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Abstract 
Metagenomics involves the study of genetic material obtained directly from communities of microorganisms living in natural environ-
ments. The field of metagenomics has provided valuable insights into the structure, diversity and ecology of microbial communities. 
Once an environmental sample is sequenced and processed, metagenomic binning clusters the sequences into bins representing different 
taxonomic groups such as species, genera, or higher levels. Several computational tools have been developed to automate the process 
of metagenomic binning. These tools have enabled the recovery of novel draft genomes of microorganisms allowing us to study their 
behaviors and functions within microbial communities. This review classifies and analyzes different approaches of metagenomic 
binning and different refinement, visualization, and evaluation techniques used by these methods. Furthermore, the review highlights 
the current challenges and areas of improvement present within the field of research. 

Keywords: bioinformatics; metagenomics; microorganisms; metagenomic binning 

Introduction 
Metagenomics is the study of genetic content directly obtained 
from microbial communities found in various environments 
[1–4] such as soil, seawater, air, and niches of the human body 
including the respiratory and gastrointestinal tracts. Samples 
directly obtained from these environments are processed to 
isolate the genetic material, which is then sequenced to obtain 
the nucleotide information. This nucleotide information is 
analyzed to characterize the different microorganisms present 
in the microbial community and understand their behaviors 
and functions. With the advent of high-throughput sequencing 
approaches, metagenomics has enabled the access and study of 
genomes from entire microbial communities [2, 5, 6], providing 
valuable insights into their composition and interactions. 

A typical metagenomic analysis pipeline starts by obtaining 
DNA sequences called reads from a metagenomic sample. Next-
Generation Sequencing (NGS) technologies (e.g. Illumina [7] and  
MGI [8]) generate short reads typically ranging from 50 to 300 
base pairs (bp) and are widely used for metagenomic studies. 
Third Generation Sequencing (TGS) technologies [9] (e.g.  Pacific  
Biosciences and Oxford Nanopore Technologies) that produce 
long reads typically ranging from 10 kbp to over 1 Mbp recently 
have gained popularity as well. Then, a process known as 

assembly is used to connect the sequenced reads to reconstruct 
the original genome from which the DNA originated [10–12]. This 
task is computationally challenging because essentially every 
read must be compared to every other read, and the number of 
comparisons increases with the square of the number of reads. 
Sequence assemblers produce longer sequences called contigs 
which can further be connected to form scaffolds. Metagenomic 
data is both noisy and redundant; variation in the sequences 
may arise from sequencing errors or different species in the 
original samples with different, but highly related sequences. 
Specialized assemblers known as metagenome assemblers [13] 
employ heuristics so that they can assemble metagenomic data 
in a reasonable time (e.g. MEGAHIT [14], metaSPAdes [15] for  
NGS data, and metaFlye [16] for TGS data). However, they do 
not always produce complete/near-complete genomes due to 
the complex composition of metagenomes and the complexity 
of the calculations. Hence, metagenomic binning and refinement 
methods are employed to recover draft genomes known as 
metagenome-assembled genomes (MAGs). In most binning methods, 
taxonomy-independent, unsupervised techniques are used to 
place metagenomic sequences into imaginary bins that represent 
different taxonomic groups such as species, genera, or higher lev-
els [17]. Metagenomic binning solutions have advanced microbial 
ecology by providing information about community structures,
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Figure 1. Aspects of metagenomic binning. After obtaining sequences from a metagenome, reads can either be directly binned for partitioned assembly 
or first assembled into contigs and then binned. Features such as composition, abundance and graph structures of sequences are used during binning. 
Obtained bins can be refined, visualized, and evaluated prior to obtaining the final set of metagenome-assembled genomes (MAGs). 

improved human health through pathogen identification and gut 
microbiome analysis, and progressed biotechnology by enabling 
the discovery of novel enzymes and metabolic pathways [ 18–20]. 

Only a limited number of reviews have been conducted on the 
computational methods used in taxonomy-independent metage-
nomic binning [13, 17, 21]. Moreover, new binning methods incor-
porating new features and techniques have emerged recently. 
Hence, this review aims to deliver a comprehensive overview 
of the different types of metagenomic binning methods (Fig. 1), 
discuss their challenges, study new trends and highlight the areas 
that require improvement. It must be noted that this review 
does not focus on benchmarking binning methods, as detailed 
benchmarking studies on various datasets have already been 
published [22–26]. This review is a comprehensive starting point 
for beginners entering the field of computational metagenomics 
and will pave the way for improvement in the research field. 

Features used in metagenomic binning 
Metagenomic binning is a clustering problem. To cluster 
sequences, we must obtain a set of features that characterize 
the sequences. This section presents the main features used in 

metagenomic binning; the classic features include (i) nucleotide 
composition, (ii) abundance, and, more recently, (iii) graph 
structures of sequences and other biological information (e.g. 
special genes and constraint information) (Fig. 2). We also present 
available tools and summarize their details obtained through 
their relevant publications, published software repositories, and 
source code. 

Nucleotide composition 
The frequencies of oligonucleotides in genomic sequences 
(referred to as k-mers) carry taxonomy-specific signals [27, 28]. 
Composition-based methods have been developed based on the 
assumption that each taxonomic group has a unique nucleotide 
composition, and thus their sequences can be separated into 
bins by comparing the nucleotide content [17], such as the 
guanine-cytosine (GC) content [29] and normalized frequencies 
of oligonucleotides [30]. 

Normalized frequencies of oligonucleotides, especially 
tetramers or 4-mers [29–36], have become the most popular 
method to represent the nucleotide composition of sequences 
in a numerical manner that can be used in computations. Other
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Figure 2. Features used in metagenomic binning. The main features include (A) nucleotide composition, (B) abundance, (C) graph structures of sequences, 
and (D) other features such as special genes and constraint information. 

oligonucleotides such as pentamers [ 37–40] and hexamers [41] 
have been used as well. We start by determining all the possible 
substrings of a given length k (which is why they are known as k-
mers) for a given sequence. This is done using a sliding window of 
size k across the sequence so there are 4k possible k-mers. Next, we 

count how many times each k-mer appears in the sequence and 
obtain a k-mer frequency vector with the lexicographic ordering 
of the k-mers. As DNA is double-stranded and sequencers can 
sample fragments from both strands, we often combine the 
counts of each k-mer with its reverse complement, thus reducing
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Table 1. Comparison of metagenomic binning tools that use composition features 

