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Abstract
Study of the foreign body reaction to implanted electrodes in the brain is an important area of
research for the future development of neuroprostheses and experimental electrophysiology. After
electrode implantation in the brain, microglial activation, reactive astrogliosis, and neuronal cell
death create an environment immediately surrounding the electrode that is significantly altered
from its homeostatic state. Objective. To uncover physiological changes potentially affecting device
function and longevity, spatial transcriptomics (ST) was implemented to identify changes in gene
expression driven by electrode implantation and compare this differential gene expression to
traditional metrics of glial reactivity, neuronal loss, and electrophysiological recording quality.
Approach. For these experiments, rats were chronically implanted with functional Michigan-style
microelectrode arrays, from which electrophysiological recordings (multi-unit activity, local field
potential) were taken over a six-week time course. Brain tissue cryosections surrounding each
electrode were then mounted for ST processing. The tissue was immunolabeled for neurons and
astrocytes, which provided both a spatial reference for ST and a quantitative measure of glial
fibrillary acidic protein and neuronal nuclei immunolabeling surrounding each implant.Main
results. Results from rat motor cortex within 300 µm of the implanted electrodes at 24 h, 1 week,
and 6 weeks post-implantation showed up to 553 significantly differentially expressed (DE) genes
between implanted and non-implanted tissue sections. Regression on the significant DE genes
identified the 6–7 genes that had the strongest relationship to histological and electrophysiological
metrics, revealing potential candidate biomarkers of recording quality and the tissue response to
implanted electrodes. Significance. Our analysis has shed new light onto the potential mechanisms
involved in the tissue response to implanted electrodes while generating hypotheses regarding
potential biomarkers related to recorded signal quality. A new approach has been developed to
understand the tissue response to electrodes implanted in the brain using genes identified through
transcriptomics, and to screen those results for potential relationships with functional outcomes.

1. Introduction

Intracortical microelectrode implants have the capa-
city to stimulate nervous tissue and/or record elec-
trical signals from the brain. This functionality allows
for a wide range of applications, from treating debil-
itating neurological diseases to preclinical and basic
neuroscientific research. Clinical applications of these
devices have progressed rapidly over the past decade

and have recently gained newfound interest due to
the potential for use in brain–computer interfaces
(BCIs). Recent advances in recording-based implants
have restored quadriplegic [1, 2] or quadriparesis [3]
patients’ ability to communicate. BCI research has
shown the capability of recording implants in motor
cortex to drive movement of a robotic limb or com-
puter cursor [4, 5]. Generally, intracortical electrodes
are used in these applications to record electrical
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signals from specific areas of the brain. An algorithm
is then trained to decode the electrical signals into
meaningful information that can be used to drive the
BCI and produce the desired outcome.

Limitations to the long-term use of recording
implants in vivo include observations of a decrease
in signal quality over time [6–10] as well as signal
instability [6, 10–12]. Decline of signal quality is
characterized by decreased amplitude of unit wave-
forms, number of resolvable units, signal-to-noise
ratio, and an increase in impedance. All these trends
can contribute to a decline in device function by
reducing information transfer at the brain-electrode
interface [13]. This creates limitations for current
BCIs because loss of information directly affects
decoder performance [13], and it also creates limit-
ations in research settings when trying to study com-
plex and precise neurological activity over a long
period of time.

There are multiple possible mechanisms that may
lead to signal quality and stability decline [7, 14]. In
addition to mechanical/electrical failure and micro-
motion, a long-standing line of inquiry into the ori-
gins of signal decay focuses on the biological response
to implants in the brain, known as the foreign body
reaction (FBR) [15, 16]. It has been predicted that
∼85% of firing rate variability, which can lead to
decreased BCI performance, is due to physiological
changes [8]. In the brain, the FBR is often charac-
terized by a loss of neuronal density surrounding
the implant, which has been shown in one report to
decrease by 40% within 100 µm [17]. Another prom-
inent effect is the presence of reactive astrocytes sur-
rounding the implant after 1 week post-implantation,
shown by increased glial fibrillary acidic protein
(GFAP) [15]. It has been shown that increased glial
encapsulation can lead to increased impedance; how-
ever, it is not clear how increased impedance influ-
ences recording quality over time [9]. Furthermore,
even though the FBR traditionally has been stud-
ied using the immunohistochemical (IHC) methods
mentioned, neuronal loss and GFAP intensity do not
necessarily predict signal stability [18]. Thus, the rela-
tionship between recording quality and the biological
response remains unclear, and predictive biomarkers
of signal quality have yet to be identified.

Transcriptomics has been a successful approach
for identifying important biomarkers associated with
diseases of the central nervous system (CNS). For
example, transcriptomics has revealed a novel tar-
get, neddylation, that ameliorates the severity of
multiple sclerosis in a murine disease model [19].
Transcriptomics has also been applied in Alzheimer’s
disease (AD) research to expose genetic, cell-type spe-
cific regulators of myelination that are perturbed in
AD, as well as sex differences in the cellular response
to AD [20]. Additionally, a transcriptomics method
which allows for gene expression to be spatially

resolved has been applied in AD research to reveal
groups of genes that are differentially expressed (DE)
surrounding amyloid plaques [21]. Recently, a new
focus in the study of the brain-electrode interface is
the use of transcriptomics to study the FBR. Recent
studies from multiple labs have illuminated specific
genes that are DE around the implant compared
to non-implanted brain tissue [22–24]. In an initial
publication in this area, laser capture microscopy
was used to dissect fixed tissue from near the device
tract (<100 µm), from tissue 500 µm away from
the device tract, and from a non-implanted animal.
Following bulk RNA sequencing of the excised tis-
sue samples, DE analysis revealed 157 differentially
expressed genes (DEGs) at 24 h, 62 DEGs at 1 week,
and 26 DEGs at 6 weeks post-implantation in com-
parison to non-implanted tissue. Differential expres-
sion DE analysis revealed several genes that were sig-
nificantly DE between tissue 500 µm from the device
and naïve tissue, suggesting the spatial extent of dif-
ferential gene expression can extend for several hun-
dred microns from the device surface.

