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Neural network extrapolation to distant
regions of the protein fitness landscape

Chase R. Freschlin 1,3, Sarah A. Fahlberg 1,3, Pete Heinzelman1 &
Philip A. Romero 1,2

Machine learning (ML) has transformed protein engineering by constructing
models of the underlying sequence-function landscape to accelerate the dis-
covery of new biomolecules. ML-guided protein design requires models,
trained on local sequence-function information, to accurately predict distant
fitness peaks. In this work, we evaluate neural networks’ capacity to extra-
polate beyond their training data. We perform model-guided design using a
panel of neural network architectures trained on protein G (GB1)-Immu-
noglobulin G (IgG) binding data and experimentally test thousands of GB1
designs to systematically evaluate the models’ extrapolation. We find each
model architecture infers markedly different landscapes from the same data,
which give rise to unique design preferences. We find simpler models excel in
local extrapolation to design high fitness proteins, while more sophisticated
convolutional models can venture deep into sequence space to design pro-
teins that fold but are no longer functional. We also find that implementing a
simple ensemble of convolutional neural networks enables robust design of
high-performing variants in the local landscape. Our findings highlight how
each architecture’s inductive biases prime them to learn different aspects of
the protein fitness landscape and how a simple ensembling approach makes
protein engineering more robust.

Protein engineering can be envisioned as a search over the sequence-
function landscape to discover new proteins with useful properties1.
Machine learning (ML) accelerates the protein engineering process by
integrating experimental data into predictive models in an automated
fashion to direct the landscape search2. These models improve the
quality of protein variants tested and reduce the total number of
experiments needed to engineer a protein3. ML-assisted protein engi-
neering approaches have expedited engineering of diverse proteins
such as viral capsids, improved fluorescent proteins, and highly effi-
cient biocatalysts4–7.

Broad classes ofmachine learning and deep learning techniques
approach protein design fromdifferent perspectives8–11. We focus on
supervised learning, which learns from experimental sequence-
function examples to predict new sequence configurations with

some intended biochemical/biophysical properties. There are many
different classes of models that each make different assumptions
about the underlying landscape, influencing the way sequence-
function relationships are learned2. For example, linear models
assume additive contributions from individual mutations and are
unable to capture epistatic effects. More sophisticated convolu-
tional neural networks use convolving kernels to extract meaningful
patterns from the input data that capture long-range interactions
and complex, non-linear functions12. Many studies have assessed the
predictive performance of ML models on existing protein sequence-
function datasets11–16, but there is little work that rigorously bench-
marks performance in real-world protein design scenarios with
experimental validation5,7,17. ML-guided protein design is inherently
an extrapolation task that requires making predictions far beyond
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the training data, and evaluating models in this task is challenging
due to the massive number of sequence configurations that must be
searched and tested18.

In this paper, we evaluate different neural network architectures’
ability to extrapolate beyond training data for protein design. We
develop a general protein design framework that uses anMLmodel to
guide an in silico search over the sequence-function landscape.We use
this approach with different model architectures developed in pre-
vious work from our lab to design thousands of protein G (GB1) var-
iants that sample a massive sequence space far outside the model’s
training regime. The different models prioritize distinct regions of the
landscape and display unique preferences for the sequence positions
mutated and types of amino acid substitutions. We then experimen-
tally test the designs using a high-throughput yeast display assay that
evaluates variant foldability and IgG binding. We find all models show
the ability to extrapolate to 2.5-5x more mutations than the training
data, but the design performance decreases sharply with further
extrapolation. The simple fully connected neural networks showed the
best performance for designing variants with improved binding rela-
tive to wild-type GB1. Intriguingly, we also found that the parameter-
sharing convolutionalmodels could design folded, but non-functional,
proteins with sequence identity as low as 10% from wild type, sug-
gesting these models are capturing more fundamental biophysical
properties related to protein folding. Our high-throughput screen
identifiedmultiple designs with improved binding relative towild-type
GB1 and previously designed variants. Our work provides a rigorous

assessment of model architectures’ capacities for protein design and
will support ongoing advances in ML-driven protein engineering.

Results
Extrapolating learned protein fitness landscapes
Protein sequence space is nearly infinite and experimental methods
can only characterize a very localized and minuscule fraction of this
space1. Machine learning (ML) models trained on sparse sequence-
function data infer the full fitness landscape and canmake predictions
for previously unobserved protein sequences. Thesemodels can guide
a search through sequence space to discover protein designswith high
predictedfitness (Fig. 1a).Manyof thesepredictions extend farbeyond
the training data and thus are extrapolations on the fitness landscape.
Although model performance is known to degrade as predictions are
made further from the training regime, it remains unclear how far
these models can extrapolate to design high-fitness sequences5,7.

The B1 binding domain of streptococcal protein G (GB1) is a small
8-kDa domain that binds to the mammalian Immunoglobin G (IgG)
fragment crystallizable (Fc) regionwith nMaffinity and to the fragment
antigen-binding (Fab) region with μM affinity19,20. GB1 consists of 56
amino acids. We use GB1 as a model protein due to its extensively
characterized IgG Fc-binding fitness landscape containing nearly all
single and double mutations that was collected using a high-
throughput mRNA display assay20. In previous work, we trained four
different classes of supervised neural networks on GB1 double muta-
tion data12. Briefly, these models were trained on sequence-function
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Fig. 1 | Extrapolation of sequence-function models. a Supervised sequence-
functionmodels are trained on experimental data and canmake predictions across
the fitness landscape. ML-guided protein design seeks to identify high-fitness
sequences and often involves model extrapolation beyond the training regime.
bWe tested fivemodel architectures that capturedistinct aspects of the underlying
sequence-function landscape. c A collection of 100 CNN models and their diver-
gencewhenpredictingdeep into sequencespacealong amutational trajectory. The
ensemble predictor EnsM represents themedian of the 100CNNs, while EnsC is the
5th percentile. d We trained models on GB1 single and double mutants and

