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Abstract  Disorders of Consciousness (DoC) result 
in profound functional impairment, adversely affect-
ing the lives of a predominantly younger patient 
population. Currently, effective treatment options 
for those who have reached chronicity (prolonged 
symptom duration over 4 weeks) are extremely lim-
ited, with the majority of such cases facing life-long 
dependence on carers and a poor quality of life. Here 
we briefly review the current evidence on caseload, 
diagnostic and management options in the United 
Kingdom (UK), United States of America (USA) 
and the European Union (EU). We identify key dif-
ferences as well as similarities in these approaches 
across respective healthcare systems, highlighting 
unmet needs in this population. We subsequently pre-
sent past efforts and the most recent advances in the 
field of surgical modulation of consciousness through 
implantable neurostimulation systems. We examine 
the ethical dilemmas that such a treatment approach 
may pose, proposing mediating solutions and meth-
odological adjustments to address these concerns. 
Overall, we argue that there is a strong case for the 
utilisation of deep brain stimulation (DBS) in the 
DoC patient cohort. This is based on both promising 
results of recent clinical trials as well as technological 

developments. We propose a revitalization of surgical 
neuromodulation for DoC with a multicenter, multi-
disciplinary approach and strict monitoring guide-
lines, in order to not only advance treatment options 
but also ensure the safeguarding of patients’ welfare 
and dignity.
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Introduction

Catastrophic insults to the central nervous system, 
impacting either arousal (wakefulness) or awareness 
(information processing), will lead to disorders of 
conscious experience in a previously healthy individ-
ual. A key pathophysiological feature of disorders of 
consciousness (DoC) following traumatic brain injury 
(TBI), haemorrhagic or ischaemic stroke, is cortical 
de-afferentation: disconnection between cortical and 
subcortical regions and disruption of cortico-cortical 
long range projections. This may also be the result of 
a neurodegenerative aetiology, but invariably results 
in disruption of excitatory neurotransmission to cor-
tical areas and subsequent dysregulated arousal and 
awareness [1]. While both TBI-induced cell death 
and neurodegeneration share common pathways [2], 
the latter is characterised by an ever-evolving process 
of neuronal loss and circuit pathology [3]. Despite 
long-term sequelae of an initial traumatic injury, the 
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absence of such a persistent insult might mean that a 
timely and efficient treatment option, geared towards 
restoring circuit function, could lead to long-lasting 
beneficial patient outcomes.

A direct method of modulating arousal-related 
neural circuits is the selective application of electri-
cal pulses to the brain, through deep brain stimulation 
(DBS) of subcortical centers. This surgical treatment, 
first licenced for pharmacoresistant movement disor-
ders, has seen an expansion of its indications in recent 
years [4]. A favourable risk–benefit ratio, together 
with the scientific validity of the proposed treatment 
and subsequent value enhancement of participants’ 
health, has been posited as being part of the basis of 
ethical clinical research [5]. The invasive nature and 
variable results of most surgical interventions for 
restoration of consciousness have led to a hesitancy 
in their systematic exploration in Western medicine 
and a failure of their translation into standard clini-
cal practice. We argue that it is time to re-evaluate 
this approach and initiate a broader vein of controlled 
empirical investigation of the value of DBS applica-
tions in DoC. To this end, after a brief overview of 
the current case burden and diagnostic practices, 
we examine specific neuroethical considerations in 
this discourse, in the additional light of recent clini-
cal trial evidence and technological advances in the 
implantable neuromodulation field.

Current Case Load and Diagnostic Criteria: 
an Underserved Population?

The DoC spectrum of clinical presentations encom-
passes an evolving range of behaviours [6]. A key 
development in this field was the formal differen-
tiation between unresponsive wakefulness syndrome 
(UWS, previously referred to as persistent vegetative 
state) and minimally conscious state (MCS), based on 
the fact that patients with the latter diagnosis display 
‘clearly discernible, behavioural evidence’ of con-
sciousness distinct from coma and UWS, albeit this 
being inconsistent in nature [7]. Where elements of 
language comprehension or expression are present, 
a diagnosis of MCS + is made (as opposed to MCS- 
where they are absent) [8]. Visual pursuit is the most 
common early sign of consciousness recovery [9], 
while ‘emergence’ from MCS indicates objective 
recovery of functional communication or object use.