Here, in an extension of previous work [22],
we report the application of a newer spatial tran-
scriptomics (ST) method which has three advantages
over our previous approach: (1) it reports the tran-
scriptional profile of individual genes with improved,
near cellular-scale resolution across the entire land-
scape of a tissue section containing the device, (2) it
improves RNA quality compared to previous work
through the use of fresh-frozen tissue samples, and
(3) it allows quantitative immunohistochemistry and
ST to be performed in the same tissue section, which
allows gene expression data to be directly compared
to traditional IHC data. We applied this technique to
the brain-electrode interface in rats implanted with
single shank, silicon microelectrode arrays implanted
in motor cortex. All timepoints (24 h, 1 week, and
6 week implants) yielded significant, DE genes when
comparing either implanted tissue sections to non-
implanted tissue sections or within-section regions.
Each timepoint revealed novel genes that have not
been identified previously, as well as the spatial extent
of each gene. We also provide an initial investigation
into the relationship between gene expression within
the electrode site and measurements of both record-
ing quality (signal to noise ratio, amplitudes of multi-
unit activity and local field potential (LFP) and tra-
ditional histological metrics (neuronal density and
GFAP intensity). Using linear regression and prin-
cipal component regression (PCR), predictive quality
of individual and sets of significantly and DE genes
were calculated for eachmetric. The predictive quality
and the fold change of the genes were used to identify
a small subset of geneswhichmaximise both the para-
meters. These genes may deserve added attention as
potential biomarkers for electrode-tissue integration
which are based on functional outcomes.
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2. Material andmethods

2.1. Surgery, Implantation & Sample Preparation
All electrodes used for this study were single-
shank, silicon, Michigan-style microelectrodes
(A1x16–3 mm-100–703-CMLP, 15 µm thickness,
NeuroNexus Inc, Ann Arbor, MI). Adult, male,
Sprague Dawley rats received implants in motor cor-
tex using coordinates and procedures as previously
described [22, 25]. Briefly, electrodes were inserted
(+3.0 mm AP, 2.5 mm ML from Bregma, 2.0 mm
deep) during isoflurane anaesthesia, and the sur-
gical site was closed via a dental acrylic headcap.
Post-operative analgesia was achieved with injec-
ted meloxicam (2 mg kg−1) and topical applica-
tion of bupivacaine. At the appropriate timepoint
(24 h, 1 week, or 6 weeks), animals were euthan-
ized via sodium pentobarbital administration and
decapitation, and brains were rapidly removed and
cryo-embedded using liquid nitrogen (n = 3 rats/-
time point). Aligning with other studies using this ST
method [21, 26, 27], animals were not perfused prior
to euthanasia. Tissue was then cryosectioned from
primary motor cortex at a depth of ∼1000 µm and
mounted on a Visium Spatial Gene Expression slide
(10x Genomics, Pleasanton CA). All animal proced-
ures were approved by the Michigan State University
Animal Care and Use Committee.

2.2. Immunohistochemistry
Immediately prior to IHC, the tissue was fixed in cold
methanol for 30 min. It was then blocked in a bovine
serum albumin solution before being labelled using a
neuronal nuclei (NeuN) primary antibody (Rb pAB
to NeuN, Abcam, Cambridge, MA, Cat #:104225) at
a concentration of 1:100 and a GFAP primary anti-
body (Monoclonal Anti-GFAP) antibody, Millipore
Sigma, St. Louis, MO, Cat #: G3893-100) at a concen-
tration of 1:400. Secondary antibodies used for stain-
ing were AlexaFluor 488 (Anti-rabbit IgG, Invitrogen,
Eugene OR, Cat #: A11034) for conjugation to the
NeuN primary and AlexaFluor 647 (Anti-mouse IgG,
Invitrogen, Eugene, OR) for conjugation to the GFAP
primary. Additionally, Hoechst (Life Technologies
Corp. Eugene,OR)was used as a universal nuclei stain
at a concentration of 1:1000. After staining, a Nikon
A1R confocal microscope (Nikon, Tokyo, Japan) with
a motorized stage was used to capture individual 20x
magnification image tiles of each capture area, out-
lined with a fluorescent fiducial frame, on the Visium
slide. The final wide-field image was stitched together
from the individual image tiles by automated Nikon
software.

Quantitative IHC was performed using a custom
MATLAB script that has been previously described
[25, 28–30]. Briefly, neuronal density was measured
in 100 µm bins radiating outwards from the sur-
face of the tissue surrounding the electrode tract in
implanted tissue and from a comparable area of tissue

in naïve controls. This comparable area used from
naïve controls was determined by relative location
of larger brain structures such as distance from the
glia limitans and stratal patterns of neuron density
in the transverse sections of brain tissue. A similar
strategy was used to estimate relative GFAP protein
expressionwithin each tissue samplewith 10µmbins.
Fluorescence intensity of GFAP staining was used as
the proxy for amount of GFAP protein expression in
this quantitative IHC method. A linear mixed model
ANOVA with a Bonferroni post-hoc test was used to
test the statistical significance of quantitative immun-
ohistochemistry results (SPSS software, IBM), simil-
arly to previously described work [22]. Statistical sig-
nificance was defined at the P ⩽ 0.05 level.

2.3. Tissue permeabilization & complementary
DNA (cDNA) synthesis
After imaging, tissue was enzymatically permeab-
ilized for 18 min. This permeabilization time was
established through an optimization experiment,
where fluorescent cDNA was created on the slide
to reveal the permeabilization time that maximized
RNA release from a tissue section (supplementary
figure 1). Although fluorescence intensity appears
similar between 18 and 24 min trials, the 24 min
trial showed evidence of over-permeabilization due
to undefined cell body borders. After permeabiliza-
tion and mRNA capture, reverse transcription was
performed on the slide to transfer bound mRNAs’
nucleotide sequences to the capture oligos on the
slide. The original mRNA strands were then released
from the capture oligos and through a series of tem-
plate switching and second strand synthesis steps,
Final cDNA samples were produced which contained
sequences of the originally bound mRNA molecules,
unique molecular identifiers, and spatial barcodes.
cDNA was then released from the slide via denatur-
ation and transferred to a DNA/RNA LoBind micro-
centrifuge tube (Eppendorf, Cat #: 022431021). The
cDNA from each capture area was quantified using
qPCR and amplified using the number of cycles
from qPCR required to achieve 25% of the peak
fluorescence value. After amplification, the cDNA
was purified using SPRIselect (Beckman Coulter Inc,
Brea, CA), a paramagnetic bead-based size selection
reagent.

