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Abstract

Our visual system consciously processes only a subset of the incoming information. Selective 

attention allows us to prioritize relevant inputs, and can be allocated to features, locations, 

and objects. Recent advances in feature-based attention suggest that several selection principles 

are shared across these domains and that many differences between the effects of attention 

on perceptual processing can be explained by differences in the underlying representational 

structures. Moving forward, it can thus be useful to assess how attention changes the structure of 

the representational spaces over which it operates, which include the spatial organization, feature 

maps, and object-based coding in visual cortex. This will ultimately add to our understanding of 

how attention changes the flow of visual information processing more broadly.

Selection based on features, locations, and objects

To experience a coherent and meaningful world, we must choose what information to 

prioritize and process. Attention refers to the cognitive function that allows us to select 

information from the constant stream of sensory inputs and can operate in multiple ways. 

Attention can be allocated to a specific location in the visual field to prioritize processing of 

sensory information within the attended region [1]. Attentional selection can also be based 

on visual features: when looking for your keys on a cluttered desk, you can use their color 

or shape to help find what you are looking for [2,3]. Finally, attention can operate over 

entire objects: feature clusters that form a coherent perceptual unit in the visual system 

[4,5]. While researchers tend to agree that the goal of each of these modes of attention is 

largely the same (i.e., to select relevant information), there is no consensus on the extent 

to which the processes supporting selection are shared across these domains, with much 

work attempting to characterize the mechanisms that distinguish spatial, feature-based, and 

object-based attention [6–8]. While understanding the differences between them is useful, in 

our view, it is also important to identify their similarities and integrate across findings with 

the goal to conceive of a more general framework of selective attention.
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In this Opinion, we review recent findings from the literature on feature-based attention 

and discuss them in the context of spatial and object-based attention. We focus on the 

effects of attentional selection on visual processing from the perspective of representational 
geometry (see Glossary, [9]), to demonstrate that considering the similarity structure of 

different sensory representations can help reveal shared constraints in attentional selection 

across domains. In support of this view, we discuss several effects of attention on visual 

processing, arguing that differences between them are largely due to differences in the 

underlying structure of the representations in visual cortex, rather than attention itself. The 

principles discussed here are intended to illustrate the commonalities between different 

modes of attention, though do not constitute an exhaustive list. Most broadly, we propose 

that attention can be thought of as a process by which the representational content of 

information is flexibly shaped in support of adaptive behavior, as opposed to a mechanism 

that highlights (or filters) particular types of stimuli. This, we believe, will ultimately lead 

to a more complete model of attention and expand our understanding of how information is 

transformed across different processing stages in the brain.

What is feature-based attention?

Feature-based attention refers to the way by which attention can select between different 

features within a specific feature dimension (e.g., between the colors red and blue) or 

sometimes also to the selection of one relevant feature dimension over another (e.g., 

enhancing motion direction over color). Here, we will focus on the selection of one feature 

among others from the same dimension. (For what can be considered a visual feature; Box 

1).

One prominent task used to study feature-based attention is visual search, in which 

participants are asked to find a target that is usually defined based on a particular visual 

feature, for example its color, among other nontargets. These tasks nicely map onto how 

we often use feature-based attention in real-world situations (such as finding a red apple in 

the fruit section) and have provided important insights into what constrains feature-based 

selection. For example, the global heterogeneity of the visual scene as well as perceptual 

similarity between targets and nontargets play a critical role in the efficiency of visual 

search [10–12], with search times increasing exponentially as the similarity between features 

increases [13,14]. Models of visual search have promoted the idea of attentional templates 
that are actively held in working memory and are used to guide search and identify the target 

(Box 2).

