
Vol:.(1234567890)

Behavior Research Methods (2024) 56:4632–4642
https://doi.org/10.3758/s13428-023-02207-0

1 3

A tutorial on automatic post‑stratification and weighting 
in conventional and regression‑based norming of psychometric tests

Sebastian Gary1 · Wolfgang Lenhard2   · Alexandra Lenhard1 · David Herzberg3

Accepted: 24 July 2023 / Published online: 21 August 2023 
© The Author(s) 2023

Abstract
Norm scores are an essential source of information in individual diagnostics. Given the scope of the decisions this information 
may entail, establishing high-quality, representative norms is of tremendous importance in test construction. Representative-
ness is difficult to establish, though, especially with limited resources and when multiple stratification variables and their 
joint probabilities come into play. Sample stratification requires knowing which stratum an individual belongs to prior to 
data collection, but the required variables for the individual’s classification, such as socio-economic status or demographic 
characteristics, are often collected within the survey or test data. Therefore, post-stratification techniques, like iterative 
proportional fitting (= raking), aim at simulating representativeness of normative samples and can thus enhance the overall 
quality of the norm scores. This tutorial describes the application of raking to normative samples, the calculation of weights, 
the application of these weights in percentile estimation, and the retrieval of continuous, regression-based norm models with 
the cNORM package on the R platform. We demonstrate this procedure using a large, non-representative dataset of vocabu-
lary development in childhood and adolescence (N = 4542), using sex and ethnical background as stratification variables.
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Norm scores allow the comparison of a person’s individual 
test result with an appropriate reference group (Moosbrug-
ger & Kelava, 2012). In psychodiagnostics, norm scores are 
often used as a criterion for decisions that have far-reaching 
consequences for the individual being evaluated, such as 
school placement based on IQ test results or providing reme-
dial services for learning disorders (American Psychiatric 
Association, 2013). Consequently, the computation and 
inclusion of high-quality norms is a crucial aspect of high-
standard psychological tests, but it is also an ongoing chal-
lenge in test construction.

Since the exact distribution of raw scores in the refer-
ence population is usually unknown, norm scores cannot be 
directly computed. Instead, the norm scores must be derived 

from a normative sample, that is, a much smaller, repre-
sentative subsample of the reference population. To this end, 
statistical methods designed for the norm score computation 
must be applied to the raw scores (Cole, 1988; Gary et al., 
2021). In recent years, advanced norming approaches have 
been developed and evaluated with respect to their influ-
ence on the norm score quality (for an overview, see Gary 
& Lenhard, 2021). In many psychometric tests (e.g., intel-
ligence scales), the norm scores refer only to individuals of 
the same age. Therefore, conventional approaches usually 
split the normative sample into several distinct age groups. 
In contrast, continuous norming approaches, such as the 
regression-based norming approach implemented in the R 
package cNORM (Lenhard et al., 2018a, 2018b), model the 
distribution of the raw scores as a function of explanatory 
variables (e.g., age and grade level). Simulation studies have 
demonstrated the superiority of regression-based norming 
over conventional methods (Gary & Lenhard, 2021; W. Len-
hard & Lenhard, 2021; Oosterhuis, 2017; Voncken, et al., 
2021). In this tutorial, we will demonstrate how to auto-
matically integrate post-stratification and weighting in the 
norming process with the cNORM package to reduce the 
bias caused by non-representative normative samples.
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The problem of non‑representativeness

The quality of norm scores heavily depends on the chosen 
norming method. In contrast to conventional norming of 
each distinct group in a norm sample, continuous norming 
refers to statistical techniques like regression that draw on 
the complete sample to model the norm scores in depend-
ence of explanatory variables like age and thus allow delib-
erately fine-grained norms. This can considerably increase 
the quality of the resulting norm scores and facilitate norm-
ing projects due to the higher statistical power, as continu-
ous norming requires a much smaller sample size than con-
ventional norming to achieve the same precision (Lenhard 
& Lenhard, 2021; Oosterhuis, 2017; Zhu & Chen, 2011). 
Moreover, the method can even smooth out local violations 
of representativeness (Gary et al., 2023). However, con-
tinuous norming cannot compensate for a general lack of 
representativeness in the normative sample. The logistics 
of data collection in test construction are complex. In par-
ticular, ensuring that the normative sample is representative 
of the reference population might be difficult. A sample is 
representative with respect to the relevant stratification vari-
ables (SVs) if the proportions of the various subgroups in 
the sample match the proportions of the respective strata in 
the reference population (Kruskal & Mosteller, 1979; Moos-
brugger & Kelava, 2012). In other words, representativeness 
is established when the marginal and joint probabilities of 
a set of relevant SVs equal the corresponding proportions 
in the reference population. For example, a sample of Cana-
dian subjects 55% English respectively 21% French mother 
tongue speakers (24% other languages) would be representa-
tive, while a sample of 70% English and 10% French would 
indicate a violation of representativeness clearly (Statistics 
Canada, 2022).