Binning tool Year User interface∗ Programming 
languages used 

Sequences binned Minimum length 
cut-off (bp) 

Main features, techniques, models 
or algorithms used 

TETRA 2004 Web GUI N.D.† Fragments 1000 4-mers and Maximal-order Markov 
models 

CompostBin 2008 CLI C and Matlab Short reads 1000 6-mers, weighted Principal 
Component Analysis and 
Normalized Cut clustering 
algorithm 

LikelyBin 2009 CLI Perl and C Short reads 400 1-mers to 5-mers and Markov chain 
Monte Carlo (MCMC) methods 

MetaCluster 2.0 2010 CLI C Fragments 300 4-mers and k-means clustering 
based on Spearman footrule 
distance 

SCIMM 2010 CLI Python, C and 
Matlab 

Reads and contigs 400 Interpolated Markov models 

MetaCluster 3.0 2011 CLI C Fragments 500 4-mers and k-median clustering 
based on Spearman distance 

2Tbinning 2012 N.D. N.D. Contigs N.D. 4-mers and Gaussian mixture 
models 

BiMeta 2015 N.D. N.D. Short reads N.D. 4-mers and k-means clustering 
VizBin 2015 Desktop GUI Java Contigs and 

long reads 
1000 5-mers, Barnes-Hut stochastic 

neighbor embedding and manual 
clustering 

MetaProb 2016 CLI C++ Short reads N.D. 4-mers and k-means clustering 
BusyBee Web 2017 Web GUI N.D. Contigs and long 

reads 
500 5-mers and bootstrapped 

supervised binning 
MetaProb 2 2021 CLI Python and C++ Short reads N.D. 4-mers and Louvain community 

detection algorithm 

∗CLI, Command line interface; GUI, Graphical user interface. †N.D., Not defined, no details provided or not available publicly. 

the dimension of our k-mer frequency vector to 4k/2 if k is odd or 
(4k + 4k/2)/2 if k is even [ 32, 42]. Finally, all the k-mer counts are 
normalized by the total number of k-mers found in the sequence, 
resulting in a normalized k-mer frequency vector (Fig. 2A). This 
normalization assumes that all k-mers are equally likely, but the 
likelihood of each k-mer depends on the nucleotide composition 
of the genome. Therefore, other means of representing k-mers 
include (i) likelihood representations [37, 43] that model the 
probability of observing a sequence given the k-mer distribution 
of the genome from which the sequence originates and (ii) Chaos 
Game Representation (CGR) [44] that provides a visual method for 
representing one-dimensional sequences as distinctive graphical 
images enabling pattern identification. 

Once the nucleotide composition is obtained, various statistical 
methods and machine learning-based approaches can be used 
to cluster the sequences into bins. Table 1 summarizes some 
of the notable metagenomic binning tools that use composition 
features. 

Abundance 
Methods based on nucleotide composition encounter difficulties 
when binning sequences from genomes with high genomic simi-
larity [45, 46] and species with low abundance [21]. However, each 
component of a genome should be present in the sample in the 
same proportion. Thus, by estimating the abundance of sequences 
(contigs or reads), we can identify sequences originating from 
the same chromosome because they should have the same 
abundance in each sample. These sequences should also belong to 
the same organism because they should have the same proportion 
in each sample. Hence, abundance-based binning methods were 
introduced to overcome the challenges of composition-based 
methods. These methods have shown improved results for 

sequences of closely related organisms (e.g. strains of the same 
species) that have similar composition profiles [21]. 

Abundance calculations can vary based on the type of 
sequences binned. The abundance of contigs is generally 
represented by the coverage which is the average number of 
reads that align to each base of the contig. This approximates 
how many copies of that genome are present in the sample. 
Contig coverage can be calculated by mapping all the reads to 
the assembled contigs and counting how many reads map to 
each base of the contig (Fig. 2B). If the contigs are obtained from 
a cross-assembly of multiple samples (i.e. reads from multiple 
samples are combined and assembled) or individual assemblies 
of multiple samples, the reads from individual samples can be 
mapped to the contigs. Then the coverage for each contig in each 
sample can be calculated, resulting in a coverage vector for each 
contig. Recent studies have shown improved binning results of 
such multi-coverage binning approaches [47]. 

The abundance of a read in a given dataset involves deter-
mining how many overlapping reads can be found within the set 
of all reads obtained from the given metagenomic dataset. This 
can be calculated by performing all-vs-all pairwise alignments of 
reads. We can also use k-mers from reads to calculate the k-mer 
coverage [48]. The k-mer coverage is defined as the average number 
of reads covering that k-mer in a genome. The k-mer coverage can 
be calculated by counting the number of times k-mers are found 
in the set of reads. The k-mer coverage values for all k-mers in a 
read can be obtained to form a feature vector or a k-mer coverage 
histogram [48–51] representing the read. 

Abundance-based binning methods can be subdivided into 
methods that bin (i) a single sample (e.g. AbundanceBin [52] and  
MBBC [53]) and (ii) multiple samples (e.g. Canopy [54]). Meth-
ods using a single sample assume that sequencing follows the
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Table 2. Comparison of metagenomic binning tools that use abundance features 

Binning tool Year User 
interface∗ 

Programming 
languages 
used 

Sequences 
binned 

Number of 
samples 

Minimum 
length 
cut-off (bp) 

Main techniques, models or 
algorithms used 

AbundanceBin 2011 CLI C++ Reads One 75 Expectation- Maximization 
algorithm 

Canopy 2014 CLI C++ Genes Multiple N.D.† Agglomerative clustering 
based on statistical measures 

MBBC 2015 Desktop GUI 
and CLI 

Java Reads One 75 Expectation- Maximization 
algorithm and Markov chains 

∗CLI, Command line interface; GUI, Graphical user interface. †N.D., Not defined, no details provided or not available publicly. 

Lander-Waterman model [ 55], meaning that the number of times 
a base is sequenced follows a Poisson distribution. Methods using 
multiple samples assume that abundance profiles of sequences 
vary with changes in the abundance of the underlying organisms 
across samples or differential abundance [17, 21, 56]. 

Once the abundance profiles are extracted, various statistical 
methods and machine learning-based approaches can be used to 
cluster the sequences into bins. Table 2 summarizes some of the 
popular metagenomic binning tools that use abundance features. 