To find the RNA Integrity Number (RIN) of
the tissue, a ‘QIAshredder’ kit (Qiagen, Hilden,
Germany) was used to homogenize collected cryo-
sectioned samples. RNA was isolated using a RNeasy
Mini Kit and initially assessed using the Qubit assay
(Invitrogen,Waltham,MA). RINwas calculated at the
MSU Genomics Core using the High Sensitivity RNA
ScreenTape Assay on an Agilent 4200 TapeStation.

2.4. RNA sequencing and differential expression
analysis
Samples were then transferred to the University
of Michigan Advanced Genomics core for library
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preparation and sequencing. cDNA quality was
assessed using the Tapestation 2200 (Agilent) and
subjected to library preparation following the man-
ufacturer’s protocol (10x Genomics). Final lib-
rary quality was assessed using the LabChip GX
(PerkinElmer). Pooled libraries were subjected
to paired-end sequencing according to the man-
ufacturer’s protocol (Illumina NovaSeq 6000).
Bcl2fastq2 Conversion Software (Illumina) was
used to generate de-multiplexed Fastq files and the
SpaceRanger Pipeline (version: 2.0.0, 10x Genomics)
was used to align reads and generate count matrices.
Individual, spatially barcoded spots were excluded
from SpaceRanger alignment based on a couple cri-
teria. Some regions of tissue exhibited artifacts from
cryosectioning such as folds, tears, and bubbles as
well as artifacts from staining in the form of specks
of high fluorescence intensity. Areas affected by both
types of artifacts were removed from ST analysis.
The main output of SpaceRanger is the ‘cloupe’ file,
readable by ‘Loupe Browser’ software (version: 6.2.0,
10x Genomics), which was used for the following
differential expression analysis. Raw fastq files were
also analysed using FastQC (version: 0.11.7-Java-
1.8.0_162) to verify sequencing quality.

Data was imported into Loupe Browser, where
clusters of spots were selected to do a basic count
measurement for each gene of interest as well as over-
all DE analysis. For distance measurements, images
were binned using the open-source Fiji image analysis
software [31] (version 2.6.0) to identify areas of tissue
extending from the electrode tracts in 100 µm radius
increments. Spots were then clustered based on the
bin their centroid was located in. Thus, the distance
measurements represent a binning of the spots based
on their centroid, not their full area.

Two methods of analysis were applied using
Loupe Browser. The first measured the median nor-
malized average (MNA) counts of genes of interest
within each bin, starting at 0–100 µm and extend-
ing out to a bin 900–1000 µm from the electrode
tract. TheMNA counts for each gene in each bin were
calculated through the Loupe Browser (6.2.0, 10x
Genomics). The second method used was standard
DE analysis, also calculated through Loupe Browser
algorithms, between two clusters. The clusters chosen
for comparisons included spots whose centroids were
in the first three bins (0–300 µm) at each timepoint,
compared to the same area in naïve tissue, giving
three overall comparisons. Distance measurements
for naïve tissue were selected based on a similar
strategy as quantitative IHC, using areas of naïve tis-
sue comparable to the implanted tissue for analysis.
‘Low-count’ genes were excluded from analysis which
removed genes with less than one count per spot, on
average, in both clusters used for the DE comparison.
DE genes were further filtered to reveal ‘significant’
DE genes which we define as genes with a p-value

less than 0.05 and a log2(fold change) (LFC) ⩾0.6
or⩽−0.6.

DEGs are then used in gene ontology (GO)
analysis, which inputs lists of DEGs and produces
key terms that describe the active biological pro-
cesses. The Gene Ontology Enrichment Analysis and
Visualization Tool (GOrilla [32]: https://cbl-gorilla.
cs.technion.ac.il/) is used for this purpose, and signi-
ficant (FDR < 0.05) and highly enriched GO terms
are reported for each timepoint vs. naïve comparison.

2.5. Electrophysiology
Electrophysiological recordings were taken using an
RZ2 BioAmp Processor (Tucker-Davis Technologies,
Alachua, FL) from the implanted, 16-channel,
Michigan-style electrodes using methods previously
described [25]. Briefly, wideband data was sampled
at ∼48 kHz in lightly isoflurane-anesthetized (∼1%)
rats placed in a Faraday cage. Data were analysed
offline in Matlab as described [33]. Recordings
were taken at 24 h post-implantation, 1 week post-
implantation, and then weekly until the terminal
recording immediately prior to euthanasia. The met-
rics of interest to be extracted from these recordings
are the average amplitudes of local field potential
LFP, multiunit activity (MUA) and signal to noise
ratio (SNR) averaged across all the 16 channels of the
implant. SNR and MUA were calculated following
the algorithm mentioned in the following paper [34]
with a few modifications. In brief, the common aver-
age reference (CAR) was calculated and subtracted
from each of the recordings to mitigate the effect of
correlated noise sources [34]. Next, a band pass filter
for 500–6000 Hz was applied on the CAR subtracted
signals. For every sample outside the bounds of±3.5
times standard deviations (STD), a 2.4 ms window
centred at the absolute minimum of the signal was
extracted and stored; the remaining data is noise. If
the RMS of the noise floor was between 0.3 and 2
times the average RMS of the noise floor across all
16 sites on the array, the data from those channels
was included in further analysis, removed if not (this
serves as a method to detect and exclude damaged
sites) [34]. To calculate the SNR, peak to peak (P2P)
value of each the stored snippets was calculated, then
averaged and divided by 6 times the standard devi-
ation of the data comprising the noise floor. The SNR
values obtained for each channel is further averaged
across the channels to obtain an average SNR metric
for implant. To calculate MUA, mean of the positive
deflections (samples > 3.5 ∗ STD) and the negative
deflections (samples < −3.5 ∗ STD) was calculated,
and the P2P value of these 2 averages was the mean
MUA amplitude for the electrode site. The mean
MUA amplitude values for each site were averaged
across all the channels to calculate the average MUA
amplitude for that implant. To calculate the LFP amp-
litude, the raw data from every channel was passed
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through a 60 Hz notch filter to remove residual 60 Hz
noise followed by application of a band pass filter
with cut-offs at 1 Hz and 300 Hz. The amplitude for
every channel was calculated as 6 times the standard
deviation of the filtered data.