Other research, particularly from the neuroscience literature, has relied on sustained 
attention tasks as a paradigm for studying feature-based attention [15,16]. In such tasks, 

groups of stimuli are used to present target and nontarget features at the same spatial 

location, and different groups of dots comprise a different feature value (e.g., one group is 

red, another green; one moves upwards, the other downwards, etc.). Because the stimuli are 

spatially intermingled and change locations randomly, there is no spatial or depth separation 

to differentiate them. Such tasks provide a useful tool for investigating mechanisms of 

feature-based attention independently of their ability to guide spatial attention and have been 

instrumental in showing that feature-based attention can operate in a spatially global way 
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[15,17]. For example, attention to a specific color or motion direction in one part of the 

visual field results in increased neural activity to that feature across the entire visual field 

[15,16,18–20]. Similar to what has been shown for visual search, target-distractor similarity 

modulates the efficiency of attentional selection in these sustained attention tasks [13,21], 

pointing to similar selection limits across these tasks.

What are the shared principles of feature-based and spatial attention?

Unlike feature-based attention, which is spatially global, spatial attention selects for specific, 

relevant locations within the visual field, and presumably selects all information within the 

attended spatial extent (i.e., spatial attention is global for features). That is, spatial and 

feature-based attention appear to be complementary, and they can be used in combination 

[22,23]. Like many other visual features (Box 1), space has a defined dimensionality that 

is relevant to behavior and is encoded within the visual system. Research has shown that 

regardless of whether selection is based on locations or features, attention can act by 

increasing sensory gain of attended information, revealing one common mechanism of 

selection between spatial and feature-based attention [24,25]. Indeed, several models of 

attention, such as the feature-similarity gain model [16], the theory of visual attention 

(TVA) [26], as well as the normalization model of attention [27], propose to treat space 

the same way as other basic visual features. Here we summarize recent empirical work 

that is consistent with the notion that spatial and feature-based selection can affect visual 

processing in similar ways, in support of theories of attention that consider both the same 

way.

Time course of spatial and feature-based selection

Starting in the 1980s, the dominant view was that spatial selection has priority over 

feature-based selection, and although the term priority has often been used rather vaguely, 

differences in timing (how early processing is affected by attention) and consistency 

(how reliably processing is affected) were taken as support for this view. For example, 

electrophysiological studies in humans showed that spatial attention enhances the early 

visual P1 component (~100 ms) [28,29], whereas effects of feature-based attention are 

often observed later in time (~200 ms post-stimulus onset; the so-called feature-selective 

negativity) [30–32]. However, studies that continuously presented target and distractor 

features at the same spatial location to induce high competition found that the early P1 can 

be increased during feature-based attention as well, and that this increase occurred globally 

across the visual field [33,34]. While these feature-based P1 effects might be specific to 

these competitive visual displays and thus more sensitive to task design than early effects 

of spatial attention [35], these data overall reveal that the selection of visual features can in 

principle occur as early as selection based on space.

Flexible allocation of attention to narrow and broad ranges of features and locations

One key aspect of spatial attention is that it can be flexibly focused on larger or smaller 

regions in visual space [36–39]. Can feature-based attention similarly zoom in and zoom out 

in feature space? For example, when the goal is to find apples amongst other fruits, do we 

attend to one specific color red, or can we tune our attention to ranges of apple-like colors, 
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such as orange, red, and yellow, at the same time? While this may be less intuitive in the 

feature domain, if one considers the fact that many features are organized in a map-like 

structure (Box 1), attention could act on different parts of these feature maps the same 

way it acts on spatial maps in visual cortex (Figure 1A). Indeed, it has been shown that 

highly predictive orientation cues elicit a narrower attentional focus and less predictive cues 

a broader attentional focus in orientation space [40]. Furthermore, in a sustained color-based 

attention task, participants tuned their attention to broad ranges of colors with only a 

small decrement in performance [41]. Importantly, in both studies participants attended 

to the entire range of relevant features relatively uniformly, suggesting that the focus of 

feature-based attention, just like spatial attention, can flexibly adjust to allocate resources 

more broadly or narrowly as required by task demands.

