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Abstract

Human exposure to the metal lead (Pb) is prevalent and associated with adverse 

neurodevelopmental and neurodegenerative outcomes. Pb disrupts normal brain function by 

inducing oxidative stress and neuroinflammation, altering cellular metabolism, and displacing 

essential metals. Prior studies on the molecular impacts of Pb have examined bulk tissues, which 

collapse information across all cell types, or in targeted cells, which are limited to cell autonomous 

effects. These approaches are unable to represent the complete biological implications of Pb 

exposure because the brain is a cooperative network of highly heterogeneous cells, with cellular 

diversity and proportions shifting throughout development, by brain region, and with disease. New 

technologies are necessary to investigate whether Pb and other environmental exposures alter cell 

composition in the brain and whether they cause molecular changes in a cell-type-specific manner. 

Cutting-edge, single-cell approaches now enable research resolving cell-type-specific effects from 

bulk tissues. This article reviews existing Pb neurotoxicology studies with genome-wide molecular 

signatures and provides a path forward for the field to implement single-cell approaches with 

practical recommendations.
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Introduction

Lead (Pb) exposure continues to represent a substantial public health burden, with more 

than 1.8 million children in the US estimated to have blood Pb levels above 3.5 μg/dL 

[1]. Despite policy changes aimed to reduce environmental release of Pb over the last 

several decades, Pb is persistent in the environment. Ongoing sources of Pb include housing 

and infrastructure built prior to 1970 and contamination from waste recycling, mining, 

and smelting industries. The developing brain is the most susceptible to Pb and exposure 

can lead to life-long changes in brain function. Pb crosses the placental barrier and can 

also be passed from a pregnant person to an infant via breast milk [2,3]. Infants can also 

ingest Pb from contaminated drinking water, formula, or foods [4]. Infants and children 

commonly engage in hand-to-mouth behaviors as they interact with their environment and 

have higher rates of respiration relative to adults, facilitating ingested and inhaled exposures. 

Pb is more efficiently absorbed by the gut during periods of rapid development (e.g., 

infancy and childhood) or periods of bone mobilization (e.g., pregnancy and osteoporosis), 

and it readily crosses the blood–brain barrier. Developmental Pb exposure is associated 

with numerous adverse neurocognitive outcomes, including impaired learning and memory 

formation [5]. In adults, Pb exposure is associated with cognition cross-sectionally and rate 

of cognitive decline [6]. Pb exposure is ubiquitous and associated with adverse neurological 

outcomes, thus investigating the molecular and cellular basis of Pb toxicity is essential 

for both treatment and advocating for further preventative measures to protect vulnerable 

populations.

Pb induces oxidative stress and disrupts cellular homeostasis of essential metals such as 

calcium [7–9]. These molecular effects of Pb occur at all stages of development and into 

adulthood, but other toxic effects may be specific to a developmental stage or disease 

state. Throughout neurodevelopment specifically, multiple physiological parameters rapidly 

change as cells differentiate. Exposures in utero may have substantially different effects on 

the brain than those that occur during early childhood and adolescence, given the dramatic 

brain maturation between these periods [10]. Indeed, broad uniform changes are often seen 

following early developmental exposures, when stem and progenitor cell populations are 

abundant (Figure 1(a)). When exposures occur later, clustered responses become the norm 

as cellular populations have taken on distinct characteristics and often exhibit population-

specific responses to environmental challenges (Figure 1(b)). One powerful method for 

monitoring the impacts of Pb exposure at various time points is the application of varying 

omics platforms, which includes assessing genome-wide impacts on epigenomics and 

transcriptomics. For example, single-cell sequencing allows users to cluster cells with 

similar gene expression profiles and identify specific cell types (Figure 1(c)). These 

experiments can be performed across varying developmental and disease stages to reveal 

stage- and cell type-specific effects of Pb exposure.