2.6. Identification of potential biomarkers of
recording quality
All sequencing data is first normalized to its sequen-
cing depth using Space Ranger, and the MNA is
applied to the region of interest to normalize the
mRNA reads for spots in that region. MNA is applied
by multiplying every spot in the selected cluster of
spots by the ratio of the total counts of that spot and
the median of the total UMI counts of that cluster.
As an additional quality assessment, each sample was
inspected for non-linearity by assessing the relation-
ship between the raw counts of GAPDH [35, 36]
and Actin-B [35, 36] (commonly used housekeep-
ing genes) to the total counts with respect to every
spot. As housekeeping genes are involved in cellu-
lar maintenance, they are expected to be consistently
expressed across the tissue (i.e. the raw counts should
increase or decrease along with the total number of
UMI counts at that spot).Our samples exhibited a lin-
ear relationship between totalUMI counts and house-
keeping genes (supplementary figures 2–9).

Following normalization and inspection of
housekeeping gene expression, we first inspected
the data via principal component analysis (PCA)
applied to the MNA for the entire tissue section for
every gene. PCA was also performed for the cluster of
spots within 300 µm of the electrode. This was done
because PCA for the entire tissue extends beyond
the boundaries of M1, and includes different regions,
which could influence the results. For the naïve anim-
als (n= 3), 3 non overlapping random electrode sites
with a radius of 300 µm were chosen for each animal
to be included in the PCA analysis (supplementary
figure 10). Individual animals’ results were then plot-
ted against the calculated PC1 and PC2 to observe the
relative variability in gene expression across different
animals and time points.

To further explore the relationship between the
genes and the metrics of interest (MUA, LFP, SNR,
GFAP and ND), an elementary pipeline was estab-
lished. Differential expression analysis and assess-
ments of LFC is a standard approach to identify genes
of interest [23, 37, 38]. In this study, we included
an additional step of screening those genes with a
potential relationship with the device presence for
those that may also have a relationship with record-
ing quality. Linear regression is a natural first step for
assessing the strength of a relationship between two
variables [39–42], and PCR is used when the num-
ber of independent variables outnumber the depend-
ent variables [43, 44]. This is because PCR reduces a
large set of correlated predictor variables to a smaller,

less correlated set, called principal components, that
still contains most of the information in the larger
set. In addition to dimensionality reduction, it serves
as a useful tool for exploration of data. Thus, our
initial analysis considered 2 metrics, (1) a metric to
reflect the gene’s possible participation in the tissue-
electrode interaction: log fold change, and (2) a met-
ric to reflect the strength of association between the 2
variables, for which we use the R2 statistic of regres-
sion (either linear regression for 1 gene or PCR for
multiple genes). These 2 metrics are used to select
genes of interest and understand the relationship
between the response and dependent variables.

First, we consolidated the list of significantly DE
genes at the 24 h (553), 1 week (282) and 6 week (25)
time points into one list of 645 total genes (exclud-
ing overlap). For the genes that were common across
more than 1 timepoints, the LFC with the highest
value was chosen to represent the LFC of that gene.
We next sought to quantitatively evaluate the predict-
ive quality of each gene and sets of genes on recording
quality and IHC metrics using linear regression and
PCR . Linear regression was performed on the elec-
trode siteMNAvalues for each individual gene, giving
the R2 statistic and the p-value (non-adjusted) of the
F–statistic for each gene for each individual test. PCA
analysis was performed on sets of genes in an iterative
manner to obtain the coefficients along the PCs for
every possible combination in that set. Linear regres-
sion analysis was performed between the obtained
coefficients from PC1 of each set and metrics of
recording quality and tissue response. This analysis
produced anR2 statistic and the non-adjusted p-value
of the F–statistic for regression (PC1 obtained from
each set of genes) to assess the strength and signi-
ficance of the relationship between the expression of
every gene and the MUA amplitude, LFP amplitude,
GFAP intensity, and neuronal density for that tissue
sample. The latter two metrics were calculated for the
tissue within 300 µm of the device interface, which
captures the recordable radius of the device [45, 46].
To choose the most significant genes, LFC and aver-
age LFCs in case of sets of genes are plotted against
the R2 statistic to select the top 4–7 genes/gene sets
with the combination of highest R2 statistic (reflect-
ing a possible relationshipwith histological or record-
ing quality metrics) and the highest LFC/average LFC
(capturing the genes that are most strongly affected
by the device presence). The results of this pipeline for
sets genes are available in the supplementary section
(supplementary figure 11). The chosen genes and sets
of genes are fitted onto the response variable using
the intercept and the coefficient produced by the lin-
ear regression. In this way, we were able to visualize
the relationships between individual genes, record-
ing quality, and histology metrics, revealing poten-
tial candidate biomarkers associated with perform-
ance metrics and tissue response outcomes.
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Figure 1. Tissue surrounding implanted electrodes displays significant gliosis and a progressive loss of recording quality over time.
(A) The GFAP intensity within 100 µms of the device trended higher at 7 d post-implantation (p< 0.1) and is statistically
significantly increased at 6 weeks post-implant in comparison to earlier time points (p< 0.001). Neuronal density was relatively
reduced within 100 µms of the device at the 1 and 6 week time points, but the result did not reach statistical significance. (B) The
average SNR, MUA and LFP amplitudes show a progressive decline in signal quality over the six-week time course of the study
(n= 2–3 animals per time point) (C) Representative image of the IHC tissue at different time points (top row) alongside
magnified images (bottom row) corresponding to region outlined by the white box. Transcriptomics and IHC data were taken
from the same tissue slice for each rat.