predicted the fitness of 1-, 2-, 3-, 4-mutants. The Spearman’s rank correlation was
determined between the model’s predicted fitness and experimental fitness.
e Model recall of the top 100 protein variants within a design budget. Recall
represents the number of the true top 100 4-mutants that are present in a model’s
top N predictions, where N is the design budget. Optimal represents a theoretical
model that always predicts the top N proteins. Shading represents 95% confidence
intervals across 100 individually trained models, excluding EnsM and EnsC. The
confidence interval is centered on the mean recall. Source data are provided as a
Source Data file.
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data from ~500k single and double mutants and the sequences were
encoded using a fixed length of 56 amino acids and a physiochemical
and categorical (one-hot) amino acid embedding. The networks
included a linear model (LR) that considers each residue position
independently, a fully connected network (FCN) that can capture
nonlinearbehavior andepistasis, sequence-based convolutionalneural
networks (CNN) that share parameters across the protein sequence,
and a structure-based graph convolutional neural network (GCN) that
considers residues’ context within the protein structure (Fig. 1b). We
previously evaluated these models’ predictive performance on held
out doublemutant data and demonstrated the feasibility ofML-guided
protein design. However, it remains unclear how these models per-
form when extrapolating deeper into sequence space.

Neural networks contain hundreds of thousands to millions of
parameters, many of which are not constrained by the training data21.
The values of these unconstrained parameters are greatly influenced
by the random initialization during training, and we hypothesized
these parametersmay lead tomodel divergence when predicting away
from the training data regime. We trained 100 CNNs with the same
model architecture, hyperparameters, and training data but with dif-
ferent random initializations of model parameters. We then evaluated
eachmodel’s predictions along amutational pathwayacross thefitness
landscape (Fig. 1c). All models show close agreement in the training
data regime within two mutations of wild-type GB1, but their predic-
tions increasingly diverged the further they moved from the training
regime. It is also notable that thefitnesspredictions in the extrapolated
regime have values so extreme they are unlikely to be valid. To over-
come model variation arising from random parameter initialization,
we implemented neural network ensemble predictors EnsM and EnsC
that input a sequence into all 100CNNs and return themedianor lower
5th percentile predictions for that sequence, respectively. We view
EnsM as an average predictor, while EnsC is a conservative predictor
because 95% of the models predict higher fitness values.

We evaluated the neural networks trained on single and double
mutants on a separate GB1 dataset containing nearly all combinations
of mutations at four positions known to have high epistatic
interactions22. This combinatorial dataset used the same methods to
evaluate fitness as the training dataset and reported a strong correla-
tion (r =0.97) for single and double mutants assessed in both experi-
ments. In our assessment, single and double mutants are within the
training regime, while prediction on the 3- and 4 mutants requires
model extrapolation. We found all models displayed significantly
decreased predictive performance when extrapolating away from the
training data (Fig. 1d, Supplementary Fig. 1). Althoughmodel accuracy
drops dramatically in the extrapolated regime, the Spearman’s corre-
lation remains significantly above 0, suggesting potential for model-
guided design at or beyond 4 mutations. All the nonlinear neural
networkmodels performed similarly, while the linearmodel displayed
notably lower performance, presumably due to its inability to model
epistatic interactions between mutations.

We additionally tasked the models with identifying the most fit
variants from the set of 121,174 possible 4-mutants, a task similar to
machine-learning-guided design. For a given testing budget N, each
model ranks all 4-mutants and selects the top N. Recall is calculated as
the proportion of the true top 100 that is represented in the model’s
predicted top N sequences. For every budget tested, the GCN has the
highest recall, indicating better extrapolation to identify high fitness
variants (Fig. 1e). The FCN also has high recall with small design bud-
gets but is quickly surpassed by the CNN.

ML-guided protein design for deep exploration of the fitness
landscape
A 56-residue protein like GB1 has 2056 (>1070) possible sequence con-
figurations, and we must search deep into sequence space to fully
evaluate MLmodels’ performance for protein design. We developed a

large-scale protein design pipeline that uses simulated annealing (SA)
to optimize amodel over sequence space to identify highfitness peaks.
The approach executes hundreds of independent design runs to
broadly search the landscape, clusters the final designs to remove
redundant or similar solutions, and then selects the most fit sequence
from each cluster to provide a diverse sampling of sequences pre-
dicted to have high fitness (Fig. 2a). The number of clusters can be
adjusted to match any downstream gene synthesis or experimental
budgets. We evaluated the convergence of our SA runs (Supplemen-
tary Fig. 2) and the performance of parallel tempering methods
(Supplementary Fig. 3).

We applied our pipeline to design a diverse panel of GB1 variants
testing different model architectures and spanning a range of extra-
polation distances. We included eight models: LR, FCN, three CNNs
with different initializations (CNN0, CNN1, CNN2), GCN, and the
ensembles EnsMand EnsC. For eachmodel, we designed variants at six
extrapolation distances: 5, 10, 20, 30, 40, and 50mutations fromwild-
type GB1. For each model-distance combination, we ran at least 500
design runs and clustered the designs into 41 clusters, to obtain 41
diverse sequences for each criterion. We visualized the design space
using multi-dimensional scaling, which organizes sequences in a 2D
space that attempts to preserve sequence interrelationships. We
observe that sequences occupy concentric rings expanding outward
from wild-type GB1, with each successive ring representing an
increasedmutation distance and the outermost ring corresponding to
the 50-mutants (Fig. 2b).

We observed notable differences in the sequences designed by
each model, suggesting each architecture prioritizes distinct regions
of the landscape (Fig. 2c, Supplementary Fig. 4). The LR and FCN
designs occupy similar regions of sequence space and tended to dis-
play less variation within the 41 designs, suggesting a smooth inferred
landscape structure with a major prominent peak. The designs from
the three CNNs were distinctly different than the LR and FCN designs
and displayed a high degree of variation across each model, high-
lighting how random parameter initialization can greatly influence
model extrapolation. The GCN designs were by far the most diverse,
occupying all directions in sequence space and having the highest
average Hamming distance, reminiscent of a landscape with many
distinct fitness peaks. At lower mutational distances, EnsM and EnsC
produced designs that weremore similar to that of LR and FCN, but in
higher mutational regimes, their designs were more similar to designs
produced by individual CNNs (Supplementary Fig. 4). We also
explored the influence of model initialization on the designs by ran-
domly initializing five of each model (LR, FCN, CNN, GCN), designing
sequences at all mutation distances, and comparing the similarity of
the designs (Supplementary Fig. 5). We found that the sequences
designed by the LR, FCN, and CNN architectures are more similar to
other initializations of that architecture than other architectures,
indicating the model architecture itself is a driving factor for the dif-
ferences in the designs. The GCN models show high sequence varia-
bility across different model initializations.

