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Monozygotic (MZ) twins are often thought to have identical genomes, but recent work has shown that early post-zygotic events
can result in a spectrum of DNA variants that are different between MZ twins. Such variants may explain phenotypic discordance
and contribute to disease etiology. Here we performed whole genome sequencing in 17 pairs of MZ twins discordant for a
psychotic disorder (schizophrenia, schizoaffective disorder or bipolar disorder). We examined various classes of rare variants that
are discordant within a twin pair. We identified four genes harboring rare, predicted deleterious missense variants that were private
to an affected individual in the cohort. Variants in FOXN1 and FLOT2 would have been categorized as damaging from recent
schizophrenia and bipolar exome sequencing studies. Additionally, we identified four rare genic copy number variants (CNVs)
private to an affected sample, two of which overlapped genes that have shown evidence for association with schizophrenia or
bipolar disorder. One such CNV was a 3q29 duplication previously implicated in autism and developmental delay. We have
performed the largest MZ twin study for discordant psychotic phenotypes to date. These findings warrant further investigation
using other analytical approaches.
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INTRODUCTION
Schizophrenia is a substantially heritable brain disorder, with
heritability estimated between 60–80% [1]. The core symptoms
include psychosis, where perception of reality is impaired, and
people develop delusions or hallucinations [2]. The genetic
etiology is complex, and known to overlap significantly with
other psychiatric disorders, particularly those that present with
psychosis, e.g., schizoaffective disorder, bipolar disorder [3, 4].
Despite significant progress, much of the genetic variation
contributing to risk of schizophrenia and related psychotic
disorders remains to be determined [5]. The search has moved
from array-based studies, which focus on common variants in
genome-wide association studies (GWAS), to whole exome (WES)
or genome (WGS) sequencing approaches which provide more
complete analysis of the full spectrum of genetic variation [6, 7].
This is important, as rare mutations that disrupt gene function,
identifiable by sequencing, may be particularly informative in
understanding the molecular etiology involved, and provide
targets for novel therapies. Because deleterious alleles with large
effects tend to be removed over time by natural selection, they
tend to be rare in the population and hence very large sample
sizes are required to identify them using case-control studies [8, 9].
While the rare variant case-control approach has yielded

success in identifying robust risk genes for psychotic disorders
[10], there are other potential analytical strategies available.
Historically, twin research has played an important role in

revealing the genetic epidemiology of psychiatric disorders.
Heritability estimates from twin studies for schizophrenia [11]
and bipolar disorder [12] are substantially higher than the
heritability explained from GWAS [13, 14], so it is likely that other
genetic factors (e.g. rare variants) are contributing to the
heritability. Concordance rates between monozygotic (MZ) twins
for schizophrenia is estimated to be 50% [15], which is notably
higher than the approximately 1% incidence rate in the general
population [16]. The case co-twin study design allows for the
control of shared genetic and environmental effects and for the
examination of non-shared genetic variation. Postnatal environ-
mental effects such as childhood trauma or substance abuse are
known to increase risk for a psychotic disorder [17]. While MZ
twins are the same age and often have similar childhood
experiences, it is possible that they may not share such
environmental effects.
One hypothesis explaining the discordance in diagnosis

between MZ twins is that both individuals share a common
genetic and environmental risk which is insufficient alone to be
causal for the phenotype, but rare, post-zygotic genetic variation
present in the affected twin increases their disease-risk. A recent
study estimated that in general, almost 10% of de novo variants
occur post-fertilization and prior to progenitor germ cell
specification and were thus likely to be present in both germ
and blood cells [18]. Another study examined transmission of
post-zygotic variants to offspring of monozygotic twins and
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www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02982-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02982-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02982-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02982-0&domain=pdf
http://orcid.org/0000-0002-5717-0508
http://orcid.org/0000-0002-5717-0508
http://orcid.org/0000-0002-5717-0508
http://orcid.org/0000-0002-5717-0508
http://orcid.org/0000-0002-5717-0508
http://orcid.org/0000-0001-9773-2248
http://orcid.org/0000-0001-9773-2248
http://orcid.org/0000-0001-9773-2248
http://orcid.org/0000-0001-9773-2248
http://orcid.org/0000-0001-9773-2248
http://orcid.org/0000-0002-5632-3154
http://orcid.org/0000-0002-5632-3154
http://orcid.org/0000-0002-5632-3154
http://orcid.org/0000-0002-5632-3154
http://orcid.org/0000-0002-5632-3154
http://orcid.org/0000-0002-6619-873X
http://orcid.org/0000-0002-6619-873X
http://orcid.org/0000-0002-6619-873X
http://orcid.org/0000-0002-6619-873X
http://orcid.org/0000-0002-6619-873X
http://orcid.org/0000-0003-0206-5337
http://orcid.org/0000-0003-0206-5337
http://orcid.org/0000-0003-0206-5337
http://orcid.org/0000-0003-0206-5337
http://orcid.org/0000-0003-0206-5337
http://orcid.org/0000-0001-6717-4089
http://orcid.org/0000-0001-6717-4089
http://orcid.org/0000-0001-6717-4089
http://orcid.org/0000-0001-6717-4089
http://orcid.org/0000-0001-6717-4089
https://doi.org/10.1038/s41398-024-02982-0
mailto:acorvin@tcd.ie
www.nature.com/tp