When representativeness has not been established with 
respect to variables that correlate with the latent ability 
to be measured, the non-representative normative sam-
ples can reduce the quality of norm scores and therefore 
the validity of psychological test results (Gary et al., 2023; 
Lenhard et al., 2018a, b). For example, Hernández et al. 
(2017) showed that parental educational level is a predictor 
of children’s cognitive ability. Therefore, they recommend 
including parental educational level as a SV in the norma-
tive samples of cognitive tests for children, like intelligence, 
language skills, or school aptitude. If representativeness of 
the normative sample is neglected regarding such variables, 
the distribution parameters may be distorted in various ways. 
Consequently, the norm scores may generally be too high 
or too low, or they may be biased for a specific range of 
percentiles (Gary et al., 2023). In the following section, we 
will describe how to correct or at least mitigate the biases 
of norm scores introduced by non-representative samples.

Countering non‑representativeness 
in normative samples

Probability sampling and sample stratification

Probability or random sampling is probably the best-known 
strategy for establishing representativeness of normative 
samples. The data are drawn such that every individual in 
the population has the same chance to be included in the 
normative sample (Lumley, 2011). For example, when col-
lecting normative data for a reading comprehension test in 
elementary school in the U.S., a psychometrician would 
need to theoretically ensure that every single student at every 
elementary school has the same chance to be included in the 
normative sample. In most cases, this sampling is unrealistic 
because it is not only very time-consuming and cost-inten-
sive, but it could also neglect ethical guidelines (i.e., consent 
of students and parents, gatekeeper approval).

A more parsimonious method is stratification. To apply 
this method, the reference population must first be divided 
into homogeneous subgroups, so-called strata. These strata 
may be based on one or several SVs. In a second step, a 
specified number of cases is drawn randomly from each of 
these strata in such a way that the resulting normative sample 
is representative of the different strata proportions in the ref-
erence population. For example, to obtain a sample of 1000 
individuals that is representative of the variable sex (51% 
men / 49% women), the population is split into a male and a 
female stratum and the required number of cases (510 men 
and 490 women) is then drawn from each stratum separately 
(Moosbrugger & Kelava, 2012). When more than one SV is 
used, perfect representativeness can only be achieved if all 
combinations of the different levels of SVs are considered. 
That is, joint probabilities instead of marginal probabilities 
must be used to match the proportions of the different strata 
in the reference population.

Sample stratification requires knowing which stratum 
an individual belongs to prior to data collection, but the 
required variables for the individual’s classification, such 
as socio-economic status or demographic characteristics, 
are often collected within the survey or test data (Lumley, 
2011; Mercer et al., 2018). Moreover, there may be too 
many SVs or cross-combinations of the different levels of 
the variables. For example, using three variables with four 
levels each would result in 4 × 4 × 4 = 64 different strata, 
with some of the combinations possibly being extremely 
rare. Such a high number of strata increases the required 
sample size dramatically, which is likely to be far beyond 
the resources available for a specific norming project. In 
addition, certain combinations of SVs may not be accessible. 
Finally, when data are collected in clusters, as is often the 
case with school achievement tests, systematic drop-outs can 
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occur. Therefore, meeting all the requirements necessary to 
establish representativeness is often impossible with lim-
ited resources. Nevertheless, to minimize the bias caused 
by unstratified samples, so-called post-stratification methods 
have been proposed (Lumley, 2011).