We further explored the unique mutational variation of each
architecture’s designs by analyzing the amino acid diversity at each site
(Fig. 2d). Generally, the LR and FCN target only a few positions in the
protein sequence and tend to propose the same mutations, as indi-
cated by the low entropy value. We also looked at the BLOSUM scores
of the designs and found most designs introduced non-conservative
mutations with negative BLOSUM scores, with the exception of the
EnsC designs with 5 mutations (Supplementary Fig. 6). Every mutation
proposed by the LR and FCN are individually beneficial (Supplemen-
tary Fig. 7). In contrast, the CNNs and GCN target a much broader
region of the GB1 sequence, including known sites of positive epistasis
around residues 9–16 and 33–4020. This suggests the CNN and GCN
models can exploit epistasis to design sequences composed of
synergistic mutations.
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Large-scale experimental characterization of ML-designed GB1
variants
We used yeast surface display to characterize the expression and IgG
binding of the designed GB1 variants. We sorted variants into display
and IgG binding populations using fluorescence-activated cell sorting
(FACS) (Fig. 3a, b, Supplementary Fig. 8) and sequenced these sorted
populations to determine which variants fell into each bin. We used
enrichment to devise display and IgG binding enrichment scores,
edisplay and ebind, respectively, for each variant. The display and binding
enrichments show good reproducibility between experimental repli-
cates and internal standards with varied nucleotide sequences but
identical amino acid sequences. The original experiment used RNA
display to measure binding affinity. We included 25 sequences (all
double-mutants) from the training dataset with a uniform distribution
across experimental fitness as a fitness calibration set and observed
good correlation between our results and the original dataset (Sup-
plementary Fig. 9). The display score captures a combination of pro-
tein expression, trafficking, folding, and stability, while the IgG binding
score is more directly related to IgG binding affinity. Additionally,
display is a prerequisite for binding because the GB1 protein must
reach the cell surface to interact with IgG.

We found all models were successful at designing functional GB1
variants thatdisplayed andbound IgG (Fig. 3c). The design success rate
was high at five and ten mutations and significantly decreased with
further extrapolation from the training data regime. The simple LR and
FCN models outperformed the more sophisticated CNN and GCN
models for designing functional sequences that bind to IgG. Interest-
ingly, the ensembles, which were composed of CNNs, showed design
performance comparable to the LR/FCN models. This suggests the
CNN random initialization process may result in models with subpar
performance, but this effect can be marginalized by averaging over
many models. CNN ensembles combine the strong generalization
performance of parameter-sharing models12 with the extrapolative
design ability of simpler LR/FCN models.

The model design results for the display score were strikingly
different than for IgG binding. While the LR and FCN design success
decreased sharply with increasing extrapolation, the sequences
designed by the CNN and especially the GCN displayed out to 50
mutations. The picture becomes more complete when we jointly
visualize the binding and display scores over extrapolation distances
(Fig. 3d). The sequences can be broadly categorized into the four
quadrants binds/doesn’t bind and displays/doesn’t display. The non-

Fig. 2 | ML-guided fitness landscape exploration. a Supervised models infer the
fitness landscape from sequence-function examples. We use simulated annealing
(SA) to search through sequence space for designs with high predicted fitness. We
perform hundreds of independent SA runs to broadly search sequence space,
cluster designs tomap distinct fitness peaks, and select themost fit sequence from
each cluster (shown as a star). b We visualized all designs using multidimensional
scaling (MDS) and found the designs occupy concentric rings emanating fromwild-
type GB1 with increasing number of mutations. cWe colored theMDS visualization
by model architecture and found individual models design sequences that occupy

distinct regions of sequence space. d We calculated the sequence diversity across
GB1 positions for the 10-mutant designs. We used Shannon entropy to quantify
amino acid diversity at each position; low entropy indicates few amino acid options
at a given site while high entropy indicates many amino acid options. The low
entropy for the LR and FCN indicate that eachmodel repeatedly proposes the same
mutations at the same positions. The convolutional models propose sequences
with more diversity spread across more positions, especially in regions of positive
epistasis. Source data are provided as a Source Data file.
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binding LR and FCN designs tended to not display, while the non-
binding CNN and GCN designs displayed, suggesting two distinct
modes of functional inactivation (Supplementary Figs. 10 and 11).

We can contextualize these results if we consider that stable,
folded proteins are more likely to display on the yeast surface, while
unstable proteins are prone to proteolytic degradation23. In this case,
the LR/FCN designs are inactive because they are unfolded, while the
CNN/GCN designs are folded but may have a defective IgG-binding

interface. The model architectures and their intrinsic inductive biases
may explain the differences in each model’s design behavior. The LR/
FCN models put an emphasis on specific sites and how those sites
contribute to function. In contrast the CNN/GCN models have
parameter-sharing architectures that learn general patterns across the
protein sequence. The site-focused designs from the LR/FCN models
will maintain an intact IgG-binding interface, at the potential cost of
losingprotein stability.While theCNN/GCNmodels learnmoregeneral
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rules related to protein folding, but in the process, put less emphasis
on the IgG binding interface.

We observed that some of the yeast display results may be
explained by the presence of KEX2 protease sites in the designed
proteins. KEX2 is located in the yeast Golgi and cleaves secreted pro-
teins with exposed Lys/Arg-Arg sites. Unfolded proteins with KEX2
sites will be cleaved and not display, while folded proteins with
KEX2 sites will typically display24. We found designs with 20 or more
mutations are less likely to display if they have a KEX2 site (Supple-
mentary Fig. 12). We also found the LR and FCN models had a higher
likelihood of designing sequences with KEX2 sites (Supplemen-
tary Fig. 13).