estimated that 2.1% of de novo variants occurred after the
twinning event, but prior to progenitor germ cell specification
[19]. These discordant de novo variants would form part of what is
estimated from twin or family studies as the environmental or
even non-additive genetic effects. Given their rarity, examining
variation private to one twin will drastically reduce the search
space of candidate causal variants compared to unrelated case-
control cohorts. WGS and WES analyses have identified de novo
post-zygotic variation in MZ twins discordant for a range of
disorders [20–22] and further investigation in psychotic disorders
is warranted. Such knowledge is useful from a clinical perspective,
as it highlights another important factor that may be responsible
for the discordance in clinical diagnoses between MZ twins.
Here we performed WGS on peripheral blood samples from 17

pairs of MZ twins discordant for schizophrenia, schizoaffective
disorder, or bipolar disorder, which is the largest sample size for
such a study to date. Using a strict filtering and annotation
approach, we have identified discordant single nucleotide variants
(SNVs) and copy number variants (CNVs) that may provide novel
insights into the genetic basis of these conditions.

METHODS AND MATERIALS
Sample procurement
Ethics. Written informed consent was obtained from all participants in
this study. Ethical permissions were obtained from Stockholm County in
Sweden (Dnr: 2004/448/4, 2007/779-31/3 and 2008/292-32).

Recruitment and diagnostic assessment procedures. The schizophrenia and
bipolar twin study in Sweden (STAR) is a study on MZ and DZ twin pairs
with schizophrenia or bipolar disorder and in total 462 twins have
participated, see Johansson et al. for further description of the cohort
[23]. The participants in this study were originally identified through the
Swedish Twin register (STR) [24] and the National Patient register (NPR),
which is administered by the Social board of health and welfare.
Potential participants were invited to the STAR study if only one twin had
a registered treatment episode of schizophrenia or bipolar disorder
(Diagnoses according to International Statistical Classification of Dis-
eases: ICD-8: 295 or 296, ICD-9: 295 or 296 or ICD-10: F20, F30 or F31). If
the twin pair decided to participate in STAR, an extensive assessment
procedure was initiated. Diagnostic status was confirmed by a clinical
psychiatrist through the Structured Clinical Interview for DSM-IV (SCID-I)
[25]. The final diagnosis was determined by an evaluation team, with
access to register data from previous hospitalizations and hospital
records. The diagnoses were categorized as schizophrenia (ICD-10: F20),
schizoaffective disorder (ICD-10: F25), bipolar disorder (ICD-10: F31),
major depressive disorder (ICD-10 F32-F33) or not affected by any of
those diagnoses.
From the STAR cohort we selected all available disease discordant MZ

twin pairs (n= 19). We included pairs in which one twin was affected
from schizophrenia, schizoaffective disorder, or bipolar disorder, and the
co-twin was not affected from any of those diagnoses. These diagnoses
were selected based on the shared genomics from rare variants [26] and
given that all three can exhibit psychotic symptoms. In addition,
schizoaffective disorder is often included in the case definition for both
schizophrenia and bipolar disorder analyses [10, 26]. Rare, protein
altering variants have a more modest effect on major depressive disorder
(MDD) without psychosis or bipolar disorder [27] compared to schizo-
phrenia [10] or bipolar disorder [26]. In addition, the shared common
variant heritability between MDD and schizophrenia (rg= 0.37) or
between MDD and bipolar disorder (rg= 0.34) are weaker than the
shared heritability between schizophrenia and bipolar disorder (rg=
0.68) [28]. We therefore included pairs where the co-twin had a
diagnosis of MDD without occurrence of psychotic symptoms and
considered that individual as unaffected.