Composition and abundance combined 
Composition and abundance-based methods (or hybrid methods) 
make use of both the variation of oligonucleotide frequencies 
and coverage information. Once the nucleotide composition 
and abundance features are calculated for each sequence, 
they can be either combined (e.g. form a concatenated feature 
vector for each sequence [19, 57]) to perform clustering or 
can be used hierarchically (e.g. first cluster using composition 
features and then using abundance features [48]). These methods 
have often outperformed composition-based methods and 
abundance-based methods. Hence, hybrid binning tools have 
become the preferred choice for binning metagenomic datasets at 
present. 

Once both the composition and abundance features are 
obtained, techniques such as principal component analysis (PCA), 
probabilistic models, expectation maximization algorithms and, 
more recently, machine and deep learning models have been used 
to develop these hybrid binning tools. Table 3 summarizes some 
of the popular hybrid metagenomic binning tools. 

As shown in Table 3, most of the tools are designed for contigs 
and developed as command line tools. Moreover, most tools have 
a contig cut-off length of 1000 bp that discards short sequences. 
Furthermore, these tools use various traditional clustering meth-
ods (e.g. k-means, k-medoids and DBSCAN) [57–65], traditional 
machine learning techniques (label propagation and Gaussian 
mixture models) [19, 66–68] and deep learning techniques (vari-
ational autoencoders [69, 70], Siamese neural networks [71, 72]. 
adversarial autoencoders [73] and feed-forward neural networks 
[74]) to bin sequences. 

The number of unique k-mers increases exponentially with the 
increasing size of k. Hence, most binning tools only consider one k 
value to represent the nucleotide information. The most popular 
k-mer size is k = 4 (tetranucleotides), as it results in a reasonably 
long feature vector with 136 dimensions after combining reverse 
complements. Some tools use trinucleotides (e.g. MetaBCC-LR [48] 
and LRBinner [50, 51]) that will further reduce the vector space to 
32 dimensions. However, some tools use the nucleotide composi-
tion from a combination of small k-mer sizes (e.g. ABAWACA [75] 
uses k = 1,2,3 and binny uses k = 2,3,4). Furthermore, tools such as 
CH-Bin [76] implement high-dimensional clustering techniques 

that use combinations of slightly larger k-mer sizes (k = 4,5,6 by 
default) for binning, thus increasing the resolution of composition 
patterns. 

Early binning tools used nucleotide composition and coverage 
to perform stepwise binning. For example, GroopM [77] mainly 
uses differential coverage patterns across multiple samples to 
bin contigs. The bins are refined by splitting and merging oper-
ations based on the nucleotide composition and marker gene 
information. However, recent tools have combined both the cov-
erage and nucleotide composition features either into one single 
concatenated vector for each sequence (e.g. CONCOCT [19] and  
SolidBin [63]) or into one probabilistic or distance metric (e.g. 
MaxBin [78], MaxBin 2.0 [79], MetaBAT [60], and MetaBAT 2 [80]). 
Normalization techniques such as normalizing over sequence 
lengths, normalizing over samples and z-scaling are used when 
combining the coverage and nucleotide composition features. 
Also, the concatenated vectors can have a large number of dimen-
sions and can affect the efficiency of the downstream cluster-
ing steps. Hence, dimension reduction techniques such as PCA 
and Barnes-Hut t-distributed stochastic neighbor embedding (BH-
tSNE) are employed to obtain a low-dimensional representation 
of the feature space [48, 81]. These techniques have markedly 
enhanced the speed and performance of metagenomic binning 
tools, allowing them to handle large-scale metagenomic datasets. 

Graph structures of sequences 
Until the late 2010s, metagenomic binning methods mainly relied 
on the nucleotide composition and abundance features to bin 
sequences. In most binning tools, sequences are represented as 
feature vectors and binning is done based on distance or prob-
ability calculations. These tools treat sequences as individual 
data points rather than considering that some sequences may 
originate from consecutive genomic regions. 

A graph is a data structure consisting of a set of vertices or 
nodes and a set of connections between vertices known as edges 
[82]. In some graphs, the edges can have weights that represent 
the strength of the connection. Graphs can represent complex 
relationships and neighborhood information among their nodes 
that may not be captured in the Euclidean or probabilistic space. 
Hence, metagenomic binning has shifted towards using graph 
structures to represent sequences in binning. 

Tools such as MetaBAT 2 [80] build a graph using feature 
similarity between contigs. However, these graphs lack the loca-
tion, orientation and connectivity information of contigs within 
the constituent genomes. Graph structures containing contigs 
and their orientation information were already available from 
metagenomic assemblers in the form of assembly graphs and 
metagenomic studies have been using assembly graphs for the 
manual curation of contigs [83]. Subsequently, assembly graphs 
[84, 85] and other graph structures, such as Hi-C contact maps
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Table 3. Comparison of hybrid metagenomic binning tools 

Binning tool Year User interface∗ Programming 
languages used 

Sequences 
binned 

Minimum length 
cut-off 
(bp) 

Main techniques, models or 
algorithms used 

MetaWatt 2012 Desktop GUI and 
CLI 

Java Contigs 300 Interpolated Markov models 

MetaCluster 4.0 2012 CLI C Short reads 75 K-median clustering based on 
Spearman distance 

MetaCluster 5.0 2012 CLI C Short reads 75 K-means clustering based on the 
Spearman distance 

GroopM 2014 CLI Python Contigs 1000 Heat maps and Gaussian blur 
filters 

MaxBin 2014 CLI C++ and Perl Contigs 1000 Expectation maximization 
algorithm 

CONCOCT 2014 CLI Python, C and Perl Contigs 1000 Gaussian mixture model fit with a 
variational Bayesian 
approximation 

MetaBAT 2014 CLI C++ Contigs 2500 Modified k-medoid clustering 
algorithm 

ABAWACA 2015 CLI C++ Scaffolds 5000 Iterative splitting 
MaxBin 2.0 2016 CLI C++ and Perl Contigs 1000 Expectation maximization 

algorithm 
MyCC 2016 CLI Python Contigs 1000 Affinity propagation 
COCACOLA 2016 CLI Matlab Contigs 1000 K-means clustering with L1 

distance 
BinSanity 2017 CLI Python Contigs 2500 Affinity propagation 
CoMet 2017 CLI R Contigs 1000 DBSCAN clustering 
BMC3C 2018 CLI N.D.† Contigs 1000 Ensemble k-means and graph 

partitioning using normalized cut 
GATTACA 2018 CLI Python and C++ Contigs 1000 Gaussian mixture model with a 