Selection profile for features and locations

To understand the computational principles of attentional selection it is useful to not only 

examine how sensory processing changes for attended inputs, but also how unattended and 

task-irrelevant information processing is modulated. Whereas some studies have found that 

attentional enhancement gradually falls off as distance from the target increases (in feature 

space [42] or location space [43]), other studies have shown that selection can elicit an 

inhibitory zone surrounding the attentional focus, effectively reducing confusability between 

the attended information and nearby distractors (Figure 1B). That is, attending to red can 

lead to enhanced processing of red items and attenuated processing of similar relative to less 

similar colors (e.g., orange vs green). These suppressive surrounds have been observed both 

in the spatial [44,45] and feature domains [21,46,47], as predicted by the selective tuning 

(ST) model of attention that proposes center-surround selection as a canonical computation 

across domains [48,49]. While the exact selection profile of attention appears to depend on 

task demands and the measurement resolution, recent studies collectively suggest that both 

gradient and surround inhibition can be implemented both in feature and location space.

Perceptual distortions in feature and location space

Feature-based attention has been shown to not always enhance the exact target feature, 

but in some conditions, enhance neural populations that are tuned away from the target, 

presumably to increase the signal-to-noise ratio between targets and nontargets [50–52]. 

For example, when participants are performing an orientation-based [50] or color-based 

[53] visual search task, they report the target feature to be shifted away from the distractor 

features in feature space, especially when targets and distractors are similar [52,54]. That 

is, when selecting a red target among orange distractors, participants report that the target 

color appears slightly more purple [53]. These perceptual biases due to attention resemble 

the perceived position shifts of targets in spatial attention tasks, where attending to one 

location induces the perceived target location to be shifted away from the distractor location 

[55,56]. Thus, attention to locations and features can lead to perceptual distortions, such 

that the target is perceived to be pushed away from the distractor representation, ultimately 

increasing the representational distance between them (Figure 1C) [57]. Broadly, these 

changes in perception also relate to studies that have demonstrated that spatial attention can 

alter the appearance of visual stimuli, for example by enhancing the perceived contrast of 

an attended stimulus to increase discrimination performance [58–61]. Thus, both spatial and 
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feature-based attention can cause changes in our perceptual experience to support efficient 

selection.

How is feature-based attention related to object-based attention?

Research has also suggested that attention can be directed not only towards locations or 

visual features but towards visual objects. Seminal studies reported that participants are 

more accurate (or faster) in reporting targets that are superimposed on the same object 

relative to separate objects [4,62,63], and these behavioral effects are accompanied by neural 

changes in early visual processing for stimuli appearing at locations within an object relative 

to between objects [64,65]. Although recent research suggests that these effects are rather 

small and need large samples to be measured reliably [63], they play a foundational role in 

theories of object-based attention. However, relative to feature-based and spatial attention, 

much less is understood about the nature of the object representations in question or even 

what exactly defines an object with respect to attention. Yet, researchers have suggested 

that objects are the meaningful unit for attention [66], and that feature-based attention can 

be thought of as object-based attention [6]. We here take a different stand and suggest 

that many effects of attention on sensory processing that are termed object-based can be 

explained by principles of feature-based selection where enhancement naturally spreads 

across spatial and feature maps.

Perceptual grouping determines spreading of attention

Several studies indicate that perceptual grouping is the key attribute for attention to 

select more than a single feature (i.e., an object). Specifically, when feature groups 

overlap spatially [67,68], are perceptually similar [31,69,70], conjoined through uniform 

connectedness of spatial regions [71], form a surface spanning depth planes [72], or include 

clear edges [62], attention appears to not just select an isolated singular feature, but rather 

features associated with that perceptual group [73]. For example, when participants are 

instructed to attend to a single visual feature – such as the color of a moving stimulus 

– attention first enhances processing in brain regions that respond to that primary feature 

(color), but this enhancement subsequently spreads to motion-related regions [67,68,74]. 