In this article, we review the current state of the literature on Pb exposure’s molecular 

omic effects on brain tissues. Existing studies using bulk brain tissue and sorted or cultured 

cells were critical first steps for the field, which is ready to apply emerging technologies 

to simultaneously investigate effects within and across cell types. We describe these cutting-

edge single-cell and single-nuclei approaches, and share opportunities for their application 
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to Pb neurotoxicology. We provide the rationale and practical workflows for investigating 

the cell type-specific impacts of Pb exposure on neurodevelopment and neurodegeneration.

Pb exposure causes molecular changes in bulk brain tissues and sorted 

cells

Pb neurotoxicology studies generally focus on molecular impacts derived from bulk analysis 

of whole brain or specific brain regions. This approach is common for practical reasons of 

tissue size, and for scientific rationale including disease relevance, such as examinations of 

the substantia nigra with regard to Parkinson’s Disease. Pb exposure affects all brain regions 

including the cortex, hippocampus, and cerebellum where neuroinflammation and tau 

phosphorylation [11], as well as changes in gene expression and epigenetic regulation, have 

been observed. Developmental Pb exposure has been associated with increased expression 

of beta amyloid protein 40 (Aβ40) [12] and metallothionine 3 (MT-3) [13], as well as 

differential expression of epigenetic regulators of the amyloid-β precursor (AβPP) gene 

[14] in cortical tissue. Additionally, differential expression of microRNAs that regulate 

neurodegenerative pathways has been observed in the hippocampus [15], as well as with 

those involved in oxidative stress in the cerebellum [16]. Recent studies have built on 

the successes of targeted pathway analyses and moved towards unbiased, genome-wide 

discovery analyses.

A summary of various bulk ‘omics’ studies assessing changes in the brain following 

developmental Pb exposure from the last 10 years is included in Table 1. These important 

studies demonstrate that early life exposure to Pb has observable gene expression and DNA 

methylation/hydroxymethylation signatures in bulk brain tissues (cortex, hippocampus, and 

whole brain). Importantly, each of these studies exhibit a high degree of heterogeneity with 

respect to exposure dose, timing, model organism, brain region, and omic platform, which 

poses a challenge for replication testing and comparisons across studies. This is important 

to consider as Pb effects may vary over the time course and duration of exposures. For 

example, metallothioneins are induced by acute exposure, but are not likely to be a persistent 

signal [17]. Further, bulk tissue studies represent an average signal across all cells present 

in the tissue [18], and an important next step is to examine whether these average changes 

reflect a Pb exposure molecular response across all cell types, a molecular response in a 

particular vulnerable cell type, or a change in cell proportions.

While bulk tissue analyses provide an important initial impression of how Pb exposure 

contributes to dysregulation and disease risk in the brain, there is a need for further 

assessment at the cellular level, because Pb is likely to induce cell type-specific effects. 

For example, Pb is known to alter cellular metabolism by inhibiting mitochondrial electron 

transport chain complexes [30] and Pb’s metabolic effects are likely cell type-specific given 

that glia are highly glycolytic at baseline and neurons rely almost exclusively on oxidative 

phosphorylation [31]. It would be challenging to study these effects in pure cultures of 

neurons or glia because these cells engage in cooperative metabolism [31]. Figure 2 shows 

how bulk tissue measurements are unable to resolve cell-specific effects, where direct effects 

on two or more cell types are indistinguishable from a larger change in a singular cell type.
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Exceptionally few studies have examined the cell type-specific effects of Pb exposure 

in the brain. Antibody separation of cortical neural nuclei exposed to Pb exhibited 

hypomethylation of genes associated with neurodevelopment and cognition [23]. While 

this approach provides a perspective on how Pb perturbs epigenetic regulation in neurons 

specifically, it precludes an understanding of how other cell types in the same tissue 

are affected by the same exposure. Cell purification strategies and in vitro platforms 

demonstrate specific cell types do respond to Pb in distinct ways, but they require an 

a priori hypothesis about which cell types to investigate. New technologies with single-

cell resolution make it possible to investigate multiple cell types from bulk brain tissues 

simultaneously.