Dirichlet prior 
SolidBin 2019 CLI Python Contigs 1000 Constraint-based spectral 

clustering with normalized cut 
MetaBAT 2 2019 CLI C++ Contigs 1500 Graph partitioning using a 

modified label propagation 
algorithm 

MetaBCC-LR 2020 CLI Python and C++ Long reads 1000 Probabilistic sampling and 
Barnes-Hut t-distributed stochastic 
neighbor embedding (BH-tSNE) 

VAMB 2021 CLI Python Contigs 100 Variational autoencoders and 
iterative medoid clustering 

LRBinner 2022 CLI Python and C++ Long reads 1000 Variational autoencoders and 
histogram-based clustering 

CH-Bin 2022 CLI Python Contigs 1000 Convex hull-based clustering 
SemiBin 2022 CLI Python Contigs 2500 Siamese neural network and 

Infomap clustering 
MetaDecoder 2022 CLI Python Contigs 2500 Dirichlet process Gaussian mixture 

model 
binny 2022 CLI Python and Perl Contigs 500 Fast Fourier Transform-accelerated 

Interpolation-based t-distributed 
Stochastic Neighbor Embedding 

CLMB 2022 CLI Python Contigs N.D.† Variational autoencoders and 
iterative medoid clustering 

SemiBin2 2023 CLI Python Contigs and long 
reads 

2500 Siamese neural network, Infomap 
clustering (contigs), and an 
ensemble clustering method based 
on DBSCAN (long reads) 

AAMB 2023 CLI Python Contigs 2000 Adversarial autoencoders 
COMEBin 2024 CLI Python Contigs 1000 Feed-forward neural networks and 

Leiden-based clustering 

∗CLI, Command line interface; GUI, Graphical user interface. †N.D., Not defined, no details provided or not available publicly. 

(e.g. bin3C [ 86] and HiCBin [87]) and read overlap graphs (e.g. OBLR 
[88]) were introduced in automated binning tools (Fig. 2C). Table 4 
presents a comparison of metagenomic binning tools that use 
special graph structures. 

Recently, assembly graphs have become the most common 
graph structure used to represent contigs in metagenomic bin-
ning, as they are readily available from the assembler output. 
Assemblers start by identifying overlaps between sequences (it
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Table 4. Comparison of metagenomic binning tools that use special graph structures 

Binning tool Year User 
interface∗ 

Programming 
languages used 

Graph structure used Main techniques, models or 
algorithms used 

bin3C 2019 CLI Python Hi-C contact maps Infomap clustering algorithm 
MetaCoAG 2022 CLI Python Assembly graph Graph matching and label propagation 
RepBin 2022 CLI Python Assembly graph Graph convolutional networks 
OBLR 2022 CLI Python and C++ Read overlap graph Graph Sample and Aggregate 

(GraphSAGE) 
GraphMB 2022 CLI Python Assembly graph Variational autoencoders and Graph 

Neural Networks 
HiCBin 2022 CLI Python Hi-C contact maps Leiden clustering algorithm 
CCVAE 2022 CLI Python Assembly graph Connectivity-constrained variational 

autoencoders 
UnitigBIN 2024 CLI Python Assembly graph Variational autoencoders and graph 

convolutional networks 
hmBin 2024 CLI Python Assembly graph t-distributed stochastic neighbor 

embedding (tSNE) and a 
distance-based clustering algorithm 

∗CLI, Command line interface. 

can be reads or k-mers depending on the assembly paradigm [ 12]) 
and form a graph structure where sequences are vertices and 
overlaps are edges [89, 90]. After performing several simplification 
steps we get the final assembly graph where vertices represent 
contigs and edges represent overlaps between the contigs [15]. 
Normally these overlaps represent prefix-suffix overlaps (i.e. the 
suffix of the first contig overlaps the prefix of the second contig) 
denoting that the two contigs are placed one after the other along 
their genome with relevant orientation information (Fig. 2C). With 
the introduction of the assembly graph as a feature in automated 
metagenomic bin refinement [84], many stand-alone metage-
nomic binning tools that incorporate the connectivity information 
of assembly graphs (e.g. MetaCoAG [45, 46], RepBin [91], GraphMB 
[92], CCVAE [93], UnitigBIN [94], and hmBin [95]) have been devel-
oped (Table 4). Moreover, read binning tools such as OBLR [88] 
employ read overlap graphs that hold neighborhood information of 
overlapping reads. The use of the read overlap graph has greatly 
increased the accuracy of binning yet requires efficient means to 
handle large overlap graphs with millions of reads. 

Other features 
In addition to the primary binning categories mentioned above, 
some tools have used other features to perform metagenomic 
binning and improve the binning results (Fig. 2D). BMC3C [62] 
utilizes codon usage in addition to the composition and coverage 
information. COCACOLA [57] considers linkage information from 
paired-end reads to improve the binning process, although that 
information is also included in some of the assembly graphs. mBin 
[96] and nanodisco [97] use bacterial DNA methylation profiles to 
accurately map mobile genetic elements to their corresponding 
host bacterial bins. 

Another common feature used to assist binning is single-copy 
marker genes (Fig. 2D). Single-copy marker genes are special genes 
found in the majority of bacterial genomes and they appear only 
once in each genome [78, 98, 99]. Hence, some binning tools have 
utilized single-copy marker genes to estimate the number of bins 
during binning and to refine the binning results. The BV-BRC 
metagenomic binning algorithm [100], MaxBin [78], MaxBin 2.0 
[79], MetaCoAG [45], and SingleM [101] use single-copy marker 
genes to estimate the number of bins for the initialization of the 
binning process. Tools such as GroopM [77] and MyCC [64] use  
single-copy marker genes to refine the final binning results. 

Two common constraints, must-link and cannot-link are fre-
quently used to determine whether a pair of contigs should be 
placed in the same bin or different bins (Fig. 2D). Some tools 
employ taxonomic annotations to determine must-link and 
cannot-link constraints. For example, SolidBin [63] aligns contigs 
to reference genomes and generates must-link constraints if 
contigs align to the same species and cannot-link constraints 
if contigs align to different genera. Taxonomic annotations can be 
obtained using public databases such as the National Center for 
Biotechnology Information (NCBI) databases [102] or the Genome 
Taxonomy Database (GTDB) [103]. 