Raking – a post‑stratification countermeasure 
for non‑representativeness

The term stratification usually refers to the selection of indi-
viduals for data collection, whereas the term post-stratifica-
tion refers to techniques aimed at improving the representa-
tiveness after the data collection has finished. One method 
to address non-representative data involves randomly reduc-
ing cases from overrepresented strata until the desired sam-
ple composition is attained. To our knowledge, many test 
developers are hesitant to discard data and instead prioritize 
increasing the norm sample size, as naïve test users may 
perceive this as an indicator of quality. Furthermore, authors 
may be highly reluctant to relinquish data that was chal-
lenging to obtain, even if it is unrepresentative and does not 
contribute to improved norm data. In past norming projects, 
we opted to prioritize quality over quantity, collecting an 
excess of 30–50% of cases, which allowed for subsequent 
sample stratification. The most commonly administered 
test of school performance in Germany, ELFE-II (Lenhard 
et al., 2017), is constructed in this manner. However, this 
approach has notable drawbacks, as a substantial number of 
cases must be excluded, leading to a significant reduction in 
the original sample size and, consequently, a loss of statisti-
cal power. As a result, this strategy can only be applied to 
relatively large samples (e.g., Lenhard et al., 2015) and at 
the cost of sacrificing relevant portions of norm data, neces-
sitating an accompanying increase in resources.

Another approach to enhance representativeness after 
data collection involves the use of weighting (Gary et al., 
2023). Weighting assigns a weight (w) to each test result, 
effectively treating it as if it were obtained by multiple indi-
viduals rather than a single participant with an equal weight 
(i.e., w = 1 for each participant). This weight, w, can either 
increase or decrease a participant's contribution (i.e., w is 
greater or less than 1). To achieve representativeness, the 
weight w should be equal to the ratio between the proportion 
of a particular stratum in the reference population and its 
proportion in the collected sample (Lumley, 2011; Mercer 
et al. 2018).

This procedure can be easily applied with only one SV, 
but more than one SV would require knowledge of the joint 
probabilities, that is, the probabilities of all cross-classifica-
tions of the SVs. Moreover, each combination would need 
to be present in the data. Unfortunately, these requirements 
often are not fulfilled. A method that requires none of these 
prerequisites is the so-called raking approach. The method 

is also called iterative proportional fitting (Lumley, 2011) 
because the weights in this process are determined itera-
tively for only one variable in each step. In the following 
section, we will illustrate this process with an example based 
on Mercer et al. (2018). Consider the marginal probabilities 
of the SVs sex and parental education in a reference popu-
lation. The population consists of 48.3% men and 51.7% 
women. The parental education is low in 40% of the cases, 
medium in 31% and high in 29% of the cases. The joint 
probabilities in the actual normative sample are indicated 
in Table 1.

First, weights are computed for the variable sex, that is, 
the resulting weights are calculated such that the normative 
sample simulates the population with respect to the propor-
tions of men and women (see Table 2, step 1). Second, the 
weights are adjusted to match the respective proportions for 
parental education without considering the SV sex. (see 
Table 2, Step 2). After the weights have been adapted for 
parental education, they might not represent the exact sex 
proportion in the reference population anymore. Therefore, 
the process restarts and is repeated until the raking weights 
have converged (see Table 2, step 5 and step 6). As simu-
lations show, the raking weights usually converge within 
the first 5–20 steps, with the number of necessary iterations 
increasing with the number and levels of the SVs (Battaglia 
et al., 2009).

Limitations and recommendations for the usage 
of weighting

While weighting has the potential to reduce the adverse 
effects of non-representative normative samples on norm 
score quality, we strongly recommend its thoughtful applica-
tion and limiting its use to cases where random sampling is 
not feasible, such as due to logistical issues, clustered data 
collection, or restrictions in accessing all strata.

First and foremost, while post-stratification serves as a 
corrective method for improving norm sample data, it cannot 
replace careful planning and execution of data collection. 
The primary goal of norming studies should be to achieve 
the highest possible representativeness of the collected nor-
mative sample in terms of demographic and other potentially 

Table 1   Joint distributions of a fictitious normative sample

Parental education Sex

Women Men Σ

Low 15.33% 20.00% 35.33%
Medium 19.17% 18.82% 35.00%
High 17.17% 12.50% 29.67%
Σ 51.67% 48.33% 100%
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relevant stratification variables. Failing to do so may result 
in the undersampling of specific strata (e.g., dispropor-
tionately low numbers of non-native speakers for norming 
vocabulary tests), which, when combined with weighting, 
may lead to increased norm score errors. This issue arises 
because raking weights are proportional to the ratio between 
expected and actual proportions in the normative sample, so 
strong underrepresentation results in high raking weights.