We performed an additional yeast display experiment to resolve
more quantitative differences in IgG binding by sorting variants into
four bins corresponding to greater than WT binding (high-bind), WT-
like binding (WT-equal), lower thanWT binding (low-bind), and no IgG
binding (display only) (Fig. 3b). Our results reveal that all model
architectures succeed in designing high-binding GB1 variants with five
and ten mutations (Fig. 3e). When considering the individual models,
the LR and FCN significantly out-perform the CNNs and GCN. Nearly
100% of LR and FCN 5-mutant designs are categorized as high-bind. At
10 mutations, all FCN designs and ~50% LR designs are high-binding.
While the GCN and CNNs design functional 10-mutants, many are low-
bind or inactive. In contrast to the individual CNNs, the ensembles are
as successful as the LR and FCN in designing high-bind GB1 variants,
suggesting that ensembles of models confer some benefit when
extrapolating beyond the training regime.

Structural diversity of ML-designed GB1s
We predicted the structures of the designed GB1 using AlphaFold224,25

and found that designs further from wild-type GB1 showed increased
variability in their predicted three-dimensional structures (Fig. 4a).
There were notable differences between the models with the LR and
FCN models designing sequences with much tighter conformational
distributions across all Hamming distances that closely resemble the
WT GB1 structure. To analyze structural differences in the library, we
used TM-align26 to calculate the degree of alignment between each
pairwise structure (TMscore), and used UMAP27 to visualize high-
dimensional structure space as a 2Dprojection (Fig. 4b). The predicted
structures tend to cluster by thedesigns’ functional statuswith designs
that bind IgG tending to have structures similar to WT GB1.

ML-designed GB1s show improved display and IgG binding
We used the high-throughput screening data to identify interesting
designs for more detailed functional and structural analysis (Supple-
mentary Table 1). There were no 30/40/50-mutants that bound to IgG
in our high-throughput screen (Fig. 3c), so we chose five 5/10-mutants
that showed high IgG binding and five additional 20-mutants that
showed moderate IgG binding. We also chose ten distant designs with
40–50mutations thatdisplayedbut did not show IgGbinding to assess
their display relative to WT and confirm these designs lacked detect-
able IgG binding. We quantitatively evaluated display and IgG binding
for each of these 20 designs in a clonal yeast display assay (Fig. 5a).

All five 5/10-mutant high-binding designs showed IgG binding
greater than wild type, while several of the 20-mutant binding designs
showed IgG binding, but to a diminished level relative to WT. We
performed IgG titrations to assess the binding curves for several
designs (Fig. 5b). While the designs do not have significantly different
KDs from wild type, the maximum binding signals are significantly
larger for the designs, suggesting our designs have decreased koff rates
in our yeast display assay. We hypothesize the initial GB1 training data
mRNA display experiments20 may have captured koff effects rather
than equilibrium KD measurements and thus resulted in trained mod-
els that design GB1 variants with improved binding kinetics but not
necessarily thermodynamics. Themost distant functional design was a

20-mutant designed by EnsC, termed EnsC-20, that showed significant
IgG binding, although much weaker than wild type. Many of the
mutations in EnsC-20 are at the IgG interface (Fig. 5c), while others,
including three mutations to proline, were on the distal side of the
protein, likely inducing structural changes that could affect binding.

All ten 40/50-mutant display designs displayed on the yeast sur-
face equal to or greater than wild type GB1, including a 40-mutant
designed by the GCN that displayed over 2× higher thanwild type. This
variant, called GCN-40, shares less than 30% sequence identity with
wild-type GB1 and its structure is predicted to have some similar sec-
ondary structure elements, but with a completely new helical bundle
fold (Supplementary Fig. 14).

Discussion
Protein engineering has broad applications across biocatalysis, bio-
manufacturing, agriculture, and human health, but engineering pro-
teins is slow and requires expensive rounds of experimental
characterization to search the fitness landscape. Machine learning
accelerates the protein engineering process by inferring the under-
lying landscape structure and reducing the experimental burden
required to explore protein sequence space. In this work, we assessed
different supervised machine learning architectures’ ability to extra-
polate beyond the training data for protein design. Adapting pre-
viously developed models trained on a large GB1 sequence-function
dataset, we performed an ML-guided search to design sequences
predicted to have high fitness. We found each model had markedly
different perceptions of the underlying landscape that gave rise to
unique preferences for the designed sequences. All models showed
strong potential to extrapolate to 2.5-5x more mutations than repre-
sented in the training data, but the simpler fully connected archi-
tecture performed the best for designing functional and highly fit
proteins.

Our work rigorously evaluates a common protein engineering
setting wherein a supervised sequence-functionmodel is trained on a
local fitness landscape and tasked with extrapolating to new regions
of sequence space5,6,11,28,29. These models become increasingly inac-
curate further from the training data due to the challenge of gen-
eralizing local sequence rules to the global landscape, which is
exacerbated by factors like landscape ruggedness, data sparsity, and
magnitude of epistasis. Models that effectively capture epistasis and
that can learn generalizable biophysical concepts will be more cap-
able of extrapolating on the fitness landscape. We found incon-
sistences between in silico metrics calculated by holding out variants
from a fixed dataset and experimental design outcomes. We con-
sidered how each model trained on single and double mutants ranks
quadruple mutants (Fig. 1d) and found that the LR significantly
underperformed relative to the more sophisticated models. This
contrasts with the experimental design results (Fig. 3e), where the LR
consistently designed high-bind variants with 5 and 10mutations and
was one of the top models. Similarly, our analysis found CNN/GCN
models that perform well in predicting 4-mutants (Fig. 1d) tend to
underperform when extrapolating to 5, 10, and 20 mutations
(Fig. 3a, e). These findings highlight differences between local and
global landscape structures and the need to design and experimen-
tally test sequences to evaluate model performance. In silico metrics
are widely used to guide modeling and design choices and define
new state-of-the-art standards, but may not always translate to
practical protein engineering settings.