3. Results

3.1. Quantification of IHCmarkers (NeuN, GFAP)
and recording quality associated with devices
We first characterized the tissue response to electrodes
using traditional histological methods (NeuN, GFAP
quantification) and assessed the loss of signal qual-
ity over time. Quantitative immunohistochemistry
revealed typical patterns of both reactive astrogli-
osis and neuronal loss surrounding the electrode
implants (figure 1). Likewise, we noted a progressive

decline in metrics of signal amplitude, similar to pre-
vious results obtained from Michigan-style silicon
arrays implanted in rats. GFAP staining intensity,
a commonly used biomarker to estimate astrocyte
reactivity, shows a trend toward increased expres-
sion at 1 week (p < 0.1), and displays a statistic-
ally significant increase from naïve tissue at 6 weeks
post-implantation within 100 µm of the device inter-
face (p < 0.001). Neuronal density, measured by the
number of NeuN per area, trends lower at 1 week
and 6 weeks post-implantation in the same region,
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Figure 2. Gene expression data for Gfap (A) and Snap25 (B) reinforce astroglial reactivity and neuronal loss following device
implantation. The colour at each spot expresses the log2 (normalized counts) as a measure of the amount of gene expression, and
the x-axis represents the distance from electrode site. The MNA of counts for each gene within the 100 µm bins is centred at the
neural implant site up to 1000 µm. Gfap expression was significantly upregulated within 300 µm of the implant at all time points,
and Snap25 expression was significantly downregulated within the same region at the 24 h and 1 week time points.

but the result did not reach statistical significance
(p > 0.05), likely due to the relatively limited num-
ber of samples probed per time point. ST yields a high
quantity of information per sample for the expression
of thousands of genes, but typically, relatively few
samples are assessed due to associated costs [21, 47–
49]. However, evidence of neuronal damage/loss is
supported by a reduction in the expression of the
neuron-specific Snap25 gene (figure 2). The results
alignwith previous descriptions of the tissue response
to silicon electrodes reported in literature [50], and
the complete set of twelve IHC samples are supplied as
supplementary figures (supplementary figures 12 and
13). Based on a study usingNissl staining of rat motor
cortex [51], implants and the tissue surrounding the

electrode tract appear to be consistent with placement
in layer 5 of the motor cortex, which was the target
of this study due to the presence of large pyramidal
neurons [52] and relevance to clinical applications
[53–55].

3.2. Overview of gene expression results: quality
and comparison with protein expression
Spatial distribution of UMI counts in each sample
weremostly uniform (supplementary figure 14). UMI
counts are equivalent to the total number of counts of
all genes generated through sequencing. The number
of UMI counts are used to verify adequate sequencing
depth, which was consistent with the recommended
range for all samples in this study on average (>50 000
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UMI counts per spot). The bulk RIN scores for two
separate samples tested with the tissue preparation
method >7, which is improved over previous tran-
scriptomics techniques reported post-fixation [22].
As a first analysis step, we benchmarked gene expres-
sion (Gfap and Snap25) to the IHC results (figure 2).
Gfap gene expression and GFAP protein expres-
sion followed similar patterns, with an increase near
the device at 1 and 6 weeks post- implantation;
however, there were differences between Gfap/GFAP
expression. At 24 h post-implantation, Gfap gene
expression is elevated above naïve samples in all bins
(1–10) (figure 2), which corresponds to distances
0–1000 µm from the device tract. Gene and pro-
tein expression often do not display a one-to-one
correspondence [56].

Additionally, while GFAP protein expression
peaks at the interface 6 weeks post-implantation,
ST found Gfap gene expression peaked at the inter-
face 1 week post-implantation. Due to low Rbfox3
expression (encodes NeuN protein), Snap25was used
as a substitute neuronal marker for transcriptomic
analysis [56]. In a report detailing the genetic pro-
files of three main types of brain cells (astrocytes,
oligodendrocytes, and neurons), Snap25 was the
most highly enriched of the neuron-specific genes
identified [57]. A subsequent report confirmed the
neuronal specificity of Snap25 and its exclusion from
microglial expression [58].”

A decrease in Snap25 expression was observed at
all timepoints compared to naïve tissue. Comparing
spots with centroids within 300 µm of the device
tract to the same area of spots in naïve tissue sections
revealed 553DE genes at 24 h, 282DE genes at 1 week,
and 25 DE genes at 6 weeks.

3.3. Differential gene expression between
implanted and naïve tissue
To investigate overall changes in gene expression
between implanted and naïve tissue, clusters of spots
were compared to one another. Comparing spots with
centroids within 300 µm of the device tract to the
same area of spots in naïve tissue sections revealed
553 DE genes at 24 h, 282 DE genes at 1 week, and
25 DE genes at 6 weeks post-implantation (figure 3).
DEGs at 24 h were mostly downregulated compared
to naïve tissue while DE genes at 1 week had roughly
the same number of up and down regulated genes,
and DE genes at 6 weeks were mostly upregulated.
Gfap was one of the top three significant DE genes at
all timepoints, while Snap25 was significantly down-
regulated at 24 h and 1 week only.

The top 10 significant DE genes at each timepoint
are shown in figure 3 and supplementary figures
15, 16. Panels in these figures show the spatial
distribution of each gene’s expression in a rep-
resentative image, the average expression in MNA
counts at different ranges from the interface (bar

graphs), and a table showing the LFC of each
gene at each timepoint and its significance. Not
including Gfap and in descending order of sig-
nificance, the top 10 DE genes at 24 h post-
implantation were Heat Shock Protein Family B
(Small) Member 1 (Hspb1), Metallothionein 2A
(Mt2a), Chitinase 3 Like 1 (Chi3l1), Lipocalin (Lcn2),
Secreted Phosphoprotein 1 (Spp1), Insulin Like
Growth Factor Binding Protein 2 (Igfbp2), Beta-2-
Microglobulin (B2m), Ribosomal Protein SA (Rpsa),
Translocator Protein (Tspo), and Transmembrane
Immune Signaling Adaptor TYROBP (Tyrobp). At
1 week, the top 10 significant DE genes were Fc
Receptor Like 2 (Fcrl2), Complement C3 (C3), S100
Calcium Binding Protein A4 (S100a4), Fatty Acid
Binding Protein 7 (Fabp7), Secreted Protein Acidic
andCysteine Rich (Sparc), Complement C1q AChain
(C1qa), Transmembrane Protein 176A (Tmem176a),
Complement C1q B Chain (C1qb), Spp1, and Mt2a.
At 6 weeks, the top 10 significant DE genes were
Ribosomal Protein L38 (Rpl38), C3, Spp1, Tyrobp,
Lysozyme 2 (Lyz2), Serping Family G Member 1
(Serping1), C1qa, RibonucleaseT2 (Rnaset2), Ferritin
Light Polypeptide 1 (Ftl1), and Galectin 3 (Lgals3).
Full lists of DE genes may be found in supplemental
data 1.