Test developers should also avoid using stratification vari-
ables with many levels, some of which may contain very low 
expected probabilities. Low probabilities may result from 
considering stratification variables with many levels or using 
dummy variables that represent combinations of two or more 
stratification variables (e.g., combining sex and migration 
background). In these cases, even well-collected normative 
samples may contain only a small absolute number of sub-
jects in certain categories, again leading to high weights.

As a practical solution, we recommend combining dif-
ferent levels of a variable if the actual proportions in the 
normative sample are low and the levels are not expected 
to differ significantly in mean location. Furthermore, when 
using dummy coding to incorporate cross-combinations of 
stratification variables, the number and levels of combined 

variables should not be too high. This is because the num-
ber of dummy-coded levels increases rapidly due to "com-
binatorial explosion" (Bellman, 1957), which can result in 
the aforementioned low level probabilities. Based on our 
experience, weighting works well for instance when using 
three stratification variables, each with 2 to 3 levels, as long 
as individual strata comprise at least 5% of the popula-
tion. However, this observation is based on unsystematic 
experience.

Finally, the raking approach relies solely on marginal 
probabilities—namely, the proportions of each SV level 
within the population. As such, precise knowledge of the 
SVs' joint probabilities in the reference population is not 
utilized. However, our simulation study (Gary et al., 2023) 
indicated that raking in combination with continuous norm-
ing should mitigate the adverse effects of non-representative-
ness, even if only the marginals and not the joint probabili-
ties are applied. This is presumably due to the influence of 
joint probabilities on the marginals, which are accounted for 
during the raking process. In case there is reason to belief, 
joint probabilities have to be represented, it is possible to 
recode the combinations of the SVs into different strata and 
use these combined SV in the raking process.

Combining raking with regression‑based 
or conventional norming

In this tutorial, we demonstrate the utilization of weights 
in the cNORM package in R. Contrasting traditional dis-
crete norming methods that form norm groups based on 
discrete age intervals, continuous norming estimates norm 
scores across a continuous variable like age. The primary 
concept behind cNORM is fitting a model that captures the 
relationship between raw test scores and a continuous vari-
able, such as age, using a regression-based approach based 
on Taylor polynomials. For this, powers of the explanatory 
variable (e.g., age) and powers of location as well as all 
linear combinations of these variables are used to predict 
the raw score, essentially approximating a three-dimensional 
hyperplane to the data. The procedure so far consisted of (a) 
determining percentiles of the raw score distribution and (b) 
transforming them into preliminary manifest norm scores by 
means of inverse normal transformation (INT), just as it is 
the case in conventional norming to determine subsample 
based normal scores. The statistical modelling of cNORM 
then (c) uses polynomial regression to continuously model 
raw scores as a function of the norm scores and age or other 
explanatory variables. Once this norm score model is estab-
lished, arbitrarily fine-grained norms can be determined. The 
method reduces the necessity for large norm samples, as it 
relies on the complete sample rather than distinct groups. It 
only requires continuity of the dependent variable and does 
not make distribution assumptions. Thus, it can effectively 

Table 2   Iterative adaption of raking weights

Step 0 represents the non-weighted approach (all weights = 1). 
Weights are then iteratively adjusted until the marginal proportions of 
the dataset match the composition of the target population

Step Parental education Sex

Women Men

0 Low 1.0000 1.0000
Medium 1.0000 1.0000
High 1.0000 1.0000

1 Low 0.9290 1.0759
Medium 0.9290 1.0759
High 0.9290 1.0759

2 Low 1.0391 1.2033
Medium 0.8266 0.9573
High 0.9165 1.0613

3 Low 1.0498 1.1921
Medium 0.8351 0.9483
High 0.9260 1.0514

4 Low 1.0514 1.1939
Medium 0.8346 0.9476
High 0.9247 1.0500

5 Low 1.0516 1.1937
Medium 0.8347 0.9475
High 0.9249 1.0499

6 Low 1.0516 1.1938
Medium 0.8347 0.9475
High 0.9249 1.0499
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handle skewed distributions, which frequently arise in test 
construction due to ceiling and floor effects (Lenhard et al., 
2019). The cNORM package has recently been extended to 
be able to weight the cases. The weights are used in steps (a) 
and (c) of the norming process. Furthermore, a new function 
has been added that can be used to generate the required 
weights for a specific normative sample by means of raking.