A given model’s extrapolation ability will depend on the size and
quality of the training data, the model’s inductive biases and its
capacity to learn sequence-function relationships, and the ruggedness
of the optimization surface, which can limit search methods’ ability to
identify top solutions. Despite simulated annealing’s (SA) ability to
bypass local optima, we observed notable differences in the spread of
eachmodel’s designs (Fig. 2c, Supplementary Fig. 2), suggesting varied
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degrees of ruggedness in the underlying optimization surface. The SA
trajectories for the LR designs tended to converge toward the same
sequences, as expected for a smooth landscape with a single global
peak. In contrast, the GCN designs were broadly distributed across
sequence space, indicating each SA trajectory had arrived at distinct
local optima due to the difficulty in traversing a highly rugged opti-
mization surface.

We found the LR and FCN models strongly outperformed the
convolutional models in designing functional 5- and 10-mutants that
bound IgG tighter than wild-type GB1. These models have a simple
architecture where each position in the amino acid sequence con-
tributes to function and highlights the relative simplicity of the local
landscape for a given property. Our LR model is similar to Addition
models that predict variant fitness by summing individual mutational
effects30 (Supplementary Fig. 15). Additive mutational effects have

been known and leveraged in protein engineering for decades31,32, and
the LR and FCN’s inductive biases are set up to capture these simple
relationships. FCNs have the additional advantage that they can learn
epistatic relationships between residues, which resulted in increased
performance relative to LR. The primary distinguishing feature of the
convolutional models is their parameter-sharing architecture that
learns filters that are applied across the protein sequence/structure.
Convolutional models have the capacity to learn more general rela-
tionships, but their inductive biases are not primed to capture the
simpler additive and epistatic relationships that dominate local
landscapes.

We interpret our results primarily through the lens of protein
engineering where our goal is to design GB1 variants with improved
binding to IgG. But we found the CNN, and especially the structure-
based GCN, were highly effective at designing GB1s with up to 50
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mutations that display on the yeast surface and presumably fold, but
do not bind IgG. It’s worth noting that this phenomenon doesn’t
necessarily indicate subpar model performance, and instead we pos-
tulate the parameter-sharing architectures may have focused more on
learning general rules of protein folding and, in the process, ignored
IgGbinding activity.While the original sequence-function training data
was based on IgG binding, this experimental mapping is dominated by
folding effects because a majority of a protein’s residues are involved
with maintaining structural stability, while relatively few are directly
involved with binding. In other words, a mutation can inactivate a
protein due to disrupted folding or disrupted binding, but the dis-
rupted folding mechanism is statistically much more likely. It’s well
known that mostmutations destabilize proteins33 and this observation
was noted in the original GB1 deep mutational scanning manuscript20.
We observed that the CNN and GCN propose mutations in regions of
positive epistasis. Considering that epistatic interactions are critical to
stability, this feature likely contributes to the CNN and GCN’s capacity
to design variants that fold despite lacking binding activity. The
combination of data that’s dominated by folding effects and the con-
volutional models’ inductive bias to recognize patterns led to models
that learned more general rules of protein folding.

We found ensembles of CNNs outperform individual CNNs in
designing high-fitness variants. Ensembles highlight model variation
arising from random parameter initialization and can identify regions
of sequence space that arepoorlyunderstoodby themodel. Being able
to identify where a model is not confident is critical for robust design.
Model confidence canbeestimatedby inputting a single sequence into
an ensemble of models and evaluating the agreement in prediction
across the models34. If the models tend to agree, we can be more
confident in the prediction, while if the ensembles’ predictions are
highly variable, then the random parameter initialization may be
influencing themodels’ prediction. Evaluating this consensus between
models is important for neural networkmodels thatmay havemillions
or more internal parameters that are not fully determined by the data.
Other work has used model uncertainty to guide designs toward
regions of sequence space that are generally more confident21,35–37. For
our EnsC predictor, we do not restrict design space based on

uncertainty, but rather use the ensemble tomake a conservativefitness
predictionwhere 95% of themodels agree the fitness is above a certain
value. Designing sequences that maximize EnsC result in designs that
most models agree have high fitness. We found the EnsC design
strategy was the best overall with similar performance to LR and FCN
for designing highly fit 5- and 10-mutants and some ability to design
functional sequences with 20 mutations.

Our models were trained on GB1-IgG binding data with no
explicit structure, folding, or stability information. Formany proteins
including GB1, folding is a prerequisite for function. The protein
must fold into a stable structure before it can perform its function.
For this reason, folding is implicitly captured by a functional assay.
Every GB1 variant that binds IgG is also a stably folded protein.
Function is often dictated by a handful of specific residues, while
folding is a more global property of many residues interacting. Sta-
tistically, there are many more residues that contribute to folding
versus function, somost high-throughput mutagenesis datasets have
a major folding component. The inductive biases of LR and FCN
models directly capture how specific residues contribute to function.
In contrast, parameter-sharing models such as CNNs/GCNs learn
patterns that map to the output function. We postulate the inductive
biases of CNNs/GCNs to learn patterns, in addition to the fact that
IgG binding has a major folding component dictated by underlying
sequence patterns, causes the CNN/GCN models to pick up on
folding signals. In other words, the measured IgG binding function
has both protein-protein binding and folding components and the
CNN/GCN models are more primed to learn the folding component.
This naturally leads to the idea that these differing architectures
could be used together to design functional proteins more robustly.
A collection of model architectures, each with their own inductive
biases, could be used together in an ensemble, similar to EnsC.
Another design strategy could aim to jointly optimize multiple
models simultaneously using multi-objective criteria38.

Our work reveals general guidelines for protein engineering.
Despite the highly epistatic underlying landscape, the simpler LR and
FCNmodels outperform the convolution-basedmodels in local design
tasks. This may be attributed to the training data, which
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comprehensively characterizes all single and double mutants. In this
setting, models with a strong linear bias may be sufficient for engi-
neering proteins near the training data and lends further support to
the general observation that mutation effects are largely additive. We
also found that CNN ensembles improve model design performance
over the individual component CNNs, likely because it reduces the
aleatoric uncertainty associated with random parameter initialization.
Based on this finding and other work, we expectmodel ensembles will
generally improve performanceover individualmodels. This approach
also provides the opportunity to ensemble different model archi-
tectures, which may improve design robustness; ensembles of differ-
ent model classes have been successfully used for protein and
metabolic engineering7,39. Our work also demonstrates that, regardless
of architecture, learning a landscape from purely local data is not
sufficient to extrapolate function to distant sequences and it’s best to
stay close to the training data. Combining the above findings, we
postulate the most reliable design method would consist of an
ensemble of FCNs, designing sequence according to the EnsC pre-
dictor, and staying within 5-10 mutations from wild type. This optimal
design strategy is likely dependent on the particular protein of inter-
est, the function being assayed, and the quality and size of the train-
ing data.