A recent behavioral study demonstrated that spreading of attention between two features 

at the same location (i.e., attention to red also enhanced the motion direction of these red 

items) can lead to enhancement of the secondary (never volitionally selected) feature at a 

different location (i.e., processing of the motion direction was also enhanced in the opposite 

visual field [70]). A similar effect was found in an electrophysiological study where neurally 

assessed attention effects spread across hemifields to an initially ignored visual feature 

of an attended object in the other hemifield [75], revealing that entirely task-irrelevant 

features receive a processing boost through global spreading of attention. Attention effects 

also spread across 3D cubes when their surfaces can be grouped (and these effects can be 

strengthened when connected with another surface, facilitating grouping [76]). This suggests 

that how attention selects multiple features or locations spontaneously (i.e., without explicit 

instructions) largely depends on how these features are grouped by the visual system.
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Attentional enhancement can naturally propagate through feature and spatial maps

As the visual system constantly exploits structured properties of the visual inputs (such 

as feature similarity or adjacency) because they are likely reflections of distinct objects in 

the real world [77], perceptual grouping appears to be a straightforward account that can 

explain several findings in the object-based attention literature. Thus, a more parsimonious 

definition of object-based attention could be the simple observation of attention spreading 

between multiple features or locations. This account is agnostic to the theoretical definition 

of what an object is, a difficult theoretical issue in its own right [66], but rather describes 

object-based attention as the empirical observation of attention spreading between features. 

According to this view, object-based effects do not need novel mechanistic explanations of 

how they occur as they can be readily explained by mechanisms of feature-based attention: 

Neural populations tuned to different features can be perceptually grouped by the visual 

system through overlapping spatial receptive fields or similarity within the same feature 

map, which can provide a scaffolding that allows for attention to spread from one population 

to another [78]. Reciprocal connections between populations tuned to the same feature 

at different locations, as well as with higher-level complex visual feature maps can then 

propagate these attention effects [79]. Thus, while object-based attention is a useful term 

to describe attentional spreading between features, it does not necessarily require a new 

mechanistic account.

Boundary conditions between feature- and object-based attention

There are, however, also cases where these perceptual grouping processes may not be 

entirely sufficient to explain object-based attention effects. For example, in multiple-object 

tracking tasks it has been shown that performance drops dramatically when instead of disks 

with clear edges, participants are asked to track moving nonsolid substances (that group 

perceptually but do not have clear boundaries [80]). This indicates that what the attentional 

system considers to be an object can be more intricate. Furthermore, investigating how 

attention selects complex real-world objects that entail a multitude of low-level features 

and also connect to knowledge and semantic meaning can reveal potentially important 

differences between feature- and object-based attention. For example, research shows that 

the semantic structure of real-world objects can scaffold how attention is allocated in 

addition to similarity in low-level feature maps [81]. Thus, investigations of how attention 

operates over real-world stimuli, which are represented with much higher dimensionality 

(including visual and semantic dimensions) [82,83], appears especially important and of 

particular interest within the framework of representational geometry that also incorporates 

dissimilarity structures for these higher-dimensional spaces (Box 3).

Towards an integrated framework of attention across features, locations, 

and objects

As we have outlined in the preceding text, many aspects of attentional selection seem to be 

shared between spatial, feature-, and object-based attention. This points to the possibility 

that the differences between these types of attention are based – at least in part – on the 

fact that they operate over different representational spaces rather than because they truly 
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reflect different computations or processes. For example, although orientation and color are 

distinct visual features with different neural representations, differences in the effects of 

attention on these features do not necessitate that we consider separate orientation-based or 

color-based attention systems. Likewise, differences in spatial and feature-based attention 

should not necessarily require separate theories if the differences observed across paradigms 

can be explained in terms of the underlying representational spaces rather than how attention 

acts on those representations (Figure 1). It can, of course, still be the case that some 

features (or feature bundles) are more dominant than others given how their representational 

architecture is implemented in the visual system (e.g., spatial coding of information is 

essentially part of any visual representation, and may thus be considered a special class of 

feature; certain real-world objects (Box 3), such as faces, are potentially unique in how the 

visual system combines its features, etc.), or because they may be more useful for selection 

(i.e., more salient due to evolutionary relevance of some features, e.g., color vs orientation); 

but importantly, these are differences in the representations themselves, and not in how 

attention acts upon them.