In the case of ‘chronic’ or prolonged DoC 
(PDoC, ≥ 4  weeks from insult onset), patients may 
still proceed to functional recovery at a later stage. 
However, the rate of this is relatively low (13–30% 
based on a relatively recent study with a 6-week 
observational period [7]). Furthermore, based on data 
from the same trial, recovery rates are three times 
higher in cases who are within the first ten weeks 
of injury at enrolment, compared to those further 
removed from time of injury. These results highlight 
the fact that patients with PDoC represent a popula-
tion with prolonged, severe disability where treatment 
options are scarce. This becomes even more poignant 
when one considers that the peak incidence of severe 
TBI is between 16 and 35  years of age in the USA 
[10]. A young adult peak is also true for European 
data, although a second, falls-related, peak is noted 
for those over 75 years of age [11].

Currently, the UK National Health Service does 
not collect systematic data to identify patients in 
PDoC, therefore there is no way of accurately iden-
tifying the number of such cases, their management 
and their outcomes [12]. However, based on surrogate 
metrics and estimates, such as functional independ-
ence measures, there may be around 150 new cases 
every year in the UK that fail to reach emergence 
after PDoC and remain in care facilities and rehabili-
tation centers. From the subset of ‘optimal prognosis’ 
achieving emergence post-DoC, 30% are discharged 
to long-term care in a nursing home after emergence 
due to prolonged disability. In terms of healthcare 
and other economic costs however, emergence from 
PDoC still generates a mean net of savings of over 
£436 K per patient and can effectively compensate for 
losses from other patient groups in the UK [12]. This 
fact, in addition to the potential alleviation of human 
suffering, further supports the importance for effec-
tive management and treatment options in the PDoC 
cohort.

In addition to this lack of systematic, centralised 
monitoring of outcomes for PDoC cases in the UK, 
a further heterogeneity can be noted with regards to 
diagnostic approaches between this country and cor-
responding US and EU authorities. As per the latest 
updated guidance from the Royal College of Physi-
cians (2020), differential diagnosis and management 
in disorders of consciousness (DoC) relies upon the 
clinical observation of behaviours ‘suggesting aware-
ness of self and the environment’ [13]. In contrast to 
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the earlier US guidance (2018), where functional neu-
roimaging (fMRI) and advanced electrophysiologi-
cal studies are recommended in cases of ambiguity 
[14], the UK guidelines do not envisage any role for 
these investigations in the clinical management and 
diagnosis of DoC. This decision is also in contrast to 
the updated European Academy of Neurology (EAN) 
guideline, which recommends an integration of EEG 
and fMRI studies with clinical observations, and that 
‘state of consciousness should be classified accord-
ing to the highest level revealed by any of these three 
approaches’ [15]. Behavioural scales only provide 
a single snapshot captured over minutes of clinical 
evaluation [16], while fluctuations in state of con-
sciousness have been linked to worse outcomes in 
neurocritical care populations [17]. Some hesitations 
in the recommendation of multimodal monitoring 
stem from the heterogeneity of results and the diffi-
culty in interpretation of intentionality. For instance, 
fewer than half of patients with traumatic brain injury 
(TBI) demonstrating command-following on EEG 
had the same result in fMRI [18], while correlation 
of neuroimaging findings to motor responses in a 
clinical context can be especially challenging in this 
cohort [19].