Biophysical and molecular mechanics-based models have domi-
nated the fields of rational protein engineering anddesign for decades.
Proteins are challenging tomodel from a physical perspective because
they are composed of thousands of atoms that are dynamically cou-
pled over multiple length and time scales and the molecular basis of
function is often poorly understood. Machine learning approaches
overcome these limitations by directly learning the relationships
between protein sequence and function from experimental data. Our
work in this paper focuses on supervised neural network models to
learn sequence-function relationships and design new proteins. Other
recent work in the field uses pretrained protein representations that
are learned from vast existing sequence and structure databases.
Models such as UniRep and ESM2 are pretrained using self-supervised
learning to identify general patterns across millions of natural protein
sequences. These models transform input sequences into context-
aware protein representations that are input into downstream super-
vised models to learn sequence-function relationships. An interesting
future research direction would be exploring the ability of these pre-
trained models for extrapolative design on the protein fitness
landscape7,39.

Deep learning and artificial intelligence are revolutionizing the
fields of protein science and engineering. These tools can process,
learn from, and make sense of large quantities of data to decode the
complex innerworkings of proteinswith a scale and resolution beyond
human comprehension. Continued advances will help realize the
potential of protein design to address society’s most pressing pro-
blems and future global challenges.

Methods
Neural network model training
We used the Olson et al. GB1-IgG binding dataset20 and the Gelman
et al. model architectures12 with the same parameter initializations,
train-validation-test splits, and hyperparameters. We additionally
trained 100 models of each architecture with different random initi-
alizations to assess the effects of parameter initialization and for
ensemble learning. We constructed two CNN ensemble predictors: a
median predictor (EnsM) that inputs a sequence into 100 CNNmodels
and outputs the median fitness prediction, and a conservative pre-
dictor (EnsC) that inputs a sequence into 100CNNmodels and outputs
the 5th percentile fitness prediction.

For model training and library design, protein sequences were
embedded as a concatenated vector containing a physicochemical and
categorical (one-hot) representation of the amino acid sequence.

Embeddings are a fixed length across all sequences and contain no gap
characters.

Evaluation of model extrapolation on 3- and 4-mutant fitness
landscapes
We evaluated the models’ ability to extrapolate to 3- and 4-mutants
using the four-site combinatorial GB1 dataset fromWuet al. 22 (Dataset:
https://doi.org/10.7554/eLife.16965.024) This dataset consists of
experimental measurements for 93% of variants from a 4-site combi-
natorial saturation mutagenesis GB1 library screened for binding to
IgG. The models were trained on single and double mutant data from
Olson et al. 20 and were used to predict the fitness values of the 3- and
4-mutants. We also tested the ability of the models to identify the
4-mutants with the highest fitness values. The model recall was cal-
culated by giving amodel a design budget n, having themodel rank all
121,174 characterized 4-mutants and select the top n, and then deter-
mining what percentage of the true top 100 variants were in this top n
set. An optimal model would achieve 100% recall with a design bud-
get n = 100.

Model-guided protein design
WedesignedGB1 variants with eight differentmodels at 5, 10, 20, 30,
40, and 50 mutations from wild-type GB1 (Supplementary Data 1).
For each model-distance combination, we designed 41 diverse GB1
variants with high predicted fitness. For a given model-distance
combination, we used simulated annealing (SA) to maximize the
model’s predicted fitness constraining the number of mutations
allowed in the designed protein. To ensure the number of mutations
in a design were fixed, we exchanged random mutations. For
example, when designing a 5-mutant, we might randomly choose
two current mutations, mutate those back to the wild-type amino
acids, and then choose two new randommutations to keep the total
mutations fixed at five. At each step of simulated annealing, one or
more mutations (sampled from a λ= 1 Poisson distribution) were
randomly exchanged and predicted fitness of the given model was
evaluated. Mutations that improved predicted fitness were auto-
matically accepted while all other mutations were accepted with
probability eΔFitness=T where T is decreased along a logarithmic
temperature gradient ranging from 103 to 10−5 over 15,000 to
50,000 steps. We performed 500 independent simulated annealing
runs for each model-distance combination, which typically resulted
in more than 41 unique candidate sequences. The individual SA
trajectories showed strong convergence to similar fitness values
indicating a sufficient number of optimization steps (Supplementary
Fig. 2). For some model-distance combinations, 50,000 SA steps
converged on fewer than 41 candidate sequences, in which case, we
decreased the number of SA steps until more than 41 unique can-
didate sequences were designed in 500 simulations. The number of
SA steps for these specific categories were: (LR 5-mutants) and (FCN
5-mutants) = 10,000 steps and (LR-10 mutants), (FCN-10 mutants),
(EnsM-5 mutants), and (EnsC-5 mutants) = 25,000 steps. All
sequence designs were run in parallel using high-throughput
computing40. To select a diverse and representative set of designs,
we performed K-means clustering on the 500 independent designs
using 41 clusters and selected the variant from each cluster with the
highest predicted fitness for experimental characterization. This
resulted in 41 unique GB1 designs for 8 models at 6 distances, for a
total of 1968 designs.

BLOSUM analysis
We calculated the mean site-wise BLOSUM score for each design
category using the BLOSUM62 substitutionmatrix. All BLOSUM scores
were calculated with respect to WT. Since our objective was to illus-
trate whether mutations from WT were conservative or non-con-
servative, non-mutated residueswereexcluded fromanalyses. As such,
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reported mean BLOSUM scores only reflect the nature of mutations
and not the effect of non-mutated residues. The mean site-wise BLO-
SUM score is the average BLOSUM score for mutated residues at a
given site.