Whole genome sequencing and quality control
DNA collection and extraction. The same day as the clinical assessment,
blood samples for DNA extraction were collected in the morning and were
sent to Karolinska Institutet (KI) Biobank for processing and storage. DNA
was extracted from EDTA blood based on a salting out method from
Puregene extraction kit using a Gentra robot. DNA concentrations were

quantified by Qubit and the quality of DNA was determined by agarose gel
electrophoresis. Both samples from the pair T19 failed quality control
metrics for sequencing and were excluded.

Sequencing and quality control. WGS was performed by Edinburgh
Genomics (Clinical Genomics) on a HiSeqX to an average depth of
coverage of 30x per sample. WGS allowed us to examine non-coding
regions which would be largely inaccessible from whole exome sequen-
cing data. Additionally, WGS can give us better breakpoint resolution for
calling CNVs. All FASTQ files were examined using FastQC and samtools
[29] to identify DNA contamination or degradation. Reads were aligned to
the GRCh38 reference genome using BWA-MEM [30], following the GATK
Best Practices [31]. Briefly, this involved marking PCR duplicates, base
quality score recalibration, local realignment of reads around indels, and
variant calling with HaplotypeCaller (GATK version 3.8-0-ge9d806836).
Genotype calling was performed jointly across all samples, and variant
quality score recalibration (VQSR) was performed on the SNVs and Indels
separately (see Supplementary Methods).
The software peddy [32] was applied to all samples jointly to check for: (i)

relatedness discordance; (ii) sex discordance; (iii) low median coverage;
and (iv) ancestry clustering by a principal component analysis (PCA) based
on 1000 Genomes Project data [33]. Sample T04_U was flagged as having a
relatedness error with all other samples at this stage, and so twin pair T04
was excluded. SNP array data was available for 35 samples, and the
genotype concordance rates between the sequence data and SNP array
data was determined using the GenotypeConcordance module from GATK.
To confirm zygosity within each twin pair, the genotype concordance rates
for the sequence data and for the SNP array data were determined using
picard and GATK respectively (see Supplementary Methods).

SNV and indel prioritization
To remove low-quality variants, any variant with QUAL < 100.0 was
removed across all samples [22]. In addition, if any sample had GQ < 20.0
or DP < 10.0, the genotype for that sample was set to missing [34]. The
variants of interest are putative de novo events present in a twin pair, (i.e.,
where the affected sample had exactly one more copy of the allele of
interest than their co-twin). A reverse-pairwise analysis was performed
within each twin pair to identify such variants, regardless of affectation
status. The Variant Effects Predictor (VEP) [35] was used to annotate each
entry for: functional impact (sequence ontology) [36]; predicted deleter-
iousness (SIFT [37], PolyPhen-2 [38] and CADD [39]), and allele frequency
(1000 Genomes Project [40] and gnomAD [41]).
To identify rare, putatively pathogenic variants, the following filters were

applied: (i) variants were present in the coding sequence of a protein
coding gene as determined by RefSeq [42]; (ii) VEP impact was MODERATE
or HIGH; (iii) SIFT was “deleterious” or PolyPhen was “damaging”; (iv) the
allele frequency was <1% or absent in the appropriate population groups
in the 1000 Genomes Project and gnomAD databases; and (v) variants
were not observed in any other twin pair within the cohort. Only SNVs
were considered at this step, as SIFT and PolyPhen do not provide scores
for indels. Multi-allelic sites were split to bi-allelic sites to further identify
the pathogenic allele.