In the following section, we explain the integration of 
weighting in the cNORM package in the following three 
steps:

1.	 Computation and standardization of weights via raking.
2.	 Weighted ranking of the test raw scores using the stand-

ardized raking weights
3.	 Weighted multiple regression to generate a norm model. 

(optional)

We then demonstrate the whole process using a real data 
set.

Step 1: Computation and standardization of weights 
via raking

To generate weights with the raking approach, the function 
‘computeWeights()’ in the cNORM package can be used, 
which determines the raking weights and standardizes them 
to values equal to or larger than 1. For this purpose, the 
marginal probabilities of all SVs (e.g., sex, parental educa-
tion, region, or ethnicity) in the reference population must 
be known. The weights can then be interpreted as how many 
times the according case counts in the norming process.

Step 2: Ranking of the test raw scores using 
the standardized raking weights

To apply the generated weights, they must be passed via the 
parameter ‘weights’ in the ‘cnorm()’ function. This func-
tion ranks the data groupwise and converts the ranks into 
percentiles. It subsequently applies inverse normal trans-
formation (INT) to convert percentiles to preliminary norm 
scores. Finally, multiple regression is performed to establish 
a continuous norm model. Hence, the ‘cnorm()’ function 
performs step 2 and step 3 in one single process. If the data 
are to be analyzed with conventional norming only (i.e., 
rank-based INT per age group) or if step 2 and step 3 are to 
be performed separately, the ‘rankByGroups()’ function can 
be used instead. If a ‘weights’ vector is passed to one of both 
functions, the ‘weighted.rank()’ function of the cNORM 
package will be used to determine the ranks of the different 
raw scores instead of usual ranking. This function counts 
how often each raw score occurred, taking into account the 
weights. That is, instead of the actual number of cases in the 
normative sample, the respective weights are summed. In the 

case of ties, average ranks are assigned to the corresponding 
raw scores. Subsequently, the weighted ranks are converted 
into percentiles. To this end, several standard methods such 
as Blom, Tukey, Van der Warden, Rankit and others have 
also been implemented in the cNorm package (parameter 
‘method’). Finally, manifest norm scores are computed with 
INT for every case in the normative sample.

Both the ‘cnorm()’ function and the ‘rankByGroups()’ 
function return the original observed data, weighted percen-
tiles, manifest norm scores, and the weights for every case 
in the normative sample.

Step 3 (optional): Regression‑based norming with inclusion 
of the raking weights

Finally, the standardized raking weights are applied in a mul-
tiple regression to estimate a continuous norm model. More 
specifically, the regression-based norming approach imple-
mented in the ‘cnorm()’ function models the raw scores as a 
function of the preliminary norm scores and the explanatory 
resp. grouping variable. The approach is based on the prin-
ciple of the so-called Taylor polynomials (cf. Dienes, 1957). 
In short, this principle states that any smooth function can 
be approximated by a polynomial. Therefore, the raw scores 
are regressed on powers of the manifest norm scores up to 
a power parameter k, powers of the explanatory or group-
ing variable up to a power parameter t, and all interactions 
between powers of the manifest norm scores and explanatory 
variable. The approach and its related benefits are described 
in more detail in A. Lenhard et al. (2018a, b, 2019), Lenhard 
& Lenhard (2021) and Gary et al. (2021). To be able to bal-
ance model fit and parsimony, the ‘cnorm()’ function draws 
on best-subset regression (package leaps; Lumley & Lum-
ley, 2013). The best-subset regression returns a sequence of 
regression models with an ascending number of terms. Each 
regression model represents the best selection of predic-
tors for a given number of terms in the regression function. 
Choosing a model with a higher number of terms increases 
R2 but also carries the risk of overfitting. To prevent the 
latter, cNORM offers percentile plots for visual inspection, 
fit indices like R2, Malow’s Cp and BIC, and procedures for 
repeated cross validation. By default, the first model exceed-
ing R2 > .99 is selected. In most cases, regression models 
with 4–5 terms already meet this criterion, leading to parsi-
monious yet well-fitting statistical models.