To examine physiological processes activ-
ated or suppressed by the significant DE genes
at each timepoint, GO analysis was imple-
mented using the Gene Ontology Enrichment
Analysis and Visualization Tool (GOrilla). At
24 h post-implantation, a few significant GO
Terms were ‘Positive Regulation of Glial Cell
Proliferation’ (GO:0060252, FDR: 1.39 × 10−2),
‘Apoptotic Signalling Pathway’ (GO:0097190,
FDR: 4.74 × 10−2), and ‘Response to Cytokine’
(GO:0034097, FDR: 6.76 × 10−3). At 1 week
post-implantation, a few significant GO Terms
were ‘Negative Regulation of Neuron Projection
Development’ (GO:0010977, FDR: 6.69 × 10−3),
‘Complement Activation, Classical Pathway’
(GO:0006958, FDR: 1.87 × 10−3), and ‘Synapse
Pruning’ (GO:0098883, FDR: 1.71 × 10−3). The 25
significant DE genes at 6 weeks post-implantation
did not return any results from GO analysis, likely
due to the small number of genes. A full list of signi-
ficant GO Terms at the 24 h and 1 week timepoints
are shown in supplementary data 2.

3.4. Computational analysis
Principal component analysis was performed on the
MNA gene expression across the entire tissue and for
⩽300 µm from the electrode site for every animal.

PCA of the MNA of local gene expression
(⩽300 µm from the electrode site) revealed clearer
clustering in naïve tissues relative to implanted tissues
(figure 4(A)), which displayed a higher degree of vari-
ability. It was observed that the 24 h animals have high
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Figure 3. Differential expression and spatial expression of significantly expressed DE genes. (A) Volcano plots show the DE
between a 300 µm radius area surrounding the implant in 3 separate tissue samples at each timepoint compared to a 300 µm
radius area in similar locations of naïve, non-implanted tissue. (B) Images show the spatial gene expression of the 3 most
significant DE genes in each of these timepoint comparisons, ordered by most to least significant, top to bottom. (C) Shows the
bar graphs of MNA for each of the top 3 significant genes at each time point, and the table shows the LFC between the naïve and
the other available time points for 300 µm radii from the neural implant site.

variance between each other, which decreases for the
1 week and 6 week animals across the first two prin-
cipal components (figure 4(B)). This is potentially
explainable by sources of variation related to inser-
tional damage and vascular disruption. This tissue
damage and extravasation of blood, which inevitably
occurs during the implantation process, triggers an
immediate rush of inflammatory-mediating cells to

the area [15, 56]. The later chronic phase of the tis-
sue response is characterized by formation of a glial
sheath around the electrode, in concert with neuronal
loss.

This shift from insertional damage to a chronic
tissue response might explain the tighter clustering
of 1 week and 6 week time points compared to the
highly variable 24 h time point (figure 4(B)), as well

9
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Figure 4. Initial inspection of data using principal component analysis (PCA) and analysis of housekeeping genes. (A) PCA of
spots within M1 (<300 µms from device) indicate device-induced variability in gene expression in comparison to naïve samples.
(B) Results from the whole tissue sample indicate the greatest variation in samples at the earliest time point post-injury (24 h).
The later time points (1 and 6 weeks) display comparatively closer clustering, as well as overlap with unimplanted tissue in the
PCA space, potentially indicating a partial resolution of device-induced gene expression effects over time. Selected example plots
for two common housekeeping genes, GAPDH (D), (E) and Actin-B (F), (G), show the expected linear relationship between their
normalised counts and the normalised total counts at each spot.

as the overlap of 6 week and naïve data in PCA
space [15, 57, 58]. The counts of two well-known
housekeeping genes were inspected with respect to
the total counts, to check for any inconsistencies at
any specific spot. The ratio of housekeeping gene
counts with the total UMI counts at that spot should
represent a linear relationship within an accepted
range [35, 36].

Regression analysis was performed to identify
the genes with the strongest predictive value of sig-
nal quality. PCR is the chosen method of regres-
sion for more than 1 genes, because there are relat-
ively few observations (8 samples) compared to the
number of independent variables (∼650 genes). Since
PCR uses the principal components for regression it
decreases the number of independent variables down
to a smaller, more manageable number of uncorrel-
ated variables [43]. Only the first component is used
for regression of the MNA values of the electrode
site, and the top genes of interest are genes that dis-
play both a highly positive or negative LFC (indic-
ating a pronounced effect of device implantation)
and a high R2 value (indicating a strong predictive
value for a recording quality or histological meas-
urement of interest). We performed PCR on small
groups of genes and found that genes associated with

neuroinflammation and gliosis (e.g. Lcn2, Hspb1,
Lgals3) were reliably associated with the output met-
rics of interest (supplementary figure 11).

However, since individual genes are more eas-
ily targeted experimentally than groups of genes, we
repeated the analysis for single genes (Scatter plot of
LFC vs R2 value: figure 5, linear regression: figure 6).
These results displayed similar genes and related sig-
nalling pathways, discussed below.

As a benchmark for comparison, we also assessed
the R2 statistic using PCR for Snap25 and Gfap
(figure 7), since these two genes are common mark-
ers for neurons and astrocytes and followed expected
trends for neuronal density and astroglial activation
(figures 1 and 2).

