicity, we can show that the fixation time cannot go up too

much as we increase r. Recall that fpmin(GN) = min{fpr=1(GN, {v}) j v 2 GN} denotes the fixation

probability under neutral drift (r = 1), when the initial mutant appears at a node v with the

smallest fixation probability. Note that for any graph with N nodes we have fpmin(GN)� 1/N,

but fpmin(GN) could in general be substantially smaller than 1/N. Finally, the quantity

fpmin(GN) can be computed efficiently by solving a linear system of N equations [35, 39, 62,

63]; see S1 Appendix for additional details.

We can now state our second main result.

Theorem 3. Let GN be a strongly connected graph on N vertices and let r� 1. Then
TrðGNÞ �

N6

ðfpminðGN ÞÞ
4 :

We note that Theorem 3 yields an efficiently computable upper bound on Tr(GN). In the

next section we elaborate on the computational consequences of this result. In the rest of this

section, we give a brief intuition behind the proof of Theorem 3.

The proof relies on two ingredients. First, instead of considering the process with mutant

fitness advantage r, we consider the neutral process that corresponds to r = 1. There, using a

martingale argument we show that the fixation time Tr=1(GN) can be bounded from above in

terms of the quantity fpmin. The intuition is that as long as all fixation probabilities are non-

negligible, all active steps of the stochastic process have substantial magnitude either towards

fixation or towards extinction. As a consequence, we are able to argue that either fixation or

extinction will occur after not too many steps. All in all, this yields an upper bound on fixation

time Tr=1(GN) of the neutral process in terms of the quantity fpmin. See S1 Appendix for

details.

As our second ingredient, we translate the bound on Tr=1(GN) into a bound on Tr(GN) for

any r� 1. We note that, as indicated in Fig 2, for a fixed graph GN the fixation time is in gen-

eral not a monotonically decreasing function of r. Nevertheless, the continuous versions of two

processes can be coupled in a certain specific way, which allows us to argue that while Tr(GN)

can be somewhat larger than Tr=1(GN), it cannot be substantially larger. In this step, we again

use the quantity fpmin. See S1 Appendix for details.

Fixation time is fast when the graph is balanced

As noted above, Theorem 3 provides an upper bound on the fixation time for any graph GN

and any mutant fitness advantage r� 1, in terms of the quantity fpmin(GN). We have

0� fpmin(GN)� 1/N. When the quantity fpmin(GN) is exponentially small, the upper bound

from Theorem 3 becomes exponentially large, and thus not particularly interesting. However,

for many graphs the quantity fpmin(GN) turns out to be much larger, namely inversely propor-

tional to a polynomial in N. In those cases, Theorem 3 implies that the fixation time Tr(GN) is

fast for any r� 1.

In particular, as our third main result we prove that this occurs for a broad class of graphs

which we call balanced graphs. Formally, we say that a graph GN is balanced if an equality

1

deg� ðvÞ
�
X

u:u!v2E

1

degþðuÞ
¼

1

degþðvÞ
�
X

w:v!w2E

1

deg� ðwÞ
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holds for all nodes v. Here the left-hand side represents the average outdegree of the predeces-

sors of v, whereas the right-hand side represents the average indegree of the successors of v.

We note that the family of balanced graphs includes many families of graphs studied in the

context of Moran process in the existing literature, such as the undirected graphs [57], regular

(possibly directed) graphs [59], Superstars and Metafunnels [33], Megastars [51, 64], cyclic

complete multipartite graphs [65], or directed fans [66], see Fig 3.

We have the following theorem.

Theorem 4. Let GN be a balanced strongly connected graph. Then:

1. fpr¼1
ðGN ; uÞ ¼

1=deg� ðuÞP
v2V

1=deg� ðvÞ
� 1=N2 for any node u.

2. Tr(GN)� N14 for any r� 1.

Theorem 4 implies that the fixation time on all balanced graphs is fast for all r� 1. Simi-

larly, we can prove that it is fast for Megastars [51] assuming r� 1 (see S1 Appendix).

The proof of the first part of Theorem 4 relies on the fact that in the neutral case r = 1 the

fixation probability is additive. This allows us to reduce the size of the linear system that

describes the underlying Markov chain from 2N equations to N equations. For balanced

graphs, this system takes a special form that admits an explicit solution. The second part then

follows directly from Theorem 3. See S1 Appendix for details.