Researchers disagree about whether stratification 
weights should be used as weights in regression analyses 
(DuMouchel & Duncan, 1983; Skinner & Mason, 2012). 
We nevertheless consider the application of raking weights 
in the multiple regression to be useful because the regression 
otherwise risks overfitting the data in areas of high data den-
sity and underfitting the data in areas of low data density. We 
were able to demonstrate in simulation studies that using the 
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weights in the regression improves the norm quality under 
most conditions (Gary et al., 2023), with only a small risk 
of introducing new biases.

The ‘cnorm()’ function automatically applies weights in 
the regression analysis in case they are available. Finally, the 
resulting continuous norming models can be used to gener-
ate norm score tables or to directly transform raw scores 
to norm scores or vice versa for individual cases with the 
desired precision.

Step‑by‑step example: Weighted norming 
of a vocabulary test

Normative sample and reference population

In this section, we illustrate the introduced weighted nor-
ming process in a step-by-step example based on a non-
representative normative sample of the Peabody Picture 
Vocabulary Test (PPVT-IV, German adaption; A. Lenhard 
et al., 2015). The example dataset is already included in 
the cNORM package and can directly be retrieved using the 
statistical software R. All code is available in the appendix 
of the paper.

In our example, we first load the package and assign the 
PPVT-IV data to the object ‘data’ (cf. Appendix). The data 
set contains N = 4542 cases with raw scores on receptive 
vocabulary knowledge (ranging from 0 to 228), spanning 
an age range from 2.6 years to 17.0 years. It includes the 
variables sex (1 = male, 2 = female), migration (i.e., migra-
tion to Germany from another country; 0 = native, 1 = non-
native), and region (west, south, north, east), followed by the 
variable raw, which contains the raw score of the test scale. 
Finally, it includes a grouping variable group specifying 15 
age groups, which segments the continuous age variable into 
subsamples spanning 11 months each. The ideal number of 
groups in a dataset depends on the sample size and also on 
the functional relation between the dependent variable raw 
and the explanatory variable age. During childhood and ado-
lescence, age groups of 6 to 12 months will usually deliver 
good results for cognitive variables or school achievement. 
For adults, larger age intervals are appropriate. However, 
the sample size usually should not be less than 100 per age 
group.

To calculate weights, we need to generate an additional 
data frame containing the names of all levels of the strati-
fication variables and the population shares of these levels 
(i.e., the marginal probabilities) in the reference popula-
tion. In our example, we use the SVs sex and migration (cf. 
Appendix, Step 1a), with a sex ratio of 51 vs. 49% (male vs. 

female) and migration ratio of 70 vs. 30% (native vs. non-
native), which are assigned to the data frame object ‘mar-
ginals’. In the data frame, the proportions must be specified 
for each level of each variable in terms of decimal fractions.

In the given example, the marginal probabilities of the SV 
sex barely deviate from the reference population. Please note 
that all relevant SVs should nevertheless always be included 
in the generation of the weights because raking can change 
the proportions of the individual SVs.

Computation of raking weights

The weights can subsequently be computed using the ‘com-
puteWeights()’ function by passing the sample data and the 
population marginals for the SVs as function parameters. 
The resulting vector ‘weights’ contains a weight for each 
individual case in the normative sample obtained by raking 
and subsequent standardization of the weights (Appendix, 
Step 1b).

Ranking with standardized raking weights

In our example, both the ranking and the best-subset regres-
sion are conducted with the ‘cnorm()’-function. This func-
tion returns an object containing the original data, the 
weights, the group-specific ranks, the preliminary norm 
scores, and powers of the norm scores, of the grouping varia-
ble and all interactions between them (cf. Gary et al., 2021). 
The object also contains the final statistical model describing 
the functional relation between raw scores, norm scores, and 
the explanatory variable, which is age in the example.

