Skip to main content
. 2024 Jul 17;6:1401036. doi: 10.3389/ftox.2024.1401036

TABLE 2.

Summarizes the state-of-the-art discussed works together with the employed methods, the cell painting (CP) data used, and the prediction task they were applied to. The superscript numbers in the CP Data column refer to the data set summaries in Table 1. Method abbreviations: Random Forest (RF), Neural Network (NN), Feed-forward NN (FNN), Convolutional NN (CNN), conditional Generative AdversarialNetwork (cGAN).

Authors Method CP Data Application
Schneidewind et al. (2020) Similarity search in house9 MoA annotation
Akbarzadeh et al. (2022) Similarity search in house8 Target annotation
Pahl et al. (2023) Similarity search and clustering in house3 Target Annotation
Seal et al. (2021) RF BBBC0471 Assay activity
Seal et al. (2022) RF BBBC0471 Mitochondrial toxicity
Seal et al. (2023a) RF BBBC0471 Cardiotoxicity
Moshkov et al. (2023) Chemprop BBBC0471 Assay activity
Simm et al. (2018) RF, k-NN, Macau, FNN in house Assay activity
Hofmarcher et al. (2019) FNN, CNN BBBC0471 Assay activity
Wong et al. (2023) CNN in-house5 Assay activity
Tian et al. (2023) FNN, CNN, classical ML in-house5 Assay activity
Nguyen et al. (2023) Contrastive learning JUMP2 Molecular property prediction
Sanchez-Fernandez et al. (2023) Contrastive learning BBBC0471 Assay activity, cross-modal retrieval
Gabriel et al. (2023) Contrastive learning JUMP2 Cross-modal retrieval
Zapata et al. (2023) cGAN BBBC0471 Molecular generation
Palma et al. (2023) Autoencoder BBBC0214 CP image generation