We note that the second part of Theorem 3 has an important computational consequence.

Since the fixation time on any balanced graph is bounded from above for any r� 1, individ-

ual-based simulations of the evolutionary process are guaranteed to terminate quickly with

high probability [57]. Any relevant quantities of interest, such as the fixation probability of the

mutant with r� 1, can thus be efficiently approximated to arbitrary precision. In particular,

Theorem 3 yields a fully-polynomial randomized approximation scheme (FPRAS) for the fixa-

tion probability on balanced graphs with any r� 1.

Theorem 5. There is a FPRAS for fixation probability on balanced graphs for any r� 1.

We note that Theorem 5 applies also to any (not necessarily balanced) graph GN, pro-

vided that the quantity fpmin(GN) is inversely proportional to a polynomial. This is the case

for instance for Megastars. See S1 Appendix for details. Moreover, when fpmin(GN) is

smaller than that, Theorem 3 still gives an explicit, efficiently computable upper bound on

the fixation time that can be used to bound the running time of any individual-based

simulations.

Fig 3. Types of balanced graphs. The class of balanced graphs includes the following families of graphs studied in the context of Moran process in

the existing literature. a, Superstars [33] are the first proposed strong amplifiers of selection. b, Complete multipartite graphs [65] are a rare

example of high-dimensional graphs for which the fixation probability of advantageous mutants can be expressed using an explicit formula. c, A

certain form of Fan graphs [66] (with weighted and undirected edges) constitutes the strongest currently known amplifiers of selection under

death-Birth updating. Theorem 4 implies that the fixation time on all those graphs is fast for all r� 1. d, Not all graphs are balanced. For example,

here for the highlighted node v the left hand side is 1, whereas the right-hand side is 1

2
ð1=1þ 1=2Þ ¼ 0:75 6¼ 1.

https://doi.org/10.1371/journal.pcbi.1012299.g003
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Computational experiments

Finally, to further illustrate the scope of our results we run several computational experiments

on graphs with small population size N. We use nauty [67] to perform such enumerations.

Since already for N = 6 there are more than one million non-isomorphic strongly connected

directed graphs, we consider N = 5. For each of the 5048 graphs with N = 5 we compute the fix-

ation time and the fixation probability under uniform initialization by solving the underlying

Markov chain using numerical methods, see Fig 4.

The slowest graph is the (undirected) Star graph. Note that when N is large the fixation

time on a Star graph is known to be proportional to roughly N2 [52].

Among the oriented graphs, the slowest are variants of either a fan graph FN, or a vortex

graph VN. Since both the fan graphs and the vortex graphs belong to the class of balanced

graphs, the fixation time on those graphs is fast for any population size N and any mutant fit-

ness advantage r� 1 due to Theorem 4 (see Fig 5 for empirical support). The fixation time

appears to be proportional to roughly N2 (see S1 Appendix).

Fig 4. Fixation time and fixation probability of a single mutant under uniform initialization for all 5048 graphs with

N = 5 nodes, for a, r = 1.1 and b, r = 2. Each graph is represented as a colored dot. The undirected graphs (with all

edges two-way) are labeled in blue. The oriented graphs (with no edges two-way) are labeled in green. All other

directed graphs are labeled in orange. The slowest graph is the (undirected) Star graph S5. Among the oriented graphs,

the slowest graph is the Fan graph F5.

https://doi.org/10.1371/journal.pcbi.1012299.g004

Fig 5. Fixation time on slow oriented graphs. a, The Fan graph with k blades has N = 2k + 1 nodes and 3k one-way edges (here k = 5 which yields

N = 11). The Vortex graph with batch size k has N = 2k + 2 nodes and 4k edges (here k = 3 which yields N = 8). b-c, For both the Fan graphs and the

Vortex graphs the fixation time scales roughly as N2, both for r = 1.1 and r = 100. (Each data point is an average over 1000 simulations).

https://doi.org/10.1371/journal.pcbi.1012299.g005
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Together, those results suggest that even though directed graphs with exponentially long

fixation times do exist, in practice most small directed graphs reach fixation reasonably

quickly.

Discussion

A decade ago, a foundational work by Diaz et. al. showed that fixation time on any undirected

population structure is fast [57]. This result enabled extensive computational exploration of

the landscape of all undirected graphs that later lead to several inspiring research outputs [20,

37, 54, 68, 69]. It is our hope that by enabling computational exploration of population struc-

tures with some (or all) one-way connections, this work will serve the same purpose.