Single-cell approaches to study neurologic disorders

The brain is composed of many cell types that are transcriptionally and functionally 

diverse (Figure 1(a,b)). Bulk RNA-sequencing analyses reflect composite changes in gene 

expression and are unable to differentiate changes in cell type proportion, uniform changes 

in gene expression, or cell type-specific changes contributing to the observed trends (Figure 

2) [18]. Recent methodological advances allow the resolution of molecular signals at the 

level of individual cells [32]. These types of single-cell or single-nuclei approaches will 

enable toxicologists to compare how individual cells respond to toxicants as well as to detect 

heterogeneous responses within a single-cell type. For example, astrocytes can adopt an 

inflammatory, reactive state called astrogliosis in response to chronic Pb exposure [33,34] 

in the hippocampus, but not cerebellum [33], suggesting a possible heterogeneous response. 

Single-cell sequencing has shown that astrogliosis can occur in a small subset of astrocytes 

[35] and this approach could be useful for examining Pb-induced reactivity. Vulnerable or 

reactive cell types can be identified by implementing a single-cell sequencing approach for 

toxicology studies.

Single-cell sequencing typically first requires dissociating 3D tissue (or 2D cultures) 

into single cells or nuclei using enzymatic digestion and/or mechanical perturbation. 

The dissociation approach should be compatible with the goals of the experiment. For 

brain tissue specifically, dissociation kits such as the Neural Tissue Dissociation Kits 

(Miltenyi Biotech) are designed to stabilize neurons and prevent neuronal signaling 

during dissociation. The use of RNAse inhibitors will improve RNA quality during tissue 

dissociation and processing. Additionally, transcription and translation inhibitors limit the 

artifacts from ex vivo gene expression profiles that are induced by enzymatic dissociation 

approaches [36], which seems to be most prevalent in dynamic cell types like microglia. 

When dissociating nervous tissue, it is important to include compounds to stabilize the gene 

expression signals.

Traditional dissociation approaches for single-cell analyses separate whole cells, which 

allows for analysis of total cellular RNA levels, containing potentially long-term 

cytoplasmic RNA. Some cell types are more vulnerable to loss during dissociation due 

to their size and shape (e.g., neurons). If the cell population of interest is a vulnerable or 

relatively rare cell type, the cell suspension can be enriched using fluorescence-assisted 

cell sorting (FACS) [37] or similar approaches. An alternative to whole-cell separation is 
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to isolate nuclei. Vulnerable cells, such as neurons, often retain better integrity in nuclei 

isolation and can be captured in greater numbers without enrichment. Nuclei dissociated 

from frozen tissue are not subject to dissociation-associated ex vivo gene expression 

artifacts. An important tradeoff to note, nuclei isolation restricts downstream analyses to 

nuclear RNA levels, which reflect a snapshot of current transcription. Based on the research 

question of interest, dissociation choices (cell versus nuclei, and any potential enrichment) 

require careful consideration in study design and will impact the types of information (total 

RNA versus nuclear RNA) that is captured in sequencing.

Following dissociation, samples can proceed directly to the next step. In a common 

commercial single-cell platform, 8 samples are processed simultaneously. If all samples 

(or a balanced mixture of exposed and control samples) are not available at the same time, 

this may result in batch effects. Often, intermediate storage is required to aggregate samples 

and limit batch effects. In this case, dissociated cells or nuclei can be archived frozen or 

fixed, such as with the Single Cell Gene Expression Flex Kit (10X Genomics). Taking care 

to effectively store samples can ensure samples are balanced across runs and single-cell 

measures are not confounded by batch.

Many single-cell approaches use microfluidics to dilute single cells into droplets, where 

RNA transcripts are barcoded before library preparation [32]. This approach was originally 

termed drop-seq and is now available from commercial platforms including Chromium (10X 

Genomics). Typically, each RNA transcript is barcoded with a unique molecular identifier 

that is associated with each individual droplet, assumed to be one single cell (e.g., barcode 

for 10x Genomics) based on dilution calculations. In many cases, the polyA tail is used to 

isolate RNA transcripts and only the 3′ portion of the transcript is ultimately sequenced. 