Surgical Neuromodulation in Disorders 
of Consciousness: a Viable Treatment Avenue

Despite these differences in guidelines, a common 
element in the management of patients with DoC, 
both in the UK and abroad, is the off-label use of 
stimulants during the rehabilitation process. Amanta-
dine (a dopaminergic and NMDA agonist) has been 
shown to increase the rate of cognitive recovery in the 
acute phase in patients with TBI in large, multicentre 
trials [20, 21]. However, there is robust evidence that 
it offers no additional benefit in the chronic stages of 
DoC (seven centre, placebo-controlled, randomised 
clinical trial [22]). Furthermore, when Glasgow 
Coma Scale (GCS) outcomes were assessed, new 
evidence comparing the agent to modafinil (another 
commonly prescribed stimulant) failed to demonstrate 
any benefit for either drug, compared to standard-of-
care rehabilitation in the U.S healthcare system [23]. 
Stimulant efficacy may depend on factors such as the 
half-life of each agent and time of dosing with respect 
to behavioural fluctuations – therefore personalisation 

of treatment can be limited and depend on carer atten-
tion. This brings into question whether responsive 
treatments, taking into account immediate changes 
of patient physiology and behaviour, might be more 
effective and ethically advantageous –provided they 
do not expose the patient to disproportionate associ-
ated risks.

An argument against the use of DBS is that the 
invasiveness of the technique carries significant risks, 
such as intracerebral haemorrhage, subsequent dis-
ability and even death. With regards to bleeding as 
a complication of the procedure, the incidence has 
been estimated to be 5% in a comprehensive review 
of available published data [24], however risk varies 
with age and associated comorbidities. Although, as 
we previously discussed, the PDoC cohort may center 
around a relatively younger population, a personalised 
risk assessment would ensure that all relevant factors 
are accounted for, before proceeding to a decision for 
surgical management. Furthermore, there is empirical 
evidence that DBS can beneficially alter symptoms in 
PDoC, where pharmacological interventions are of 
limited benefit. In the context of DoC after 6 months 
post-insult, a number of US and EU studies focused 
on DBS of the centrolateral and centromedian-par-
afascicularis nuclei of the thalamus, spanning over 
thirty years [25–27].

The scientific premise behind this approach lies in 
the fundamental role that thalamocortical neuronal 
loops play in both information representation [28] 
and arousal maintenance, via their link to the reticular 
activating system [29]. Recent experimental evidence 
in primates has showcased that thalamic DBS can 
restore both of these components of conscious aware-
ness [30], further lending weight to this choice of tar-
geting –although targeting in one surgical center also 
involved the globus pallidum [31]. Despite behav-
ioural and electrophysiological changes, suggestive 
of a positive impact on conscious cognition, most of 
these studies suffer from excessive heterogeneity at 
baseline within small cohorts and are difficult to gen-
eralise [32]. In contrast, a recent randomised feasibil-
ity trial of thalamic DBS in a very specific popula-
tion showed that it is possible to impart substantial 
changes, directly resulting in improved quality of life 
in the PDoC population [33]. This study focused on 
post-emergence PDoC cases who still suffered from 
cognitive sequelae, resulting in impairment of day-
to-day functioning. This suggests that it is possible to 
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reverse maladaptive circuit changes, rescue neuronal 
activity associated with arousal and awareness and 
achieve positive outcomes, even over a decade after 
the original traumatic insult. Therefore, the case for 
improvement of level of functioning in the PDoC 
cohort with DBS exists for many years following ini-
tial patient presentation.

A focus on TBI survivors who may be residing in 
the community, yet still require levels of care, also 
ensures that DBS will not produce a highly disabled 
state with increased awareness. Such an occurrence 
could be considered futile or even highly detrimental 
to patient experience [34]. To avoid such adverse out-
comes, careful patient selection, taking into consid-
eration dormant potential of achieving independence, 
is key. One therefore may wish to avoid perform-
ing DBS in vegetative state where there is extensive 
structural damage of circuits responsible for volun-
tary behavioural control. Additionally, the time win-
dow of intervention needs to be carefully considered 
so that the risk of DBS-induced adverse events is 
weighed against the potential for spontaneous emer-
gence. An uncomplicated implant when there is small 
potential for emergence may just speed recovery up; a 
serious adverse event at an earlier timepoint may not 
be equally justified. However, even if the argument 
of futility can be overcome, there are specific ethical 
concerns that require further, careful consideration.