As viruses do not encode single-copy marker genes, binning 
tools specifically designed for viruses incorporate virus-specific 
information for binning; VRhyme [104] uses protein redundancy 
scores, CoCoNet [105] is trained on the NCBI RefSeq viral 
database [106], PHAMB [107] uses viral orthologous groups and 
ViralCC [108] uses virus-host proximity structure. The use of 
virus-specific information has enabled viral binning tools to 
recover viral metagenome-assembled genomes (vMAGs) from 
metagenomic data. 

Ensemble binners 
Ensemble binners combine the results from multiple metagenomic 
binning approaches to optimize and improve the accuracy of 
genome binning results (e.g. DAS Tool [109], MetaWRAP [110], 
MetaBinner [111], and BASALT [112]). These tools use different 
metrics and additional information such as single-copy marker 
genes to determine a set of non-redundant bins from multiple 
binning results. Table 5 summarizes some of the popular metage-
nomic ensemble binning tools. 

Bin refinement 
Bin refinement tools accept a binning result from an existing tool 
and attempt to improve the quality and accuracy of the result-
ing genomic bins. Table 6 presents a summary of the available 
metagenomic bin refinement tools. 

During bin refinement, several processing steps are performed 
to improve bins including: 

1. Merging bins—bins can be incomplete and fragmented and 
should be combined to form one bin. 
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Table 5. Comparison of metagenomic ensemble binning tools 

Binning tool Year User 
interface∗ 

Programming 
languages used 

Features used Main techniques, models or 
algorithms used 

DAS Tool 2018 CLI R Single-copy genes Iterative selection 
MetaWRAP 2018 CLI Python Single-copy genes from 

CheckM 
Read mapping and 
re-assembly 

MetaBinner 2023 CLI Python and Perl Composition, coverage and 
Single-copy genes 

k-means++ clustering and 
Binning_refiner 

BASALT 2024 CLI Python Tetranucleotide frequency 
and coverage correlation 
coefficient 

Feedforward neural network 

∗CLI, Command line interface. 

Table 6. Comparison of metagenomic bin refinement tools 

Bin refinement tool Year User 
interface∗ 

Programming 
languages used 

Features used Main techniques, models or 
algorithms used 

Binning_refiner 2017 CLI Python and R Sequence similarity Pairwise nucleotide BLAST 
dS 

2Bin 2017 CLI Python and C Dissimilarity between contigs dS 
2 measure, Markov models 

and k-means clustering 
GraphBin 2020 CLI Python Assembly graph Label propagation 
GraphBin2 2020 CLI Python Assembly graph and contig 

coverage 
Iterative label propagation 

METAMVGL 2020 CLI Python Assembly graph and 
paired-end graph 

Multi-view label propagation 

UGMAGrefiner 2023 N.D.† N.D. Assembly graph Graph algorithms and 
Gaussian Mixture models 

∗CLI, Command line interface. †N.D., Not defined, no details provided or not available publicly. 

2. Splitting bins—bins can be erroneously merged due to high 
similarity and should be split into the correct number of bins. 

3. Correcting mis-binned sequences—contigs may be erro-
neously placed into incorrect bins and should be reassigned 
to their correct bins. 

4. Recovering sequences discarded by the initial binning tool— 
binning tools can discard short sequences (shorter than a 
given minimum length cut-off) that can contain short repeat 
sequences. Such short sequences should be placed in their 
relevant bins. 

Early bin-refinement tools make use of sequence similarity 
within bins for refinement [113, 114]. However, recent tools use the 
connectivity information of the assembly graph for refinement 
(e.g. GraphBin [84], GraphBin2 [115, 116], METAMVGL [117] and  
UGMAGrefiner [118]). The results produced from bin refinement 
tools can depend on the quality of the initial binning result. In 
some cases, the errors in the initial binning result can be propa-
gated, leading to even worse results. Furthermore, most of these 
tools adjust contigs among bins and do not adjust the number of 
bins during refinement. 

Bin visualization 
Binning sequences can be challenging to understand with all 
the complex algorithms and models used. Bin visualization tools 
can help biologists understand how the sequences were grouped 
together and even identify potentially incorrect results. For exam-
ple, visualizing bins can show how similar sequences were clus-
tered, detect anomalies within bins that may indicate mis-binned 
sequences and determine sequences with irregular coverage pat-
terns. Table 7 summarizes some of the tools that can visualize 
metagenomic binning results. Some tools are stand-alone binning 
tools that provide the functionality to visualize bins. 

Most of the visualization tools employ coverage and GC content 
to visualize bins. They generate coverage versus GC content plots 
of sequences using different types of plots such as scatter plots 
[38, 39, 119, 120], heatmaps [77] and  contour plots  [68]. Tools 
such as Blobology [119] and gbtools [120] use scatter plots where 
each point represents a sequence. In contrast, MetaWatt [68] uses  
contour plots to visualize the boundaries of sequences within 
bins. Moreover, only a single sample can be visualized in the cover-
age versus GC content plots. However, gbtools allows the user to 
visualize differential coverage plots. Furthermore, tools such as 
Blobology and gbtools can accept taxonomic annotations results 
or taxonomic markers and represent sequences in corresponding 
colors. 

Bin evaluation 
With the availability of metagenomic binning tools and ample 
computing power, draft microbial genomes are rapidly generated 
from various environmental samples. To draw reliable conclu-
sions about environmental dynamics from the growing availabil-
ity of draft microbial genomes, it is crucial to determine the qual-
ity of genomes [121, 122]. Moreover, as new metagenomic binning 
tools are being developed, it is essential to evaluate the accu-
racy of their results and ensure they operate as desired. Collec-
tive efforts have led to the organization of worldwide challenges 
such as the Critical Assessment of Metagenome Interpretation 
(CAMI) [23, 26] that have provided gold standard truth datasets 
to facilitate standard benchmarking of these methods. Several 
metrics have been proposed to evaluate metagenomic binning 
results including, precision, recall, F1-score, purity, completeness, 
and contamination [123, 124]. Table 8 summarizes some of the 
automated tools that evaluate metagenomic binning results and 
calculate these quality metrics.
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Table 7. Comparison of metagenomic bin visualization tools 

Bin visualization tool Year User interface∗ Programming 
languages used 

Features used Main techniques, 
models or 
algorithms used 

MetaWatt 2012 Desktop GUI and CLI Java GC content, coverage 
and contig length 

Contour plots 

Blobology (now 
known as BlobTools) 

2013 CLI Perl and R GC content and 
coverage 

Scatter plots 

GroopM 2014 CLI Python Differential coverage Heat maps and 
Gaussian blur filters 

VizBin 2015 Desktop GUI Java 5-mer frequency 
vectors 

Barnes-Hut 
Stochastic Neighbor 
Embedding (BH-SNE) 
and scatter plots 

gbtools 2015 CLI R and  Perl GC content and 
coverage 

Scatter plots 

BusyBee Web 2017 Web GUI N.D.† 5-mer frequency 
vectors 

BH-SNE and scatter 
plots 

∗CLI, Command line interface; GUI, Graphical user interface. †N.D., Not defined, no details provided or not available publicly. 