Alternatively, cells can be physically isolated in microwells on a processing plate, which 

allows for deeper and full transcript sequencing, but is more labor-intensive and has lower 

throughput. In either case, RNA-derived cDNA is then amplified and indexed with standard 

index and priming sequences compatible with the downstream sequencing platform (e.g., i5 

or i7 indices for Illumina sequencers).

Once a cDNA library is constructed, investigators will decide on approaches for sequencing. 

While only shallow sequencing is necessary for cell class identification, 20–50 k reads 

per cell is likely necessary to detect cell class subtypes [38,39] and subtle transcriptomic 

responses (e.g., at time points post-exposure) may require deeper sequencing. Even when 

high sequencing saturation is achieved, single-cell RNA-seq is much shallower than bulk 

sequencing, where it is routine to sequence 20+ million reads per sample. Sequences from 

individual cells can be pooled together in ‘pseudobulk’ analysis and may approach bulk 

sequencing read numbers. Most single-cell library preparation chemistries are plagued by 

low-sampling artifacts including a strong bias toward abundant transcripts and inefficient 

capture of rare transcripts [32]. Advances in sequencing technologies, such as 26 billion 

possible reads per flow cell with the Illumina NovaSeq X series, can provide the opportunity 

to increase the depth of sequencing per cell.

After sequencing, reads are filtered for quality control, aligned to the genome, and cells are 

demultiplexed. Next, data sets are further filtered to remove low-quality cells: 1) dying cells 
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with high mitochondrial RNA or low number of reads, and 2) multiplets with high read 

counts. The data are then normalized. When identifying informative features in the data, 

genes with low variability can be excluded. Dimension reduction approaches find structure 

within the data and these are typically visualized in two dimensions on a Uniform Manifold 

Approximation and Projection (UMAP) plot (Figure 1(c)). The largest source of variability 

in gene expression is typically driven by cell identity. Cells can be assigned to clusters based 

on similarity in expression profiles. Comparing each cluster to all others using differential 

expression analysis generates a list of marker genes that correspond to cell cluster identity. 

These are commonly visualized on a heatmap (Figure 1(c)), dot plot, or violin plot. There 

are several automated approaches for annotating cell clusters [40], but manual assignment is 

typically required using resources such as those in Table 2. Cell-specific marker genes vary 

by developmental stage and species (Table 2). Dimension reduction approaches are valuable 

for visualizing complex data sets containing thousands of genes across thousands of cells. 

However, all dimensionality reduction and clustering approaches have inherent statistical 

biases and by reducing complexity, distort the underlying data [41]. This is an active area of 

research and investigators should stay current with best practices.

After cluster annotation, the downstream analysis strategy is determined by researcher 

priorities. Investigators can test for differences in proportions of cell clusters by 

exposure using beta regression. Developmental trajectories from progenitor cells to more 

differentiated cells can be inferred using bioinformatic approaches where users define a 

starting cluster and place the remaining cells on a continuous path termed ‘pseudotime’ [42]. 

This is a particularly helpful approach if the exposure or disease of interest is expected to 

alter cell differentiation. Additionally, one can examine overall differences in expression at 

each gene (accounting for cell composition) and generate a list of differentially expressed 

genes (DEGs) in the tissue. Similarly, within each cell cluster investigators can test for 

DEGs specific to that cell type. The magnitude of effect and level of statistical significance 

across DEGs can be visualized on a volcano plot. DEGs are then used as input into gene 

ontology (GO) and gene set enrichment analysis (GSEA) [42]. Many follow-up analyses can 

be considered based on the specific scenario.

Application of single-cell analyses to the brain and in Pb neurotoxicology

Single-cell approaches are becoming increasingly accessible to new users due to the 

development of commercialized kit-based pipelines and decreasing sequencing cost. The 

neuroscience field is particularly well positioned to utilize this technology because of the 

diversity of cell types in the brain (Figure 1(a,b)). Cellular heterogeneity is especially 

interesting during development when transient progenitor populations arise and differentiate. 