UMAP visualization of GB1 variant library structure space
We used Alphafold24,25 (AlphaFold Colab v2.3.2) to predict the struc-
ture for each GB1 variant. AlphaFold uses an input MSA to predict the
query sequence structure. We used WT GB1 to build an MSA using a
Jackhmmer search on the Uniref90, Small BFD, and Mgnify sequence
databases as recommended by AlphaFold Colab. ThisMSAwas used as
the input MSA for all structure predictions. We generated six Alpha-
Fold predictions for each sequence; the structure with the highest
mean pLDDT (measure of structure confidence) was chosen as the
representative model.

We generated a UMAP projection of the GB1 library structure
space according to methods previously described41. Briefly, we calcu-
lated TMscores for all pairwise structures using TM-Align26 and used
TMscore-1 as a distance metric for the UMAP projection. We per-
formed a hyperparameter scan for n_neighbors and min_dist and
selected a representative projection (n_neighbors = 15, min_dist = 0.1).
General spatial patterns are conserved across hyperparameter
settings.

High-throughput characterization of GB1 designs via yeast sur-
face display
We codon optimized our GB1 designs for expression in Saccharomyces
cerevisiae using the GenSmart Codon Optimization tool (GenScript)
and excluded the BsaI, NheI, BamHI,MluI, and XhoI restriction enzyme
sites. We also identified 25 sequences from the training data with a
broad range of fitness values to correlate our fitness measurements
with the original data from Olson et al. 20. Each of these variants was
designed with two different synonymous codon sequences to provide
internal controls to ensure reproducibility of our fitness measure-
ments. The designed genes and control sequenceswere synthesized as
an oligonucleotide pool by Twist Biosciences with flanking sequences
to allow PCR amplification and downstream cloning.

The GB1 gene library was cloned into the yeast surface display
vector pCTCON2 (provided by Dane Wittrup, MIT)42. To prepare the
vector for library cloning, we (1) removed the BsaI restriction site from
the AmpR gene using site directed mutagenesis (for: 5′-
AGCGTGGGTCGCGCGGTATCA-3′; rev: 5′-CACCGGCTCCAGATTT
ATCAGC-3′) and (2) added in BsaI sites for cloning library sequences
(for: 5′-GAAGGGTCTCTGATCCGAACAAAAGCTTATTTCTGAAG-3′; rev:
5′-GTATTGGTCTCTCTAGCCGACCCTCCGC-3′). We amplified the oli-
gonucleotide pool using either Phusion Hot Start Flex 2X Master Mix
(New England Biolabs, #M0536L) or KAPA HiFi HotStart ReadyMix
(Roche, #KK2602) (for: 5′-ACTCAAGGTCTCGCTA-3′; rev: 5′-
GTCAAGGTCTCGGAT-3′), cloned the gene library into the modified
pCTCON2 vector using Golden Gate assembly (37 °C 5min → 16 °C
5min ×30 cycles → 60 °C 10min), and transformed into 10G supreme
electrocompetent Escherichia coli (Lucigen, #60080-2). The trans-
formed library was cultured in Luria Broth (LB) (DOT Scientific Inc.,
#D5L24400-2000)media at 37 °C to anoptical density of ~0.5, atwhich
point plasmid DNA was harvested using the Qiaprep Spinminiprep kit
(Qiagen, #27104). We then transformed the GB1 library into yeast
display S. cerevisiae strain EBY100 made competent using the Zymo
Research Frozen EZ Yeast Transformation II kit (Zymogen, #T2001).
We grew the transformed library in Sabouraud Dextrose Casamino
Acid media (SDCAA, pH 4.5: Components per liter - 20 g dextrose
(SigmaAldrich, CAS# 50-99-7, #47249), 6.7 g yeast nitrogenbase (VWR
Scientific, 97064-162), 5 g casamino acids (VWR, 97063-378), 10.4 g
sodiumcitrate (SigmaAldrich, CAS#6132-04-3, C8532), 7.4 g citric acid
monohydrate (Sigma Aldrich, CAS# 5949-29-1, C7129)) at 30 °C and
250 rpm for two days. We plated an aliquot of the transformant pool

on synthetic dropout (SD)-Trp agar (Teknova, C3060) to quantify the
number of library transformants.

We analyzed and sorted the GB1 library using florescence-
activated cell sorting (FACS). We induced the library expression in
Sabouraud Galactose Casamino Acid media (SGCAA, pH 7.4: Compo-
nents per liter - 8.6 g NaH2PO*H2O (Sigma Aldrich, CAS# 10049-21-5,
71507), 5.4 g Na2HPO4 (Sigma Aldrich, CAS# 7558-79-4), 20 g galactose
(Sigma Aldrich, CAS# 59-23-4, G0750-10G), 6.7 g yeast nitrogen base,
5 g Casamino Acids) overnight, harvested approximately 3 × 106 yeast
cells by centrifugation, washed once in pH 7.4 Phosphate Buffered
Saline (PBS) (Crystalgen, 221-133-40) containing 0.2% (w/v) bovine
serum albumin (BSA) (Sigma Aldrich, 1071145400), and incubated
overnight at 4 °Con a tube rotator at 18 rpm in 800 µL of PBS/0.2% BSA
containing 15 nM human IgG1 (BioLegend, 403501) that had been
conjugated with Alexa647 using NHS chemistry (Thermo Fisher Sci-
entific, A37573) and 3 µg/mL anti-myc IgY (Aves Labs, ET-MY100)
conjugated with Alexa488 using NHS chemistry (Thermo Fisher Sci-
entific, A20000). Following the overnight incubation, we washed the
yeast in PBS/0.2% BSA and resuspended in ice-cold PBS for FACS. We
performed FACS using a FACS Aria II (Becton Dickinson) and analyzed
yeast cells for display at 488 nm and IgG binding at 647 nm. Our qua-
litative experiments sorted cells into display-only and IgG bind popu-
lations, while our quantitative experiments sorted cells into display-
only, low-bind, WT-like bind, and high-bind populations.