Table 8. Comparison of metagenomic bin evaluation tools 

Bin evaluation tool Year User interface∗ Programming 
languages used 

Information used Main techniques, 
models or 
algorithms used 

CheckM 2015 CLI Python Single-copy marker 
genes 

Hidden Markov Model 
(HMM) profiles 

BUSCO 2015 CLI Python Benchmarking sets of 
universal single-copy 
orthologs (BUSCO) 

HMM profiles 

AMBER 2018 CLI Python Ground truth 
annotations from 
CAMISIM or 
alignment to 
reference genomes 

Calculation of 
performance metrics 
used in the CAMI 
challenges 

CheckM2 2023 CLI Python Simulated genomes 
with known levels of 
completeness and 
contamination 

Artificial neural 
networks and 
gradient-boosted 
decision trees 

∗CLI, Command line interface. 

CheckM [ 123] and  BUSCO [125] are two popular bin evaluation 
tools widely used in metagenomic studies. They can determine 
the quality of MAGs from real metagenomic data as well as 
benchmark binning results from simulated or mock datasets. To 
determine bin quality, CheckM uses single-copy marker genes 
whereas BUSCO [125] uses the benchmarking sets of universal 
single-copy orthologs (BUSCO) identified using OrthoDB [126]. 
However, these methods can fail to accurately evaluate genomes 
from novel lineages due to the lack of high-quality genomes 
and the absence of certain marker genes. CheckM2 [127] was  
introduced to overcome these challenges and evaluate genomes/-
MAGs without directly considering the taxonomic information of 
marker genes. Moreover, AMBER [124] relies on metrics such as 
precision, recall, F1-score and Adjusted Rand Index (ARI) based 
on a known ground truth (where you know the microbial com-
position of your metagenome and which sequence belongs to 
which reference genome) [128]. Hence, AMBER can be applied for 
simulated or mock metagenomes. AMBER is often used during 
development to evaluate and benchmark tools using datasets 
with known ground truth. Additionally, assembly evaluation tools 
such as QUAST [129] and  metaQUAST [130] have been used to 

measure genome completeness after assembling long-read bins 
[48] and duplication of bin sizes [131]. 

Discussion 
Metagenomic binning tools have encountered rapid growth over 
the past two decades. Each year, new tools are introduced claiming 
to be better than existing tools. Figure 3 summarizes 73 tools 
related to metagenomic binning which have been discussed in 
this paper based on different aspects (refer to the section ‘Data 
and code availability’ for links to the details of the tools). Even 
though new tools are published each year, the field still encoun-
ters various challenges and care should be taken to address them 
wherever possible. In this section, we explore trends, issues, and 
insights that researchers and developers should consider when 
creating new metagenomic binning tools. 

Rising use of deep learning techniques 
Many recent metagenomic binning tools (those developed since 
2021, Table 4) have shown a trend towards using deep learning
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Figure 3. Summary plots of binning tools. Summary count plots of tools by (A) binning category, (B) programming languages used, (C) user interfaces 
provided, (D) types of sequences binned, (E) sequence length cut-off (in base pairs), and (F) cumulative count of tools by year. 

techniques. The main idea is to learn a low-dimensional repre-
sentation or embedding of the sequence features and obtain a 
clustering of these embeddings to produce bins ( Fig. 4). VAMB was 
among the early tools to use deep learning techniques in metage-
nomic binning. Subsequently, many deep learning-based binning 
tools emerged, including those using variational autoencoders 
(CLMB and LRBinner), Siamese neural networks (SemiBin and 
SemiBin2), feed-forward neural networks (COMEBin) and graph 
neural networks (RepBin and UnitigBIN). The use of such deep 
learning techniques has enabled metagenomic binning tools to 
bin large-scale complex datasets accurately and efficiently. 

Recently, binning tools have incorporated unsupervised rep-
resentation learning techniques such as contrastive learning [132] 
into the process of learning low-dimensional embeddings of 
sequence features. The goal of contrastive learning is to learn a 

representation of the data such that similar points are positioned 
closely within the representation space and dissimilar points are 
placed at a greater distance from one another. Binning tools such 
as RepBin have incorporated contrastive learning using must-
link and cannot-link constraints based on the presence of single-
copy marker genes. If two contigs are connected together in the 
assembly graph, they are modelled as must-link constraints. If 
two contigs have the same single-copy marker gene, it means 
that the two contigs come from two different genomes. Hence, 
such pairs of contigs are modelled as cannot-link constraints. 
During the learning process, contigs with must-link constraints 
are positioned together, and contigs with cannot-link constraints 
are placed further apart in the learned representation. Such con-
straints have improved the learning process and produced accu-
rate results.
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Figure 4. Workflow of a typical deep learning-based approach for metagenomic binning. Firstly, features (including nucleotide composition, abundance, 
graph structures, and other features) are extracted from the metagenomic sequences. Then a low-dimensional representation or embedding of the 
sequence features is learned using a deep learning model. Finally, the embeddings of the sequences are clustered to obtain bins. 

Machine/deep learning-based metagenomic binning tools 
can effectively utilize the efficient and enhanced numerical 
computation capabilities of General-Purpose Graphics Processing 
Units (GPGPUs/GPUs), making them ideal for binning large-scale 
metagenomic datasets with millions of sequences. However, most 
available tools must load the entire dataset into the memory 
for feature vector calculations, which can be challenging if 
computational memory is scarce. For very large datasets and 
specific use cases, batch-wise processing techniques can be 
beneficial for handling and processing data in machine/deep 
learning applications. 