DBS in DoC: Implications for Self‑Perception, 
Mental Privacy and Patient Autonomy

Increasing excitatory drive through DBS may result 
in various emerging behaviours. Disinhibition, fol-
lowing dopaminergic circuit modulation, is one of 
the reasons behind preoperative neuropsychological 
screening and postoperative monitoring in DBS for 
movement disorders [35]. The neuroethical discourse 
on personality changes and alterations of perceptions 
of ‘self’ as sequelae of DBS is therefore understand-
able [36]. A critical review however of both ethical 
arguments and empirical evidence on the subject 
revealed that the purported alterations are dispropor-
tionately represented, compared to both the likelihood 
of post-operative changes and their nature [37]. Such 
effects can also occur after treatment of other neuro-
surgical pathologies (notably brain tumours). How-
ever, discouraging treatment which can salvage life 

and functioning is unwarranted on the basis of this 
risk, even for benign space-occupying lesions [38].

Furthermore, ‘inherent’ personality traits (versus 
‘machine-imposed’ ones) are not conducive to well-
being when highly pathological. To argue that per-
sonality should be unquestionably unalterable would 
therefore inevitably lead to suffering where poten-
tially reversible, pharmacological approaches fail. 
This sentiment is mirrored by the FDA’s decision to 
grant humanitarian device exemption (HDE) for treat-
ment of obsessive–compulsive disorder with DBS 
in 2009, followed by multiple trials showcasing sig-
nificant improvements in overall function [39]. In the 
case of DoC, affective alterations (which could theo-
retically arise with DBS adjacent to midline seroto-
ninergic structures [40]) could actually be beneficial 
in encouraging engagement with carers and motiva-
tion for recovery.

The introduction of implantable devices as an 
additional locus of behavioural control is however a 
risk to self-determination, when not performed in an 
appropriately regulated framework. Access to neural 
data through brain-computer interfaces has led to a 
burgeoning discourse on the need for legal protection 
of mental privacy [41]. Although such a right could 
be derived from the existing jurisprudence within 
the European Court of Human Rights (ECHR) [42], 
related clinical trials may be compromised in envi-
ronments where there is rampant political autocracy, 
resulting in a disrespect of personal liberties. In the 
very specific concept of DBS in DoC, there is the 
risk for imposed control of arousal and awareness, 
as a discrete weaponised technology. Where con-
sciousness can be selectively enhanced or dampened 
through DBS outside of a specific treatment indica-
tion, free will is clearly compromised [43]. Although 
timely condemnatory reactions of such acts of atroc-
ity could limit further attempts, morally unacceptable 
events will still damage public reception of poten-
tially life-changing treatment options [44].

The globalization of trials of DBS in DoC, involv-
ing countries where legal lacunae surrounding con-
senting practices exist, is an adjacent issue [45]. 
When consciousness is impaired, therefore patients 
cannot directly consent to treatment, regulatory codes 
such as the Code for Federal Regulations (CFR, 
USA) and the Declaration of Helsinki clearly indi-
cate that a legally authorized representative must be 
involved, while any experimental components must 
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be clearly declared [46, 47]. Even under such condi-
tions, respecting a patient’s prior wishes and beliefs 
surrounding the management of altered states of 
consciousness can be challenging where there is an 
absence of advanced directives. If citizen inequalities 
exist due to gender, creed or any other characteristic, 
such nuanced discussions can be practically impos-
sible. Harmonisation with global humanitarian judi-
ciary considerations in therefore imperative in order 
to ensure equitable and fair access to emerging treat-
ments, while preserving patient dignity and autonomy 
[48]. Regardless of environment, a multidisciplinary 
approach to both recruitment and disclosure of treat-
ment effects is vital, with involvement of advocates, 
carers and the trial research and clinical team.