The R2 statistic for Gfap is ∼ 50% for LFP,
ND and GFAP, and close to 70% for MUA (only
significant for MUA). The predictive quality of
Snap25 was poorer (non-significant for each met-
ric). Thus, cell type-specific marker genes associ-
ated with traditional neuronal density and astroglial
reactivity responses were poorer predictors of record-
ing quality in comparison to genes revealed in the
PCR analysis, which were more strongly associ-
ated with neuroinflammatory pathways and synaptic
function.

10
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Figure 5. Regression and LFC were used to identify a subset of genes of interest. The 5 plots show where each gene lies on the axis
of LFC and R2 statistic, the genes shown in red are the genes that represent the highest value for both the parameters and were
chosen for further investigation.

4. Discussion

Recent reports in the literature highlight the value
of applying transcriptomics techniques to understand
the biological response to electrodes implanted in
the brain. This report details an application of a ST
assay that expands the current observations of the tis-
sue response surrounding electrode implants in mul-
tiple ways. First, the ability to flexibly select ‘spots’
for differential expression analysis is a key advant-
age for understanding the spatial distribution of up-
or down-regulated genes. Second, the combination
of transcriptomics and IHC within the same tissue
sample reveals new information about the source
of genes of interest found in studies of the FBR to
implanted electrodes: we can analyse the enrichment
of gene expression relative to the distribution of spe-
cific cell types using IHC. An additional advantage
of the approach lies in its spatial breadth, which
allows for visualization of changes in gene expression
far beyond the first few hundred microns of tissue
that are typically assessed with immunohistochem-
istry. The data revealed effects of the device on gene
expression at locations several millimeters distally to

the implant location. For example, multiple genes of
interest related to reactive astrogliosis such as Gfap,
C3, Lcn2, and Vim were not only upregulated at the
brain-electrode interface, but also in locations else-
where in implanted tissue. At 24 h post-implantation,
widespread reactive astroglial gene upregulation was
observed, extending throughout the whole tissue
section in some cases. In one 1 week sample, a spot
of increased GFAP protein expression ∼1 mm away
from the electrode tract exhibited increased reactive
astroglial genes, and in 2/3 of the 1 week samples,
the glia limitans also displayed increased expression
of these genes. This finding shows that the transcrip-
tomic effects of electrode implantation are not lim-
ited to the brain-electrode interface but can be found
at distances from the electrode tract that are often not
visible in images collected using traditional staining
and microscopy techniques.

The observation of increased expression of genes
associated with reactive astrogliosis in the glia lim-
itans suggests that the transcriptomic effects of
implantation may not only extend down the elec-
trode tract, but also across the cortical surface and
throughout the brain. What are the implications of
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Figure 6. Applying the proposed pipeline identifies 6–7 genes of interest that are potential biomarkers for recording quality and
histological metrics. (A) The tables show the genes selected through LFC and regression analysis for each observed variable: MUA
(genes related to neuroinflammation, neuroprotection), LFP (synaptic functionality), SNR (neuroprotection, astrogliosis,
neurodevelopment), ND (neuroprotection, astrogliosis) and GFAP (structural plasticity, synaptic and dendritic regulation). The
plots compare estimated values of the observed variable predicted by the genes in the table through linear regression versus the
actual values.

this observation? The literature available to interpret
this effect is relatively limited, with a notable excep-
tion of a recently published overview of astrocytic

barriers65. It is possible that the glia limitans and
device-associated glial encapsulation might be func-
tioning in coordination, essentially amplifying the

12
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Figure 7. Cell type-specific marker genes, Gfap and Snap25, are poorer predictors of the histological and signal quality metrics
than the genes predicted by regression. The table shows the R2 and the non-adjusted P-values of the regression for both Snap25
and Gfap in the brackets by the legend of each gene [R2, non-adjusted P-value]. The R2 values are low for both Snap25
(∼10%–25%) and Gfap (∼35%–50%) compared to the genes identified through regression. The plots show the fit of the
estimated values of the observed variables by Gfap and Snap25 through regression, and it is visible that Snap25 is a poor predictor
of the respective observed variable than Gfap.

inflammatory response. While it is not yet clear how
differential expression of inflammatory genes in these
external areas affects the surrounding tissue, if the
inflammation does affect the structure or function
of the adjacent neural parenchyma, the effects of the
FBR to implanted electrodes could extend distances
across the surface of the cortex and throughout the
brain orders of magnitude greater than previously
reported. This could be an especially important con-
sideration in the case of multiple implants.

In assessing the spatial expression pattern of the
entire set of genes detected, a natural first analysis
step is to generate lists of highly DE genes and explore
those lists for relationships to known physiological
processes. Similarly to previous studies, the top 10
genes that were DE in the region<300 µms from the
implant site relative to naïve tissue included mark-
ers related to astrocyte reactivity (Lcn2 [59, 60],

Chi3L1 [61, 62]), neurodegeneration(Hspb1, Lcn2)
[59, 60, 63], intracerebral haemorrhage (Mt2a [64]),
and neuroinflammation (C1, C3, Spp1 [65, 66])).
However, while analysing the whole transcriptome
can reveal new and previously unreported potential
biomarkers of device-tissue interaction, detailed dis-
cussions of these individual genes in isolation fails to
identify those genes with a relationship with practical
metrics of interest: namely, recorded signal quality.

To identify the individual genes with the strongest
relationship with MUA and LFP amplitudes, as well
as neuronal density and GFAP intensity, we per-
formed regression analysis to identify the genes
with the strongest predictive quality for each out-
come measurement. Inspecting the top genes pre-
dictive for MUA amplitude reveals markers associ-
ated with both neuroinflammation and neuropro-
tection. For example, Lipocalin-2 (Lcn2) is induced
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by inflammation and can have both neuroprotect-
ive and neurodegenerative functions. Lcn2 has been
shown to act as an ‘help me’ signal produced by
neurons which guides astrocytes and microglia into
pro-recovery phenotypes [59]. However, under iron-
mediated stress conditions or exposure to high con-
centrations for prolonged periods of time, Lcn2 may
increase cell death in neurons and astrocytes [59,
60]. Ikzf4 together with Ikzf1 have been identified
as neuronal reprogramming factors, having been
shown to reprogram fibroblasts into induced neur-
ons and convert uninjured retinal glia into neuron-
like cells [67, 68]. The glycoproteinChi3l1 is predom-
inantly expressed by astrocytes. Microglia-induced
Chi3l1 secretion from astrocytes augments inflamma-
tion and promotes neural damage [59]. Interestingly,
Chi3l1 has been associated with suppression of glial
phagocytic activation [62].Hspb1 is highly reactive to
oxidative stress, neuroinflammation and has a regu-
lating effect on acute neuroinflammation by intensi-
fying the expression of pro-inflammatory cytokines
and enhancing glial cell activation, but not increas-
ing neuronal apoptosis [69, 70]. Generally, the genes
that were most strongly predictive of MUA amp-
litude were related to neuroinflammation; addition-
ally, Igfbp2 and Tcf4 are related to neuritogenesis and
dendritic structure, respectively [71–73].