We recovered the sorted yeast populations, as well as the initial
unsorted library, and grew them in SDCAA media overnight. The fol-
lowing morning, we expanded the cultures into SDCAA media at an
optical density of 0.1, grew them until reaching density of ~1.0, har-
vested and centrifuged the cultures, and extracted the plasmids using
the Zymo Research Yeast Plasmid Miniprep II kit (Zymo Research,
D2004). We transformed the extracted plasmid DNA into 10G
supreme electrocompetent E. coli (Lucigen, #60080-2), cultured
overnight in LB + carbenicillin (GoldBio, #C1035) media shaking at
250 rpm at 30 °C, and harvested the plasmid DNA using the Qiaprep
Spin miniprep kit (Qiagen, #27104). We cut out the GB1 gene insert
using XhoI (NEB, R0146S) and PstI (NEB, R0140S) restriction enzymes,
excised the corresponding band using agarose gel extraction, and
purified using the Zymo Research gel DNA recovery kit (Zymo
Research, #D4001). The UW-Madison Biotechnology Center DNA
sequencing core prepared a sequencing library using the NEBNext
Ultra II kit (NEB, E765S) and sequenced the samples using an Illumina
NovaSeq6000 with 2 × 150bp reads.

Illumina data processing and analysis
We aligned forward and reverse Illumina reads to wild-type GB1, using
a predetermined offset, and merged the two reads by selecting the
base with the higher quality score in overlapping regions. A design’s
count was equal to the number of sequencing reads that exactly
matched the designed nucleotide sequence and we filtered out any
designs if they had fewer than 10 counts in the unsorted population.

The initial experiments consisted of two replicates each of
unsorted (u), display only (d), and binding (b) populations. For each
population, we divided by the total number of reads to obtain the
proportion of each design. We refer to pu,i, pd,i, and pb,i as the pro-
portion of design i in the unsorted, display only, and binding popula-
tions, respectively. We calculated a binding score as the enrichment of
a design in the binding population relative to the display only popu-
lation, where pb,wt and pd,wt are the proportion of wild-type GB1 in the
binding and display only populations, respectively (Eq. 1). We also
calculated a display score as the enrichment of a design in the full
displaying population (b + d) relative to the unsorted population
(Eq. 2). We observed a bimodal distribution for both binding and dis-
play scores that correspond to active and inactive populations. We
used these distributions to classify that designs with display scores ≥
−0.26 display and designs with a binding score ≥ −0.5 bind IgG. Here,
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the 0.6 and 0.4 correspond the relative proportion of the binding and
display only populations from the FACS experiment. The numerator
estimates the full displaying population from the binding and display
only populations.

For the quantitative screening of designs, we obtained unsorted
(u), display only (d), low-binding (l), wild-type-like binding (w), and
high-binding (h) populations. For each population we calculated the
enrichment relative to the unsorted population where x corresponds
to any sorted population l, w, h (Eq. 3). Each sequencewas categorized
into displayonly, low-binding, wild-type-like binding, andhigh-binding
based on thresholds determined by calibration sequences with known
fitness values (Supplementary Fig. 16). All data analysis can be found in
Jupyter notebooks in the supplementary material.

ebind,i = log10
pb,i

pd,i
� log10

pb,wt

pd,wt
ð1Þ

edisp,i = log10
0:6*pb,i +0:4*pd,i

pu,i
� log10

0:6*pb,wt + 0:4*pd,wt

pu,wt
ð2Þ

ex,i = log10
px,i

pu,i
� log10

px,wt

pu,wt
ð3Þ

Characterization of individual designs for display and binding
We identified 20 designs to test more thoroughly for binding and
display in clonal yeast display assays (Supplementary Table 1). We
chosefive 5- and 10-mutantswith high binding across all replicates,five
20 -mutantswith somebinding activity across all replicates, and ten 40
and 50-mutants with high levels of display across all replicates. We
resynthesized their DNA sequences as individual gene fragments
(Twist Biosciences) and cloned them into the same yeast display vector
used for library screening. We transformed the plasmid DNA into
EBY100 made competent using the Zymo Research Frozen EZ Yeast
Transformation II (Zymo Research, T2001) kit and grew the transfor-
mants on SD -Trp agar plates (Teknova, C3060) for two days at 30 °C.
After 2 days, we picked individual colonies into 4mL SDCAA and grew
them overnight at 30 °C and 250 rpm. We induced GB1 display in a
5mL SGCAA culture started at an optical density as measured at
600 nm of 0.5 and shaken overnight at 250 rpm and 20 °C.

For IgG binding titrations, we harvested approximately 2 × 105

induced yeast cells for each titration data point, washed once in pH 7.4
PBS containing 0.2% (w/v) BSA, and incubated for three hours at 4 °C
on a tube rotator at 18 rpm in between 100 µL and 1mL of PBS/0.2%
BSA containing various concentrations of Alexa647 human IgG1 and
3 µg/mL Alexa 488 anti-myc IgY. We varied the volumes of Alexa647
IgG-containing incubation solution to prevent ligand depletion from
occurring at the lowest IgG concentrations. Following incubation, we
washed the yeast once in PBS/0.2% BSA and resuspended in ice-cold
PBS for flow cytometric analysis. We analyzed the samples using a
Fortessa analyzer (Becton Dickinson).

For each design, we subtracted background display and binding
activity from an unlabeled yeast negative control from raw MFU dis-
play and binding measurements. These activity measurements were
normalized against WT GB1 by dividing by the WT activity with back-
ground subtracted out.

Statistics and reproducibility
No statistical method was used to predetermine the sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The Illumina
sequencing data generated in this study have been deposited in the
NCBI BioProject database under accession code PRJNA1117877 43. The
processed Illumina sequencingdata are available in the Supplementary
Information/Source Data file. The GB1 4-site combinatorial library data
used in this study are available in the supplementary information of
Wu et al. 22 [https://doi.org/10.7554/eLife.16965.024]. Fitness values for
single-mutant GB1 variants are from Gelman et al. 12. Source data are
provided with this paper.

Code availability
All code for analyzing data and generating figures is available in the
supplementary materials and on GitHub under the GPL3 license44. All
code was archived on Zenodo (https://doi.org/10.5281/zenodo.
12518821)45.
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