Table 3.
The results of performance of machine learning classifiers using a combination of multiple questionnaires
| SVM-RBF | SVM-Lin | SVM-Poly | LDA | RF | kNN-2 | kNN-5 | kNN-10 | LR | |
|---|---|---|---|---|---|---|---|---|---|
| BDI + HADS | |||||||||
| Accuracy | 0.715 | 0.692 | 0.671 | 0.678 | 0.687 | 0.624 | 0.670 | 0.684 | 0.737 |
| AUC | 0.793 | 0.768 | 0.745 | 0.737 | 0.749 | 0.658 | 0.719 | 0.761 | 0.812 |
| Sensitivity | 0.709 | 0.687 | 0.653 | 0.674 | 0.686 | 0.600 | 0.637 | 0.650 | 0.756 |
| Specificity | 0.730 | 0.707 | 0.714 | 0.689 | 0.704 | 0.708 | 0.761 | 0.775 | 0.723 |
| BDI + PHQ-9 | |||||||||
| Accuracy | 0.695 | 0.687 | 0.656 | 0.677 | 0.655 | 0.607 | 0.650 | 0.664 | 0.715 |
| AUC | 0.762 | 0.767 | 0.719 | 0.749 | 0.698 | 0.635 | 0.680 | 0.715 | 0.782 |
| Sensitivity | 0.691 | 0.677 | 0.640 | 0.667 | 0.658 | 0.589 | 0.623 | 0.634 | 0.730 |
| Specificity | 0.708 | 0.709 | 0.691 | 0.697 | 0.668 | 0.665 | 0.723 | 0.745 | 0.702 |
| HADS + PHQ-9 | |||||||||
| Accuracy | 0.692 | 0.701 | 0.673 | 0.701 | 0.687 | 0.602 | 0.650 | 0.669 | 0.719 |
| AUC | 0.772 | 0.781 | 0.744 | 0.779 | 0.745 | 0.639 | 0.704 | 0.736 | 0.794 |
| Sensitivity | 0.688 | 0.703 | 0.657 | 0.701 | 0.675 | 0.582 | 0.620 | 0.636 | 0.728 |
| Specificity | 0.704 | 0.705 | 0.709 | 0.707 | 0.726 | 0.678 | 0.740 | 0.765 | 0.714 |
| BDI + HADS + PHQ-9 | |||||||||
| Accuracy | 0.710 | 0.694 | 0.674 | 0.673 | 0.687 | 0.607 | 0.647 | 0.654 | 0.734 |
| AUC | 0.787 | 0.774 | 0.745 | 0.731 | 0.743 | 0.636 | 0.694 | 0.730 | 0.807 |
| Sensitivity | 0.706 | 0.689 | 0.655 | 0.667 | 0.679 | 0.586 | 0.618 | 0.625 | 0.749 |
| Specificity | 0.722 | 0.708 | 0.715 | 0.687 | 0.715 | 0.685 | 0.737 | 0.737 | 0.723 |
BDI, Beck Depression Inventory; HADS, Hospital Anxiety Depression Scale; PHQ-9, The Patient Health Questionnaire-9; AUC, area under the curve; SVM-RBF, support vector machine-radial basis function; SVM-Lin, support vector machine- linear kernel; SVM-Poly, support vector machine-polynomial kernel; LDA, Linear Discriminant Analysis; RF, Random Forest; kNN-n, k-Nearest Neighborhood with k value of n; LR, Logistic Regression.