Patient autonomy can however be reinforced 
through novel features of implantable technolo-
gies. In movement disorders, where neural activity 
has been linked to specific disease states, embedded 
detectors of such ‘biomarkers’ have been proposed 
for incorporation in the device design [49]. A transi-
tion from an ‘open-loop’, physician-led approach to a 
responsive ‘closed-loop’ method of adaptive stimu-
lation, directed by the patient’s own physiology and 
behaviour, takes into account events that occur out-
side the hospital [50, 51]. At present, such approaches 
are clinically approved for device systems used in 
movement disorders –although experimentally pro-
posed for novel DBS indications such as pain [52] 
and depression [53]. Given the inherent difficulties in 
managing a PDoC cohort, such as mobility impair-
ments, nursing/care home domicile and related dif-
ficulties in accessing clinical care, a closed-loop 
option, whose titration could be based on quantifiable 
neurophysiological markers, might facilitate man-
agement. However, difficulties in communication, 
endemic in this patient population, would require 
very close monitoring of any automated approach to 
neurostimulation, to ensure that side effects are prop-
erly accounted for and timely recognised.

Conclusions and Future Directions

Despite a lengthy past of variable results, an inher-
ently invasive nature and a highly vulnerable clinical 
population, neurosurgical options for the manage-
ment of disorders of consciousness (DoC) should 
not be dismissed on either ethical or clinical efficacy 

grounds. We suggest that, in light of both recent 
updates with regards to the feasibility and effective-
ness of trials for such treatment options, as well as 
technological advances in the field of implantable 
devices, the undertaking of further efforts in the field 
is more than morally justified.

Such efforts could also involve alternative surgi-
cal targets for arousal neuromodulation, thereby fur-
ther expanding the pool of patient candidates to those 
where there is evidence of damage in thalamocortical 
connections, making stimulation of the thalamus less 
likely to work. In addition to their relay to intralami-
nar thalamic nuclei, first theorised to mediate cortical 
synchronisation in cats by Moruzzi and Magoun [54], 
brainstem and basal forebrain arousal centers project 
directly to cortex via extrathalamic pathways [55, 56]. 
Brainstem targeting has been successfully performed 
in humans in EU and US healthcare systems outside 
a DoC context, with targets including the locus coer-
uleus, pedunculopontine nucleus (PPN) and parabra-
chial complex (PBC) [57]. One notable exception are 
early DBS trials in Japan, where both thalamic and 
‘median reticular formation’ targeting was performed 
for DoC –unfortunately without comparisons between 
thalamic and extrathalamic groups [58]. Novel work 
in our centre focuses on the utilisation of stimula-
tion delivered in these regions for the amelioration 
of arousal pathology, concomitant to neurodegenera-
tion in movement disorders where DBS is utilised as 
a treatment [59]. This follows earlier findings that 
brainstem stimulation can be utilised to alter sleep 
depth in humans, with discrete effects on both elec-
trophysiology and behaviour when delivered during 
slow wave sleep [60].

No matter the DBS target and surgical approach 
however, further harmonisation of diagnostic and 
management standards in DoC is required, together 
with adherence to a strict ethical approach to trial 
structure and patient monitoring. Large multicentre 
clinical trials, involving an array of specialists with 
different types of expertise and carried out in an 
appropriately regulated environment are necessary, 
in order for a substantial change in the field to take 
place. The DBS field is no stranger to stunted growth 
due to ethical controversies. Investigations of subcor-
tical electrical stimulation were initially carried out in 
the 1950s without regulatory approval [61, 62], while 
mounting ethical concerns led to an abandonment 
of such interventions in mood disorders. A tentative 
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revisiting of this question came not only over half a 
century after its original ‘trial’, but also decades after 
FDA approval for DBS (granted in 1997, following 
robust proofs of efficacy in tremor control ten years 
earlier) [63]. The neuromodulation field should pro-
ceed with caution in DoC, since unfortunately no sys-
tem is fool-proof: individual awareness and responsi-
bility are of paramount importance.
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