CNV calling and prioritization
Germline CNVs were called using a family-based consensus using four
separate calling tools (Supplementary Methods). All the calls within a
twin pair were combined (Supplementary Figs. 1, 2) to create Regions of
Interest (ROIs). Any ROI that was found in one sample of the pair and
identified by only one calling algorithm was removed. Once a list of high-
confidence ROIs has been generated, variants were removed if they had
at least a 50% reciprocal overlap with any common CNVs (i.e. frequency
at least 1% in the appropriate population group) in the following public
databases: gnomAD [41], the Deciphering Developmental Disorders
(DDD) study [43], and the Database of Genomic Variants (DGV) [44]. As
the DDD and gnomAD databases were curated relative to the hg19
genome build, the ROI files were converted to this build using the UCSC
liftOver tool [45].
Any ROI that had a 50% reciprocal overlap with a variant labelled as

“Pathogenic” in the NIH Clinical Genomics (ClinGen) CNV database (UCSC
“iscaPathogenic” table) [46] was retained, regardless of population
frequency. Since ClinGen collates CNV calls from a wide collection of
sources, each of which may use different reference material for CNV
calling, it is not possible to know if the type of pathogenic CNV matches
that of the CNV call in our data. Hence, CNV calls were not matched for
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type at this stage. Pathogenic CNVs were retained if the associated
phenotype was psychiatric or neurodevelopmental in nature.

RESULTS
WGS data
WGS was performed on 19 MZ twin pairs discordant for a
psychotic disorder, to a minimum of 30x coverage (Methods).
After quality control, 17 pairs of twins were carried forward for
analysis (Table 1, Supplementary Table 1). Principal components
analysis identified that all samples were of European ancestry with
the exception of twin pair T05 who were from East Asia
(Supplementary Figs. 3–5). The within-pair genotype concordance
rates confirmed the expected zygosity (Supplementary Methods;
Supplementary Table 2). A high concordance between the WGS
data and previously generated genotype array data for each
sample confirmed that there was no sample mix-up. After
removing lower quality variants, each sample had an average of
44 306 (standard deviation: 1640.5; median: 44,264; range:
41,134–48,050) discordant SNVs and indels across the genome
(Supplementary Table 1). Given that short read WGS detects
approximately 4,000,000 variants per genome [47], this implies
approximately 1% of the variants detected in each sample are
discordant. As the estimated error rate is 0.1% for short-read WGS
on Illumina HiSeq technologies [48], this number is unlikely to be
attributed solely to sequencing errors.

Discordant SNVs and indels
To identify rare, putatively pathogenic variants that may have a
direct effect on disease burden, a rigorous filtering pipeline was
applied to discordant SNVs present in protein-coding regions
(Methods). After applying filters, six rare, predicted deleterious
discordant SNVs were discovered across four unique genes, (Table 2).
For FOXN1, three discordant variants present in close proximity
( < 15 bp) in the same individual appeared on the same re-
constructed reads, likely due to re-alignment of reads around
indels during variant calling (Supplementary Fig. 6). We used
CADD scores [39] and the RegulomeDB database [49] to examine
rare, discordant, putatively pathogenic variants with a predicted

regulatory effect (Supplementary Methods). All variants were
required to have a Phred-scaled CADD score > 20.0 (i.e., in the top
1% of predicted deleterious variants across the genome) and a
RegulomeDB score of 1 or 2. One such variant was identified but
was present in an unaffected individual (Supplementary Table 4).
We considered eight regulatory annotation features likely to

have an impact on phenotype, derived from the ENCODE project
as well as brain specific annotation features (Supplementary
Methods). We use a Wilcoxon signed-rank sum test to evaluate
whether the median count of all discordant variants overlapping
each feature was different between the affected samples and the
unaffected samples within a twin pair (Supplementary Fig. 7). No
significant difference in median counts were observed for any
regulatory feature (Supplementary Table 5).

CNVs and repeat expansions
Germline CNVs were called using a consensus approach based on
four separate calling algorithms, extended to take family structure
into account (Methods, Supplementary Methods). We screened all
individuals against a list of 23 rare CNVs (Supplementary Table 6)
previously implicated in schizophrenia or related psychotic
disorders [50, 51]. One of these, a duplication on chromosome
13q12.11, was identified in both samples of twin pair T09. This
CNV had previously been reported as having a protective effect for
schizophrenia.
We prioritized discordant CNVs in cases, that were either rare/

absent in public databases or had a known pathogenic effect.
After applying filters, four rare CNVs that overlapped gene
regions were identified across the cohort (Table 3). Of note, a
duplication on chromosome 3q29 was observed in the affected
sample of twin pair T17. While 3q29 deletions have been
associated with schizophrenia, 3q29 duplications have been
implicated in autism spectrum disorders and developmental
delay [52]. This prompted us to examine a more extensive list of
CNVs annotated by the ClinGen CNV database as implicated in
psychiatric or neurodevelopmental disorders (Supplementary
Table 10). 14 CNVs with a clinical impact were identified across
the samples, but only the 3q29 duplication was present solely in
the affected individuals.