The norm scores are returned as T scores (M = 50, SD 
= 10) by default, but other types of scales such as z scores 
or IQ scores can also be used. By default, cNORM calcu-
lates unweighted percentiles but automatically switches to 
weighted percentiles, if a vector with weights is provided 
(see description above and Appendix, Step 2). Given that 
the distribution of the raw scores in the reference popula-
tion is approximated with this procedure, weighting usually 
increases the reliability and therefore also the predictive 
validity of the norm scores (Gary et al., 2023).

Regression‑based norming with inclusion of the raking 
weights

Finally, the standardized raking weights are automatically 
used as regression weights to compute the final norm model 
via multiple regression. The ‘cnorm()’ function performs the 
regression and the model selection and also provides a graphi-
cal illustration of the model in the form of a percentile plot 
(Fig. 1). In our specific example, the selected function includes 
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the following four terms: raw ~ a + la + l2a2 + l3a3, with 
l representing the person location (resp. the manifest norm 
score) in the form of T scores and a representing age. The 
adjusted R2 amounts to .9911. Furthermore, visual inspection 
of the graphical model illustration shows no inconsistencies 
such as, for example, intersecting percentile curves, and no 
signs of overfitting such as wavy percentile curves. As can be 
seen in Fig. 1, the modelled scores (lines) match the manifest 
norm scores (dots) very well. To be able to visually inspect and 
compare different models, we recommend plotting a whole 
series of models with an ascending number of terms with the 
‘plotPercentileSeries()’ function (Appendix, Steps 2 and 3). 
Among this series of models, for example Model 2, which 
only includes two terms in the regression function, displays 
intersecting percentile curves and thus demonstrates, how an 
inconsistent model could look like. In our specific example, the 
returned model stands up to scrutiny and the integrated numer-
ical check yields “No violations of model consistency found.” 
If, however, the graphical inspection indicates that another 
model might even fit better or if the model fit is not satisfying, 
the ‘cnorm()’ function should be rerun with a fixed number of 
terms (parameter ‘terms’) or different power parameters k or 
t, with k specifying the power parameter for the location and 
t relating to the power parameter for the explanatory variable, 
e. g. age. In our experience, good models are usually obtained 
by choosing k = 5 and t = 3. However, the power parameters 
should be reduced in case of overfit of the data. For example, if 
the correlation between the explanatory variable and the meas-
ured variable is low, t = 2 or even t = 1 may yield better results.

In summary, the resulting weighted regression model 
seems to account for a high amount of variance in the nor-
mative sample with a high fit and no indications of incon-
sistencies. The model is now ready to be used for either 
dynamically retrieving norm scores for individual results 
(e.g., in computer-based testing), computing norm scores for 
a complete data set, or generating norm tables for manually 
scoring test results (cf. Appendix).

Conclusion

Ensuring the representativeness of normative data is of 
paramount importance in test construction to avoid biased 
decisions. Nevertheless, the process can be complex, and 
obtaining fully representative normative samples is unfea-
sible. In this case, post-stratification strategies such as 
raking can help improve the quality of the norms. In this 
tutorial, we demonstrated the computation and application 
of raking weights with the cNORM package on the R plat-
form. This package is specifically designed for continu-
ous norming. As demonstrated in simulation studies (Gary 
et al., 2023), the combination of raking and continuous 
norming as implemented in the cNORM package in most 
cases reduces the error introduced in norm scores through 
non-representative normative samples. Nevertheless, we 
would like to emphasize that a reduction is not always the 
case. For example, weighting cannot fully compensate for 
very high deviations from representativeness. Moreover, 
the use of weights may even have negative effects if sub-
groups at the upper and lower tails of the performance 
range are severely underrepresented. Therefore, weighting 
should not supplant the effort to acquire a representative 
sample of sufficient size. We recommend using the method 
only when deviations from representativeness are moder-
ate at most, if outlying groups are sufficiently represented, 
and when the sample size is at least 100 per age group.

Finally, it is crucial to remember the broad array of 
diagnostic approaches at our disposal, with this tutorial 
focusing primarily on enhancing norm-referenced tests. 
Such tests are invaluable where no established criteria 
exist, permitting assessment relative to the norm group. 
Conversely, when definitive criteria exist, as in obtaining a 
driving license, measuring individual compliance to these 
criteria becomes more appropriate. Thus, whilst norm-
referenced tests hold a pivotal role in certain contexts, the 
development of criterion-based tests is an equally impera-
tive endeavor.