Synapse-associated genes dominate the list of top
predictors of LFP amplitude, in accordance with the
interpretation that the LFP is predominantly gener-
ated by synaptic conductances [33]. Pde2a belongs
to a family of enzymes involved in the homeostasis
of both cAMP and cGMP [74]. In the brain, both
cAMP and cGMP are essential during neurodevel-
opment as well as in maintaining synaptic plasticity,
and they have critical roles in axon elongation and
guidance [75, 76]. In turn, cAMP abundance coupled
to PKA signalling is critical tomodulate assembly/dis-
assembly/priming/recycling of neurotransmitter ves-
icles and, consequently, for synaptic transmission and
plasticity events. Synaptophysin is an integral mem-
brane protein localized to synaptic vesicles. Syp is
the most abundant protein of synaptic vesicles by
mass [77]. Neural epidermal growth factor-like like 2
(Nell2) is a cytoplasmic and secreted glycosylated pro-
tein with six epidermal growth factor-like domains.
Nell2 is predominantly expressed in neural tissues
where it regulates neuronal differentiation, polariza-
tion, and axon guidance [78]. A detailed analysis of
expression during oligodendrogenesis revealed that
the majority of oligodendroglia express Nell2 [79].
Nell2 promotes survival of neurons by modulating
MAPK activity [79].

Signal quality is influenced by a variety of factors,
both biological and non-biological. Reactive glia
may serve as a physical barrier to signal transmis-
sion or influence neuronal signals through release of
cytokines [15]. The neurons may be dysfunctional,

despite being observable with NeuN labeling (e.g.,
neurons may have structural damage to dendritic
arbors, spine loss, or alterations in electrophysiolo-
gical responses) [52]. SNR perhaps captures these
factors in a more wholistic fashion, being reflective
of sources of both signal and noise. Genes associ-
ated with SNR can be categorized as having func-
tions in neuroprotection (s100a10 [80, 81], Pltp
[82, 83]), dendritic structure (Tcf4 [72, 73]), cor-
tical development (Tcf4, Cf h) [73, 84] and oxidative
stress/neuroinflammation (Hspb1) [69, 70]. S100a10
has been identified as a marker of neuroprotective
astrocytes [80]. It has also been shown to be an essen-
tial negative regulator of toll like receptor (TLR) func-
tion and a potential therapeutic target for treating
inflammatory diseases [81]. TLR signalling influences
multiple dynamic processes in the developing and
adult CNS including neurogenesis, axonal growth,
and structural plasticity.

While we were primarily interested in identify-
ing genes predictive of recording quality, we also
assessed genes that were strongly associated with tra-
ditional markers of the tissue response to implanted
electrodes. Genes strongly associated with neuronal
density have known relationships to neuroprotection
(Hmox1) [85], astrogliosis, and astrocyte-mediated
neuroprotection (Pltp) [82, 83]. The gene lists gener-
ally supports the hypothesis that neural proliferation,
differentiation, and neuritogenesis is inhibited sur-
rounding the implant and that shortening of dend-
ritic branches and neuronal death is promoted in the
vicinity of the neural prosthesis. For the genes associ-
ated with GFAP staining intensity, functions included
synaptic physiology (Itpka) [86], structural plasti-
city (Adgrb1) [87], angiogenesis, regulation of dend-
ritic spine and excitatory synapse development, and
neuroprotection [88, 89].

Notably, the genes that were most strongly asso-
ciated with signal quality were distinguished from
those with the strongest association with the tissue
response. Likewise, Snap25 and GFAP, typical mark-
ers for neurons and astrocytes, were relatively poorer
predictors of recording performance. An interpret-
ation of these phenomena is that the biological
determinants of performance are incompletely cap-
tured by neuronal density and GFAP intensity. The
genes predictive of signal quality in this study should
be explored further to confirm their generalizabil-
ity as biomarkers of signal quality: many experi-
mental factors could influence results. It is import-
ant to contextualize the results of our analysis with
several considerations, including: (1) our recording
metrics may not capture all aspects of quality relev-
ant to the variety of device applications in use, (2)
relatively low sample size (although, our sample sizes
are aligned with reports in literature using ST assays
[21, 47–49]) and (3) the potential to over-interpret
causation when assessing the results of regression.

14



J. Neural Eng. 21 (2024) 046033 QWhitsitt et al

Additionally, it will be important to include addi-
tional time points in future work to assess the trans-
ition between acute and chronic-phase response, as
well as gene expression beyond the 6 week time-
frame. It will be important to assess relationships
for individual time points and phases of the tis-
sue response (insertional damage versus subsequent
acute and chronic phase responses). We would like to
emphasize that the goal of this paper regarding the
computational pipeline used is not to establish caus-
ality between the dependent variables and the genes.
Our goal was to provide a preliminary exploration
of the relationship between the genes and depend-
ent variables in order to generate hypotheses for
investigation. Further work is required. Nonetheless,
we have developed a new approach to understand
the tissue response to electrodes implanted in the
brain using genes identified through transcriptom-
ics, and to screen those results for potential relation-
shipswith functional outcomes.Our analysis has shed
new light onto the potential mechanisms involved
in the tissue response to implanted electrodes while
generating hypotheses regarding potential biomark-
ers related to recorded signal quality. Future work
will need to directly test the causative nature of
these markers through pharmacological or genetic
manipulation.
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