Representational spaces and priority maps

This perspective has significant overlap with the literature on priority maps, the idea that 

attention acts on topographic representations based on the salience or behavioral relevance 

of particular features [84,85]. Indeed, representational spaces may implement many of the 

functions of priority maps. One major point of difference is that priority maps are largely 

defined in terms of retinotopic spatial positions, since these models are primarily predicated 

on understanding eye movements [86,87]. In comparison, representational spaces in general 

do not need to be retinotopically organized, so long as the structure of the representations 

can be extracted from the pattern of activity across neural populations. Map-like structures 

have previously been put forward as a way to understand processing limits in attention 

and working memory [88], and point towards understanding how the visual system groups 

and partitions different inputs as a key step towards characterizing cognitive capacities. For 

example, research has demonstrated that Gestalt properties, such as similarity, collinearity, 

and common fate can act as scaffolds to allow for the spreading of activation from one item 

to another [78]. Indeed, similarity between stimuli (e.g., in spatial position or feature space) 

may provide a common scale for attentional selection, indexing the representational overlap 

between different sources of information.

Attention sculpts representational spaces

Once one considers explicitly the organization of the different representational spaces, it 

also becomes important to understand how selective processing affects these representational 

spaces as a whole. For example, in our recent work we found that selecting a target color 

distorts the representational feature space in a way that separates targets and distractors 

and, critically, these attention-induced shifts had downstream consequences across large 

swaths of the rest of the feature space [53] (Figure 2A). This demonstrates that selection 

does not just affect the representation of a particular target and distractor feature but 

can warp the entire representational space. Such warping due to attention has also been 

observed for location [55,56] (Figure 2B), as well as more complex and higher-level 

dimensions, such as semantic categories (Figure 2C), where attention acts to separate neural 
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population responses along the behaviorally relevant dimension, resulting in distortions of 

the underlying representational structure [89,90]. Along a similar vein, recent computational 

approaches have explored how activity in neural systems follows dynamic and flexible 

trajectories during working memory and decision making [91,92]. Potentially, changes in the 

representational structure under attention may help shape these dynamics, essentially forging 

a pathway for relevant information to flow more efficiently (i.e., by aligning communication 

subspaces) [93,94]. Thus, attention does not only influence processing of information at the 

attended location or feature, but instead can sculpt the entire representational geometry in a 

way to best support behavior. These changes in representational structure can occur across 

location and feature spaces, including groups of feature representations (perceptual units, or 

objects). Most broadly, this means that understanding these representational spaces – their 

organization, structure, and flexibility – and how attention changes them, is a critical step 

towards explaining attentional selection and its limits.

Concluding remarks

Research on visual selective attention, in particular recent findings in feature-based 

attention, has revealed several similarities between what is often referred to as spatial, 

feature-, and object-based attention. Thus, these modes of attention appear less distinct 

than often portrayed in the literature, although there are important boundary conditions 

that may distinguish them (e.g., tracking, real-world objects). Here, we want to encourage 

researchers to look beyond the differences and shift the focus towards considering the 

structure and constraints of our mental representational spaces (locations, simple visual 

features such as orientation or color, or higher-level feature spaces such as faces, objects, or 

conceptual knowledge), and how attention affects these structures. This will ultimately help 

us understand the nature of our processing limits and abilities (see Outstanding Questions).
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Glossary