A single gestational week in human brain development can correspond to a large change 

in cellular composition as shown in large single-cell sequencing studies of the fetal brain 

with samples spanning 5–41 weeks of gestation [48,49]. These studies have identified new 

progenitor cell populations including subclasses of radial glia [48] and multipotent glial 

progenitors [49].

High cellular heterogeneity in the brain underscores the need for developmentally and 

tissue-appropriate cluster annotation datasets (Table 2) and suggests that toxicity studies 
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during these windows should be cognizant of cell differentiation. Pseudotime analyses 

may be an effective approach to identify cell differentiation trajectory differences by Pb 

exposure, considering developmental timing and duration of exposure. Pb is a known 

neurodevelopmental toxicant, and these approaches may be particularly relevant for 

examining critical periods of increased vulnerability in development and changes in cell 

fate.

Single-cell or nuclei sequencing can be leveraged to quantify changes in tissue composition 

based on the proportion of each cell type captured from tissue with and without perturbation 

by toxicant exposure or disease. In the aging brain, different cell types may be more or 

less sensitive to disease or toxicological insults, such as dopamine neurons which are more 

sensitive to ROS-inducing rotenone than other neurons due to their higher mitochondrial 

metabolism [54]. The reliance on single-cell RNA-seq alone to quantify tissue composition 

and proportion of different cell types is not advisable because particular cells may be more 

vulnerable to loss during cell dissociation. Single-nuclei approaches are more likely to retain 

relative proportions of cells and may be better suited for examining changes in relative 

proportions of different cell types.

Although Pb is associated with developmental toxicity, exposures are also associated with 

an increased risk of neurodegenerative diseases including Alzheimer’s disease (AD) [50] 

and Parkinson’s Disease (PD) [51]. The cell type-specific effects of Pb exposure have yet 

to be extensively evaluated with regard to neurodegenerative outcomes, though single-cell 

analyses of ND progression have laid the foundation for such work in the future. The Seattle 

Alzheimer’s Disease Brain Cell Atlas (SEA-AD.org) is an open-access resource covering 

the full spectrum of AD severity and progression. It includes single-nuclei RNA-seq, ATAC-

seq, quantitative pathology, spatial MERFISH, and clinical disease severity measurements. 

These data are easily visualized on the SEA-AD Allen Brain Atlas website. The earliest 

analysis of this new data set demonstrated the relative abundance of each cell class alongside 

the pseudoprogression score to show different cells lost and generated over the course of AD 

[53].

Similarly, large clinical data sets from the Religious Orders Study and Rush Memory and 

Aging Project (ROSMAP) have combined single-nuclei approaches with disease progression 

metadata. One of the earliest analyses of the ROSMAP AD single-nucleotide data set 

reported large transcriptomic changes with cell-specificity early in disease, before more 

severe pathology arose, and more uniform transcriptomic changes later in the disease [52]. 

Follow-up work with the expanded ROSMAP data set (2.3 million nuclei, 427 donors) 

compared gene expression across groups with increasing severity of AD pathology, which 

was marked by a loss of somatostatin inhibitory neuron subtypes. These subtypes were 

not lost in donors who presented AD pathology and also atypical resilience to cognitive 

impairment [53]. Early AD has also been characterized by changes in excitatory neurons 

including β-amyloid production [54], and loss of genetic stability marked by double-

strand breaks and enrichment of somatic mosaic gene fusions [55]. Sn-ATAC-seq revealed 

differential changes in accessibility in neurons (early AD) and glia (late AD), and a global 

loss of epigenome integrity leading to loss of cell identity later in disease [56]. Combining 
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sn-RNAseq and sn-ATAC-seq enabled Sun et al. to identify 12 distinct microglia states as 

the AD progressed and to identify the transcription factors that mediated these states [57].

Single-cell sequencing is well positioned to identify different cell types, and can therefore 

be leveraged to quantify changes in tissue cmoposition based on the proportion of each 

cell type captured from tissue with and without exposure. In the brain, different cell types 

may be more or less sensitive to toxicologic insults or disease. For example, dopamine 

neurons are more sensitive to reactive oxygen stress-inducing rotenone than other neurons 

due to their higher mitochondrial metabolism [58] and these cell proportion changes may 

be detected with single-cell RNA-seq. Single-cell RNA-seq based tissue composition and 

cell type proportion should be validated using pathology, as particular cells may be more 

vulnerable to loss during cell dissociation. Single-nuclei approaches may be more likely to 

retain relative proportions of cells and may be better suited for examining changes in relative 

proportions of different cell types.