Table 1. Phenotypic data for the 17 pairs of MZ twins.

Twin Pair ID Sex Age at Sampling Genomic Ancestry Twin 1 Phenotype Twin 2 Phenotype Discordance

T01 M 35 European SCZ MDD Broad

T02 M 38 European SAD None Narrow

T03 F 34 European SCZ None Narrow

T05 M 25 East Asian SAD MDD Broad

T06 F 65 European SAD None Narrow

T07 F 61 European BD None Narrow

T08 F 60 European SAD None Narrow

T09 F 59 European BD None Narrow

T10 M 58 European SCZ None Narrow

T11 F 52 European BD None Narrow

T12 M 50, 51 European BD None Narrow

T13 M 48 European SCZ MDD Broad

T14 M 50, 51 European BD None Narrow

T15 M 43 European SAD MDD Broad

T16 M 46 European BD None Narrow

T17 F 45 European BD None Narrow

T18 F 27 European SAD MDD Broad

For the discordance, “broad” indicates that both samples have a diagnosis and “narrow” indicates that only one sample has a diagnosis.
SCZ schizophrenia, MDD major depressive disorder, SAD schizoaffective disorder, BD bipolar disorder.
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Somatic CNVs were called using MoChA [53], which examines
differences in depth of coverage from phased SNVs (Supplemen-
tary Methods). After removing putative false positives on visual
inspection of the regions, there does not appear to be evidence
for the presence of discordant somatic CNVs in these samples.
Repeat expansions were called from the raw sequence data using
ExpansionHunter [54] for a collection of 16 repeat expansion
disorders (Supplementary Methods, Supplementary Tables 11, 12).
Despite some discordances within twin pairs, none of the samples
had repeat counts above the specified threshold for any disorder
(Supplementary Table 13, Supplementary Fig. 8).

DISCUSSION
Here we report a WGS study where we assessed de novo post-
zygotic variation in blood sample in the affected member of 17
MZ twins discordant for a major psychotic disorder (schizophrenia,
schizoaffective disorder, or bipolar disorder). A rigorous filtering
strategy identified six rare, deleterious, discordant, protein coding
SNVs across four genes, each present in one affected member of
the cohort. None of the six missense SNVs appeared in the
Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA) data-
base [10], but some variants close by in the amino acid sequence
were observed (Supplementary Table 3). In the Bipolar Exome
(BipEx) sequencing project [26], one of the S291R variants of
FOXN1 was observed in a bipolar case only. This variant was
annotated as “other missense”, a class of variants not found to be
enriched in bipolar cases compared to controls. However, all
FOXN1 variants in this study would have been prioritized as
“damaging missense” in the SCHEMA analysis. While the FLOT2
variant was not observed in the BipEx database, it is categorized as
“damaging missense”.
We implemented a consensus calling strategy for CNVs and

screened for rare CNVs with a known association with psychosis,
these being implicated in schizophrenia studies. We identified four
rare, discordant CNVs present in affected samples only (Table 3).
One such variant was a duplication in the 3q29 region in the
affected sample of twin pair T17. While only deletions in this
region have been shown to be associated with schizophrenia, this
region has also been implicated in autism spectrum disorders and

developmental delay. Two of the regions contained genes which
had previously shown some relationship to schizophrenia or
bipolar disorder (Table 3, Supplementary Tables 8, 9). We
investigated an extended list of CNVs reported to have a
pathogenic effect in psychiatric or neurodevelopmental disorders
(Supplementary Table 10). The previously mentioned 3q29
duplication is the only pathogenic CNV to be found exclusively
in affected samples.
A duplication on chromosome 13q12.11 was identified in both

samples of twin pair T09. In a discovery association analysis, this
CNV was noted to have a protective effect for schizophrenia but
was only nominally significant [50]. However, it is worth noting that
the affected individual in this twin pair also has the rare, deleterious,
discordant missense variant in the FLOT2 gene (Table 2). FLOT2
(Flotillin-2) has been shown to be involved in neuronal differentia-
tion [55] and flotillins are known to interact with the NR2A and
NR2B subunits of N-methyl-D-aspartate receptors [56].
Given the age profile of some of the twin pairs, it is possible that