Incorporation of taxonomic information 
There has been a growing interest in using taxonomic information 
for metagenomic binning. For example, SolidBin and SemiBin2 
model must-link and cannot-link constraints using the taxonomic 
annotations of contigs from databases such as NCBI or GTDB. The 
viral binning tool CoCoNet is trained on the NCBI RefSeq viral 
database [106]. 

The databases used by binning tools are from well-studied 
organisms and often generalize the strain-level information into 
more common signatures within species. While such information 
is sufficient in contrasting species, it may not be adequate to 
resolve hidden strains that might be driving the differences in an 
environment. Furthermore, the results are entirely dependent on 
the chosen database and are susceptible to missing novel species 
or discarding organisms that are not from a kingdom represented 
in the chosen databases. 

Challenges in biological delineation of 
metagenomic data 
Determining the exact number of underlying genomes in a 
metagenomic sample is a computationally challenging task. Tools 
such as MaxBin and SolidBin use counts of contigs containing 
single-copy marker genes to initialize the number of bins. This 
initialization method relies on marker genes being properly 
assembled within contigs and can be affected when marker genes 
are fragmented across contigs or when the open reading frames 
cannot be predicted correctly. To overcome this issue, tools such 
as MetaCoAG have adapted strategies to dynamically adjust the 
number of bins during the binning process. Moreover, certain 
tools use alternate approaches such as agglomerative clustering 
(Canopy), histogram-based clustering (LRBinner), and iterative 
clustering (VAMB) that do not rely on an initial estimate of the 
number of bins. 

Short sequences may not provide accurate genome-specific 
signals due to the low resolution in a single sample. The composi-
tion profiles of such short sequences can be sparse and highly 
deviated from that of their constituent genomes. Binning such 
short contigs solely based on composition and coverage infor-
mation can be challenging. Hence, the majority of the available 
metagenomic binning tools discard these short contigs during the 
binning process (as denoted by the minimum length cut-off in 
Table 4). Bin refinement tools such as GraphBin and GraphBin2 
have utilized the connections between short contigs and large 
components in the assembly graph to accurately place them in 
their corresponding bins. It is worth exploring such methods to 
recover these short contigs as they can contain useful biological 
information including short repetitive sequences in viruses [133]. 

As microbial communities can be composed of different taxo-
nomic groups, the sequencing data obtained from these samples 
can be very complex and heterogeneous. Even for the same genus, 
there can be several different species with very similar genomic 
signatures, and they may co-exist in similar abundance. Moreover, 
analyzing strain-level variations of species can be a computation-
ally challenging task. Most of the binning methods are unable to 
generate MAGs at strain-level resolution due to their extremely 
high similarity and poor assembly quality. They often bin contigs 
from similar strains together and result in highly contaminated 
bins [23, 95]. Tools such as VAMB [69] have attempted to address 
this issue by individually assembling samples, binning all the 
resulting contigs, and separating MAGs from different samples. 
However, it is still challenging to recover strain-level MAGs within 
a single sample due to their highly similar genomic composition 
and the inherent problems in assembly. Hence, further investiga-
tion is required to develop methods capable of recovering MAGs 
of closely related microorganisms. While this problem may not 
be entirely solvable computationally due to the high similarity 
of contigs from different strains, combining long-read and short-
read sequencing techniques, along with tools designed to handle 
both types of data, could offer a viable solution. 

Different bacterial genomes in a metagenomic sample may 
share similar genes and genomic regions [1], which is a major 
challenge in assembling metagenomic reads into contigs [15]. 
Therefore, some assembled contigs may be shared by multiple 
genomes in the sample. However, most of the binning tools will 
assign these contigs to a single bin based on feature similarity to 
simplify the computational process. This can affect the complete-
ness of the MAGs constructed afterwards. Very few binning tools 
support overlapped binning where shared contigs are assigned 
to their corresponding bins. Among such tools, GraphBin2 has
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attempted to address this challenge using the assembly graph and 
coverage information of contigs (e.g. if a contig is shared between 
two genomes, then its coverage will be elevated and should be 
close to the sum of the coverages of the two genomes). As shared 
contigs correspond to shared vertices between different genomic 
paths on the assembly graph [15], it is worth exploring methods 
to infer such shared contigs from the assembly graph without 
additional sequencing requirements. 

Most metagenomic binning tools focus only on bacteria and 
archaea (especially those that rely on bacterial and archaeal 
single-copy marker genes). Such tools can incorrectly bin or 
even discard viral sequences as viruses lack universal marker 
genes [134]. Moreover, micro-eukaryotes such as fungi and 
protists remain under-characterized in metagenomic studies 
even though it is possible to adapt existing methods based on 
their single-copy marker genes [135, 136]. However, identifying 
fungal genomes is challenging as some DNA sequences can 
be mixed with closely related genera and require multiple 
molecular markers and precise sequence selection methods from 
databases [137, 138]. For example, the nuclear ribosomal RNA 
(rRNA) gene internal transcribed spacers (ITS) region, widely 
used for fungal identification, includes ITS1, 5.8S gene, and ITS2, 
but lacks sufficient resolution power for differentiating closely 
related fungi. Prahl et al. [137] demonstrated that combining 
ITS2 sequences and their secondary structures can effectively 
differentiate true Ampelomyces ITS sequences from incorrectly 
identified ones derived from environmental DNA. Additionally, 
the complexity of eukaryotic gene architecture, particularly exon-
intron structures, complicates binning efforts. Moreover, the 
current lack of comprehensive eukaryotic databases impedes 
marker gene-based analyzes. To address these challenges, there 
is a clear need for metagenomic tools that focus on a more holistic 
approach to binning while maximizing the use of kingdom-
specific information. 

Issues with binning methods 
Previous studies have shown that the nucleotide content of 
certain bacterial genomes can vary locally along chromosomes, 
especially in terms of GC content [139, 140]. For example, 
protein-coding regions tend to have higher GC content than non-
coding regions [141]. The nucleotide composition of microbial 
genomes can vary based on factors such as genome size, oxygen 
requirement and nitrogen abundance [142–144]. Moreover, repeat 
regions, low complexity regions, homopolymer stretches, library 
preparation steps, and sequencing biases can result in genomic 
sequences with uneven sequencing coverage. Hence, there can be 
high variance in nucleotide composition and abundance features 
even among the sequences that originate from the same genome. 
Such genomic sequences that do not match either the average 
nucleotide composition of the genome or the average abundance 
of the genome are often incorrectly binned [45]. Approximately 
one-third of the genes do not match the modal codon usage of 
their genomes [145] and thus are likely to be misplaced in bins. 
These genes are often acquired through horizontal gene transfer 
(e.g. plasmids and mobile genetic elements like prophages). 
Moreover, prophages have different GC composition compared 
to the bacterial chromosome backbone [146] precluding them 
from binning. 