Developmental exposures that alter cell fate may also change the proportion of captured 

cells. Zhang et al. found that manganese exposure is associated with an increase in 

GABAergic neurons and undefined neurons, and a loss of dopaminergic and cholinergic 

neurons in the zebrafish brain using single-cell RNA-seq. They used pseudotime analysis 

to map exposures (control, low, high) onto different cell populations and show a change 

in differentiation trajectory [59]. Likewise, single-cell analyses have been used to show 

changes in cell proportions following exposure to methylmercury (MeHg) [60,61]. Loan et 

al. exposed mice to early life (embryonic day 0–15) MeHg and found an increase in autism 

spectrum disorder-like behaviors in adulthood. Using single-cell RNA-seq and RNA velocity 

analysis, they found that MeHg exposure increases neuronal differentiation from fetal radial 

glial precursors at embryonic day 13.5 after two weeks of exposure [60].

To date, one study has employed single-cell analyses in Pb neurotoxicology [29]. Mouse 

dams were exposed to Pb via the drinking water 2 weeks before mating and through 

weaning. Single-cell RNA-seq was performed on hippocampal brain tissue from 4 mice (2 

males and 2 females) exposed to Pb in utero and 4 non-exposed controls (2 males and 2 

females) at 5 months of age. The transcriptomic changes observed at 5 months are thus 

persistent changes to cell identity and function, not an acute response to Pb. Overall, glial 

cells exhibited the most transcriptomic changes associated with Pb. The single-cell approach 

quantified a 12.4% increase in oligodendrocytes in Pb-exposed animals. To test whether this 

was due to a change in oligodendrocyte differentiation, they re-analyzed data from in vitro 
neural progenitor cell cultures exposed Pb-acetate or control conditions [62] and measured 

early Pb-associated increases in oligodendrocyte marker genes including OLIG1, OLIG2, 
PDGFRA, and MBP. Bulk analysis of this tissue would likely not have revealed the changes 

in cell type proportions and may have been unable to detect the decrease in oligodendrocyte 

gene expression. This further promotes the idea that single-cell analyses are an important 

next step in our assessment of how neurodevelopmental exposures impact various regions 

of the brain and what cell-specific responses may mean for disease risk. Future work can 

build on this by examining the functional or behavioral outcomes related to this increase in 

oligodendrocytes.
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Recommendations and summary

Pb’s effects on the brain are complex and likely vary by cell type, developmental time period 

of exposure, and outcome measurement. Recent advances in single-cell approaches make the 

investigation of cell-type-specific effects feasible. The first (and currently only) single-cell 

RNA-seq study of Pb exposure in the brain was published in 2020 [29]. In this study, the 

majority of the cells captured were non-neuronal: endothelial cells (27%), microglia (27%) 

and oligodendrocytes (15%). These abundances do not reflect in vivo tissue proportions and 

highlight the unequal vulnerabilities of different cells to dissociation. In particular, neurons 

are not well preserved during dissociation of whole cells, but they are better preserved as 

nuclei. In this dataset, the cell classes with the most differentially expressed genes were 

also those with the most cells and statistical power. For this reason, additional studies are 

necessary to better characterize the long-term effects of early-life Pb on neurons and more 

rare cell types.

As with any other experiment, single-cell experiments should include at least 3 biological 

replicates (i.e., individual animals) and often more in cases of high heterogeneity such 

as patient-derived samples. More complex tissues with more cell types require more cells 

sequenced so that each cell type has a sufficient number of cells for comparing exposed vs. 

unexposed groups. In some cases, it is better to focus on a single brain region to ensure 

adequate coverage of each cell type. For example, a comparison of 1000 dopaminergic 

neurons comprised of 500 control versus 500 exposed cells each sequenced to a depth 

of 20,000 reads per cell provides only 10 million reads, which is significantly lower 

than standard bulk approaches, which are commonly 20–40 million reads/sample. This 

sequencing depth is adequate for broad cell identity, but quantifying subtle transcriptomic 

effects of metal exposure may be hard to distinguish from noise without deeper sequencing.