some of them may have children old enough to have a reliable
psychiatric diagnosis. A follow up study including offspring of the
twin pairs from this study could allow for the examination of
transmission and segregation of the variants we have identified in
the next generation. Given the relatively low transmission rates of
post-zygotic variants from an MZ twin to their offspring [19], if the
variants identified here were found in affected offspring of the MZ
twins, this would provide additional support for these variants as
disease-causing within that pedigree.
This study has some limitations. First, while the sample size is

large relative to other studies of MZ twins, the cohort is not
sufficiently powered to statistically evaluate the burden of rare,
discordant, protein-coding variants. Second, while we have used
the case co-twin design to identify post-zygotic variation, we do
not have access to the parental genomes to confirm that our
variants are de novo. Parental information would also allow us to
examine de novo variation shared between both twins. For
example, a shared rare, de novo variant with reduced penetrance
could conceivably explain the phenotypic discordance between
the twins. Third, the average depth of coverage of the WGS data in
this study [30x] may not be sufficient to call variants under a
somatic model. Whole exome sequencing, which typically uses a

Table 2. Discordant protein-coding variants with a predicted pathogenic effect.

Chr Pos rsID Ref Alt Sample Phenotype Gene HGVSp SIFT PolyPhen

chr9 96932219 rs112610837 C T T13_A1 SCZ NUTM2G P172S T D

chr17 28530789 rs1385768054 A C T07_A BD FOXN1 S291R D D

chr17 28530791 rs371766542 C A T07_A BD FOXN1 S291R D D

chr17 28530802 rs1220808552 G C T07_A BD FOXN1 S295T D D

chr17 28881251 - C T T09_A BD FLOT2 A347T D D

chr22 44592351 rs367621282 G C T10_A SCZ KRTAP10-6 P45R D D

Each variant is annotated with genomic positions (GRCh38); rs identification numbers; the reference and alternative alleles of the variant; the sample carrying
the variant; the phenotype of the sample (SCZ schizophrenia, BD bipolar disorder); the gene harboring the variant; the amino acid substitution (HGVSp); and
pathogenicity scores from SIFT (D deleterious, T tolerated) and PolyPhen (D damaging). All prioritized variants are missense SNVs.

Table 3. A list of rare discordant CNVs, including: the positions (GRCh38); length; type (DEL deletion, DUP duplication); the carrier sample ID; their
phenotype (SAD schizoaffective disorder, SCZ schizophrenia); if they are annotated as pathogenic; and the overlapping genes from the BDgene and
SZDB databases (full list in Supplementary Tables 8, 9).

Chr Start End Length Type Sample Pheno Path BDgene SZDB

chr3 195940567 197638156 1,697,589 DUP T17_A BD Y BDH1; DLG1 20 Genes

chr10 92847856 92849207 1351 DEL T02_A SAD EXOC6

chr12 120201498 120204299 2801 DEL T16_A BD

chr19 11261852 11262999 1147 DEL T01_A1 SCZ
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depth of coverage of 90x or higher, has had some success in
identifying somatic variants in MZ twins discordant for psychosis
[57]. This is supported by the lack of evidence of discordant,
somatic CNVs, with all candidate variants being rejected on
manual review. Fourth, although we aimed to identify post-zygotic
variation occurring early in development, it is possible that de
novo variants specific to brain tissue may be present [58], and
these may not be observable from blood tissue. Finally, while the
samples in this study have undergone a comprehensive diag-
nostic procedure to ascertain the validity of the phenotypic
discordance within each twin pair, the unaffected twin may go on
to receive a diagnosis later in life. Future follow up with these
individuals from register data may be possible, although many of
the twin pairs were originally interviewed after typical age of
onset of psychotic disorders.
We have performed the largest MZ twin study for discordant

psychotic phenotypes to date. While post-zygotic genomic
variations are known to contribute to the discordance in
phenotype between MZ twins, other factors such as environ-
mental effects and epigenomic variation can also be driving this
discordance. Therefore, many studies of MZ twins also look at
methylation differences between MZ twins in addition to genomic
variation [59, 60]. In this study, we focused on a broad range of
genomic variation, from SNVs (both protein-altering and regula-
tory), to CNVs and repeat expansions, making use of the full
potential of WGS data. This study is important as it contributes
novel findings to the current body of literature for variants
implicated in psychotic disorders and provides a framework for
future studies.

DATA AVAILABILITY
The WGS data from the individuals in this study are available from the NIMH Data
Archive, collection ID 4231.
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