During the assembly process, very similar reads are collapsed 
into single contigs, and then when reads are mapped back to esti-
mate coverage, those contigs appear over-represented compared 
to their cognate genome. Highly conserved regions including 
rRNA gene repeats and genes encoding transfer RNA (tRNA) are 

frequently mis-binned due to their high similarity and repetitive 
nature, and many bins do not contain any rRNA encoding regions. 
Similarly, repetitive sequences like transposable elements (includ-
ing transposons and insertion sequences) and bacteriophages are 
also rarely binned correctly. Additional steps may be required at 
the end of binning to accurately add these sequences back to their 
appropriate genomes, such as marker gene analysis. Marker gene 
analysis, using databases such as Rfam [147, 148] or SILVA [149], 
can help identify and potentially correct the placement of rRNA 
and tRNA genes in bins. 

Software best practices 
Many metagenomic binning tools are available as open-source 
software through public software repositories such as GitHub 
and Bitbucket. Even though most of them are CLI-based soft-
ware (Fig. 3C), authors should ensure that their code is easy 
to install, executable, and well-maintained, especially around 
dependency updates. Proper testing should be carried out before 
publishing software to ensure that the core algorithms work as 
desired and produce the correct outputs. Simple test data sets 
should be included in the installation process so that users can 
quickly ascertain they are achieving expected outcomes. Software 
repositories such as GitHub and Bitbucket support continuous 
integration where workflows for automated building and testing 
can be set up before merging the changes to the main repository. 
Furthermore, software should be well-documented with detailed 
instructions on how to install and execute. 

Some binning tools require certain additional files as input 
for calculations, e.g., Binary Alignment Map files to calculate 
the average coverage of contigs. Instead of executing these com-
mands separately, one seamless workflow providing these pre-
processing steps and the binning tool in just one command would 
be ideal. For this purpose, we can use workflow managers such as 
Snakemake [150] or a workflow template such as Snaketool [151]. 
Moreover, containerized binning tools, especially those utilizing 
software like Docker to bundle code and all necessary dependen-
cies, are becoming popular as they allow the tools to run quickly 
and reliably on different computers. However, licensing issues, 
including potential incompatibilities between open-source soft-
ware licenses, can sometimes hinder their widespread adoption 
and publication. Binning tools can also be published on package 
managers such as Bioconda and PyPI for Python, CRAN for R, or 
CPAN for Perl. Authors should take advantage of these platforms 
and services to ensure that the tools are correctly distributed, 
installed, and run. 

Moving beyond binning to obtain contiguous 
genomes 
Most of the available metagenomic binning tools produce MAGs 
with contigs in a random order. The contigs are not ordered as 
they are found in the genome and binning tools do not resolve 
genomic paths from contigs (i.e. determine the ordering of contigs 
in the genome). This can also be challenging, especially for large 
genomes such as those from bacteria or micro-eukaryotes as they 
can result in tangled and complex assemblies from NGS data. 
One solution is to extract just those reads that appear in each 
bin, and separately assemble the reads, without the confounding 
issues associated with the rest of the metagenome sequences 
[152]. Another alternative is to bin contigs and resolve the contigs 
in MAGs to construct complete and contiguous genomes. This has 
been done for bacterial MAGs to reconstruct strains in STRONG 
[153] and vMAGs to obtain contiguous bacteriophage genomes 
in Phables [133]. The assembly graph is the key feature used to
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determine the order of contigs. The connectivity information of 
contigs from the assembly graph is used to determine genomic 
paths and resolve representative genomes. 

With the rising developments in TGS technologies, particularly 
longer read lengths that can span repetitive regions and provide 
increased overlap between reads [154], along with reduced error 
rates, it is now possible to obtain near-finished bacterial genomes, 
even from metagenomes [155]. Hence, it is worth exploring meth-
ods to move beyond binning and produce not just a set of contigs 
that constitute a genome, but to connect these contigs and pro-
duce the contiguous genome. 

Conclusion 
The history of metagenomic binning tools dates back to the early 
2000s when they were created to automate the process of binning 
short DNA fragments obtained from environmental samples [156, 
157]. Since then, various approaches have been introduced to 
bin different types of sequences such as short reads, assembled 
contigs and even error-prone long reads. This article presented 
a review of metagenomic binning tools and the various aspects 
including refinement, visualization, and evaluation. Recently, bin-
ning tools have incorporated new features such as graph data 
structures (e.g. assembly graph and read overlap graph) to capture 
accurate neighborhood information of sequences. The combina-
tion of all these features has advanced the recovery of microbial 
genomes from environmental samples. 

Finally, we have discussed new trends in metagenomic bin-
ning and existing challenges, despite the significant advances 
in binning algorithms. Addressing these issues requires a collec-
tive effort from the scientific community and well-established 
community standards. As we move forward, more deep learning-
based solutions will emerge, allowing the field of metagenomics 
to study large-scale metagenomes while harnessing the power 
of machine learning techniques and high-performance comput-
ing platforms. Moreover, attention should be paid to software 
best practices and making tools more user-friendly, which will 
widen the user base of binning tools. Overcoming these challenges 
will allow us to fully harness the capabilities of metagenomic 
binning approaches, thereby further facilitating pioneering dis-
coveries in the fields of microbial ecology, human health, and 
biotechnology. 

Key Points 
• Metagenomic binning is a crucial step in metagenomic 

analyzes that allows the study of uncultured microor-
ganisms. It involves clustering DNA sequences obtained 
from environmental samples into bins representing dif-
ferent taxonomic groups. 

• Classic features such as nucleotide composition and 
abundance, and novel features including special graph 
structures of sequences used in existing metagenomic 
binning tools are compared in this study. 

• New trends including the rising use of deep learning 
techniques and challenges such as the biological delin-
eation of closely related taxonomic groups are discussed, 
and further avenues of improvement are presented. 

• Researchers should be aware of the challenges associ-
ated with metagenomic binning and carefully evaluate 
their binning results to fully leverage metagenomic bin-
ning approaches. 
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