One major limitation of single-cell RNA-seq is that it is biased toward more abundant 

transcripts and rare, but biologically meaningful, differences may never be captured even 

when sequencing depth is saturated. For this reason, if only a few cell types are of interest 

it would be more informative to purify individual cell types by FACS, immunopanning, or 

magnetic activated cell sorting (MACs) and perform bulk sequencing. Additionally, the most 

common single-cell RNA-seq chemistries are limited to the 3’ portion of the transcript and 

these libraries cannot be used to examine changes in transcript splicing. For the reasons 

mentioned above, single-cell sequencing and bulk sequencing approaches provide different, 

and often complementary, information and both techniques have their individual caveats to 

consider. Careful experimental design that is tailored to the research question of interest will 

ensure efficient use of cells and resources.

Importantly, experimental findings from a single-cell data set should be validated using 

orthogonal approaches. For example, transcriptional changes can be validated at the RNA 

level by RNAscope or the protein level by immunohistochemistry, dot blots, or western 

blots. Changes in cell proportion can be validated using immunohistochemistry, flow 

cytometry, or proliferation and cell survival assays. There are several papers describing 

best practices for single-cell analysis [32], and new and existing users should consciously 

seek out and use new resources as they become available in this rapidly changing field. 
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Techniques are increasingly becoming available to conduct single-cell measures beyond 

gene expression, including single-cell ATAC-sequencing for chromatin accessibility. Single-

cell sequencing is typically performed on a single-cell suspension with loss of spatial 

information, and although it is beyond the scope of this article to discuss in detail, 

multiple approaches now allow visualization of transcripts within tissue sections (e.g., 10x 

Visium, Nanostring). Of note, these approaches typically use probe sets rather than unbiased 

sequencing. Rapidly advancing tools will enable a detailed and specific investigation of the 

molecular effects of Pb on the brain.

In summary, human Pb exposure remains an ongoing health concern and is associated 

with neurodevelopmental and neurodegenerative disorders. Pb exposure causes widespread 

differences in gene expression in bulk tissue, sorted cells, and in cell culture. We 

propose that to resolve the cell types that underlie these bulk changes, single-cell 

analyses are needed. We provide recommendations for implementing single-cell approaches 

in Pb neurotoxicology. These new technologies represent an exciting opportunity for 

neurotoxicologists to advance genome-wide molecular discovery in a cell-type-specific 

manner. A more comprehensive understanding of how Pb exposure elicits cell and 

developmental stage-specific effects will support exposure prevention and therapeutic 

endeavors.
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Figure 1. 
Brain tissue is highly heterogeneous, containing hundreds of specialized and unique cell 

types. Panel (a) depicts a simplified cartoon of the structure and major cell types present 

in cortical brain tissue during fetal development. Panel (b) depicts the structure and major 

cell types present in the adult cortex. For simplicity, a small selection of cell types is shown. 

Panel (c) portrays hypothetical single-cell RNA-seq data including these brain cell types 

after they have been assigned to clusters and visualized in a uniform manifold approximation 

and projections (UMAP) plot. The heatmap shows cell-specific marker genes (x-axis) used 

to infer cell type for each cluster (y-axis). Relative gene expression values are for illustrative 

purposes only.
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Figure 2. 
Bulk tissue measures reflect mixtures of cell types present in the tissue. In this simplified 

example, three cell types are depicted, though many others would also be present. Pb-

induced differences in gene expression in bulk tissue cannot distinguish multiple biologic 

scenarios, including direct effects across all cell types, strong effects in a vulnerable cell 

type, and shifts in cell type proportions. We showed an increase in gene expression, though 

an exposure could alternatively cause a decrease in gene expression. Adapted from Ref. [18].
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