Studying the evolutionary dynamics in spatially structured populations is notoriously hard.

In this work we consider one of the simplest possible dynamics, namely the classic Moran

Birth-death process, and we analyze the fixation time of a newly occurring mutant. When the

fixation time is exponentially long, the process is expensive to simulate, and moreover various

commonly studied quantities such as fixation probability are largely irrelevant. It is thus para-

mount to delineate settings in which the fixation time is “relatively fast”, as opposed to being

“exceedingly long.”

It is known [57] that the fixation time is fast, provided that all interactions among the indi-

viduals are two-way. However, many relevant population structures include one-way interac-

tions. In meta-population dynamics, an upstream deme could seed a downstream deme. In

somatic evolution, cellular differentiation could be irreversible. In an age structured popula-

tion there is the one way arrow of time.

In this work, we therefore consider spatial structures in which some (or all) interactions are

one-way. It is known that on such structures the fixation time can be exceedingly long [59].

Nevertheless, here we present three results which indicate that fixation times on spatial struc-

tures with one-way connections are often fast.

First, we prove that on any population structure the fixation time is fast, provided that the

mutant fitness advantage r exceeds a certain threshold value r? (see Theorem 1). In the special

case when the population structure is represented by a regular graph, the threshold value sim-

plifies to r? = 1, and we recover a known result that the fixation time on regular graphs is short

for all r� 1 [59]. As another corollary, for any Eulerian graph whose degrees are sandwiched

between δ and Δ we can set r? = Δ/δ (see Theorem 2).

Second, somewhat counter-intuitively we show that fixation time sometimes goes up as we

increase r. That is, on certain spatial structures fixation of a neutral mutant occurs faster than

fixation of a mutant with a small selective advantage. This effect is called stochastic slowdown

[61]. We show that the magnitude of the slowdown can be bounded. In particular, in the spirit

of parametrized complexity [70, 71], given a graph structure GN we define a certain efficiently

computable quantity fpmin(GN), and we bound the fixation time for any r� 1 from above

using fpmin(GN) and N (see Theorem 3). This has important consequences for performing

individual-based simulations that typically run the process several times and report an empiri-

cal average. The limitation of naive individual-based simulations is that, a priori, it is not clear

how much time will be needed until the simulations converge, and deciding to stop the simula-

tions mid-way may bias the empirical average by over-representing the evolutionary trajecto-

ries that quickly go extinct. Using Theorem 3, this limitation can be circumvented by first

efficiently computing an upper bound on the expected fixation time without having to simu-

late the process even once. We stress that this computational approach works for all spatial

structures, balanced or not, and hence it expands our methodological toolkit for computa-

tional treatment of the role of spatial structure in evolution.
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Third, we identify a class of population structures for which fixation times are fast for any

r� 1. This class is surprisingly broad. To start with, it includes several families of graph that

had been studied in the context of Evolutionary Graph Theory earlier, such as Superstars and

Metafunnels [33], or directed Fans [66]. Furthermore, the class also includes several other

graph families of general interest, such as book graphs or cyclic complete multipartite graphs

[65]. Similarly, we prove that the fixation times on Megastars [51] are fast for all r� 1 too.

While the focus of this work is to identify regimes and population structures that lead to

fast fixation times, population structures with long fixation times may also be desirable, e.g. in

conservation ecology to maintain high levels of ecological diversity [72–76]. Our results imply

that spatial structures that support coexistence of two competing types on exponential time-

scales all have a common feature. Namely, there must exist a starting node such that in the

neutral regime (r = 1), the fixation probability of a single mutant who initially appears at that

node is exponentially small. In other words, spatial structures in which a neutral mutant has a

non-negligible chance of fixating, no matter where it appears, never support coexistence on

long time-scales.

We note that throughout this work we considered the standard model of Moran process

with Birth-death updating. A natural direction for future research is to consider related mod-

els, such as those with location-dependent fitness [76–79] or those with death-Birth updating

[20, 63, 80, 81]. It is known that in terms of fixation probabilities the Birth-death and the

death-Birth processes behave quite differently for undirected graphs [37, 45, 82].

Supporting information

S1 Appendix. Supplementary information for fixation times on directed graphs. Contains

formal proofs of the claims made in the main text.

(PDF)
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