Attentional templates
visual features that are maintained in working memory because they are relevant for a 

current task

Guidance
process of attention being directed to stimuli that are most likely to be the target, which 

can be due to the saliency of a stimulus, the implicit or explicit goals of an observer, prior 

experience, scene structure, etc

P1 component
first positive-going deflection of the scalp-recorded event-related potential collected by 

means of electroencephalography. It usually occurs ~100 ms after the presentation of a 

visual stimulus and is thought to stem from extrastriate areas of the visual cortex
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Priority map
model representing the priority of stimuli at different points in an abstract map in a given 

stimulus space. Traditionally, in the visual domain, this map represents 2D spatial locations, 

with the activation level at a given location denoting that location’s priority

Representational geometry
framework that allows us to relate brain, computation, and cognition by characterizing 

mental representations in terms of their dissimilarities based on the neural response patterns 

of a set of stimuli

Search slope
search slopes (ms/item) in visual search tasks indicate the average increase in response 

times due to each added item on the display. A smaller search slope is indicative of a more 

efficient search

Sustained attention task
these tasks require participants to continuously maintain their focus of attention on a certain 

location or feature among irrelevant locations/features for an extended period of time (e.g., 

several seconds). To ensure participants are persistently attending to the relevant items, they 

often monitor for the brief occurrence of a target event, for example a change in luminance 

of the to-be-attended location/feature

Visual search
task of looking for something in a cluttered visual environment. The stimulus that people are 

looking for is termed the target, and the other items are termed nontargets or distractors
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Highlights

Selective attention is often studied separately as spatial, feature-based, and object-based 

attention.

Recent research on feature-based attention in particular demonstrates that many selection 

principles are shared across these domains, suggesting that a core set of mechanisms 

supports effective information processing in the human brain, regardless of domain.

Understanding the underlying representational structures, such as the spatial organization, 

various feature spaces, and object-based coding in visual cortex, will aid unifying 

theories of attention.

Considering the structures of perceptual representations will also open up the possibility 

to study how selection sculpts entire representational spaces to support efficient 

information processing.
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Outstanding questions

How does attentional selection change representational geometry? How can changes in 

representational structure be measured and modeled?

Is there a canonical limit on how broadly (or narrowly) attention can be tuned across 

different feature spaces once differences in the representational structures (i.e., perceptual 

similarity) is accounted for?

Are there differences in surround-suppression for different feature dimensions? Peak 

suppressive regions might occur at consistent spots across different feature maps once 

perceptual similarity is considered. At the same time, how would individual differences 

in perceptual spaces, or changes over time (e.g., through perceptual training and 

expertise) affect selection limits?

What is the organizational structure of more complex and abstract feature spaces, and 

do similar selection principles apply in these higher-dimensional spaces (e.g., real-world 

objects, conceptual knowledge)?

If representational spaces accurately capture attentional selection for visual stimuli, do 

these same principles extend to other sensory modalities? What is the representational 

structure of auditory or tactile stimuli, for example, and how does attention function in 

these modes?
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Box 1.

What is a visual feature?

A visual feature is most clearly defined in the context of visual feature detectors: 

individual neurons or groups of neurons that selectively respond to perceptually 

significant stimuli in the visual world. Beginning in the 1960s and 1970s, 

neurophysiological recordings identified neural populations tuned to specific visual 

features, such as motion direction, spatial frequency, stereoscopic depth, color, or 

orientation (e.g., [95]). Importantly, these features are encoded independently, indicating 

that they reflect separate and orthogonal feature dimensions (e.g., orientation can change 

independently of color). Several neurophysiological studies showed that neurons within 

a feature dimension are organized in a map-like structure where similar features are 

represented near each other. For example, there are maps of orientation in V1 [95,96], 

motion direction in hMT/V5 [97], or color in ventral visual cortex [98,99]. The structure 

of these neural representations also directly relates to the psychological structure of the 

feature space, as reflected through the effects of similarity on perceptual performance: 

features that are near each other (and thus more similar) in the representational 

space are also responded to in more similar ways than more distinct features (i.e., 

stimulus generalization) [16,100]. While this correspondence may not exist across all 

processing stages of the visual hierarchy – color is represented in terms of opponent-

processes at early levels, but then this representation becomes more reflective of the 

psychological representation later on in the visual cortex [99,101] – organized maps that 

are concordant with the perceptually relevant dimensions pose an intriguing format for 

feature representations. Finally, the psychologically relevant structure of features can be 

well represented in terms of dimensionality of a feature: one dimension for orientation 

(0–180°) and motion direction (0–360°), or three dimensions for color (hue, saturation, 

and luminance, for one – although certainly not the only – representational space). 