Fig. 1   Continuous norm model based on weighted cases of the 
PPVT-IV dataset. Note. The plot depicts the manifest percentiles 
of the 15 distinct age groups (dots) and the fitted percentile curves 
(lines) for a selected set of percentiles ranging from PR 2.5 to PR 
97.5. The curves are smooth and do not intersect, which is a require-
ment for a valid norm model
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Appendix

The following code demonstrates the step-by-step proce-
dure of the tutorial, using the R platform (R Core, 2022).

#####################################################################

###                          PREPARATION                          ###

#####################################################################

# For demonstration purposes, we utilize a vocabulary development dataset

# included in the cNORM package. The dataset contains variables on

# achieved raw scores, age, sex, and language/migration background.

# The latter two variables will be used as stratification variables. 

library(cNORM)

data <- ppvt

#####################################################################

###                  STEP 1A: DEFINE MARGINALS                    ###

#####################################################################

# First, we must define the desired reference population. To do this,

# we create a data frame where each row represents a factor level of

# each stratification variable. Consequently, we define the marginal

# probabilities of the stratification variables "sex" and "migration"

# with their different factor levels (sex: 1 = boys, 2 = girls; migration:

# 0 = not migrated; 1 = migrated) using the respective probabilities from

# the census. The levels do not need to be numeric, but they can be

# symbolic as well. We store these probabilities in the data frame

# "marginals".

marginals <- data.frame(

variables = c("sex", "sex", "migration", "migration"),

levels = c(1, 2, 0, 1),

share = c(.517, .483, .7, .3))
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# Let's compare these predefined values with the real sample composition

# (optional step).

table(data$sex)/nrow(data)

table(data$migration)/nrow(data)

#####################################################################

###                    STEP 1B: COMPUTE WEIGHTS                   ###

#####################################################################

# Next, we need to determine the weights for each case, to approximate the

# sample composition to the census data. To do this, we compare the

# actual (‘data’ includes the single cases from the normative sample)

# and desired sample compositions (‘marginals’ the population shares from

# the census data). Cases from underrepresented groups will receive weights

# greater than one.

weights <- computeWeights(data, marginals)

#####################################################################

###     STEP 2 & 3: WEIGHTED RANKING AND NORM SCORE MODELLING     ###

#####################################################################

# The continuous norm score model can be set up using the cnorm function

# provided by the package. Users who are interested in computing norms for

# individual groups can achieve this by setting the "group" variable to

# NULL. In such cases, biases of representativeness are smoothed without

# modeling the scores over age.

model <- cnorm(raw = data$raw, group = data$group, weights = weights)

# The following functions demonstrate further, optional steps. First, we

# check if there are violations of consistency in the model. This is the

# case, when percentile curves intersect. 

checkConsistency(model)
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# The model can be checked visually as well by plotting information

# function functions, percentile curves and series of models to select

# the best fitting one.

plot(model, "subset")

plot(model, "series", end = 8)

# Based on the information function, model 5 upwards seem to fit well.

# Eventually the cnorm function would be rerun with setting the terms

# parameter accordingly, for example

model <- cnorm(raw = data$raw, group = data$group, 

               weights = weights, terms = 5)

#####################################################################

###                    RETRIEVING NORM SCORES                     ###

#####################################################################

# To predict the norm score for a specific raw score at an exact age,

# the functions “predictNorm” and “predictRaw” can be used. The according

# function call to predict the norm score of a raw score of 120 at the age

# of 4 years:

predictNorm(120, 4, model)

# It is as well possible to directly compute norm score tables. Here,

# as an example, this is done for age 4.0, 4.2 and 4.4. Optionally,

# confidence intervals can be determined by specifying the scale's

# reliability and the desired confidence coefficient. cNORM uses the

# standard error of estimation to calculate the confidence intervals and

# corrects it by accounting for regression to the mean. This step is

# entirely optional, and alternative methods for estimating confidence can

# be applied manually if desired (e.g., using ability-dependent standard

# errors).

normTable(c(4.0, 4.2, 4.4), model, CI = .90, reliability = .95)
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