Thus, several visual features have been well described in terms of their physiology, 

neural structure, and psychological representation. Based on this, researchers have also 

compiled lists of what features are in terms of attention, or more specifically which 

features may guide spatial attention [102,103].
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Box 2.

Attentional templates during feature-based attention

In visual search, participants are often required to hold a target feature actively in 

working memory to then find that target feature in a cluttered visual display. These 

template-based visual search tasks resemble how we often look for a particular item 

in the real world and have been of interest to attention researchers for a long time. 

Recent research indicates that these templates can adapt to the search context flexibly, 

for example by tracking target feature probabilities [104] and also by shifting resources 

away from consistent nontarget features [105,106]. In addition, it has been suggested 

that attentional guidance (e.g., measured in terms of eye movements or search slopes) 

might rely on a coarser template (e.g., warm colors) than perceptual decisions about 

target identification (i.e., the exact red held in mind; measured as accuracy in identifying 

the true target feature, or an overall change in response times independently of set size; 

[107–109]). While different measures (accuracy in reporting a feature vs. response times 

or eye movements) can produce different patterns of performance in visual search, it 

remains to be determined how each of these measures maps onto the proposed cognitive 

processes. Indeed, recent research has demonstrated that the amount of guidance during 

search is perfectly predicted by the representational fidelity of the target item in memory, 

indicating that the same representation underlies both [110]. Future work can build 

on this further, for example by comparing performance more directly to computational 

models that more explicitly define these aspects of visual search (e.g., ideal observer 

models; [111]).
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Box 3.

Attention to real-world objects

Several studies on object-based attention use images of real-world objects - such as 

faces, houses, cars, or bodies – and show that attention can be directed to these real-

world objects and enhance their processing holistically [5,112]. For example, studies 

demonstrated that when participants attended to faces overlaid on houses to detect a 

brief motion of the attended stimuli, neural responses in category-selective visual cortex 

corresponding to the attended objects were enhanced relative to the unattended object 

(fusiform face areas and parahippocampal place area, respectively). In other cases, 

participants were asked to search for people or cars in real-world scene images, and 

neural processing was enhanced for these object categories across the visual field, in 

agreement with spatially global object-based selection [113]. Similarly, when participants 

attended to faces at one location in the visual field, processing of faces at another 

task-irrelevant location was selectively enhanced [114], again suggesting that tuning 

attention to an object category can enhance visual processing of that category across 

the visual field. In our view, many of these attention effects on real-world objects 

can be readily explained within the perceptual grouping framework discussed in the 

main text. However, in the case of meaningful, real-world objects that are represented 

not only in terms of their lower-level visual features but also in terms of higher-level 

visual and semantic features that connect to preexisting knowledge (e.g., categories 

and familiarity), attentional selection is constrained across all these processing levels, 

including low- and mid-level visual similarity and higher-level semantic similarity. 

Thus, semantic and conceptual knowledge can provide an additional, and potentially 

particularly effective, scaffolding of how attention is allocated across real-world stimuli. 

Studies have shown, for example, that people’s eye movements are guided towards 

objects that are semantically related to a target object (e.g., when searching for a fork, 

people are likely to also look at a knife [115]). Furthermore, a recent study demonstrated 

that when participants are incidentally learning to attend to specific objects from the same 

category, attention spreads to other novel objects from the same category [116]. Some of 

these categorical effects are likely shaped by the large-scale organization in higher-level 

visual cortex that covaries meaningfully with lower-level and in particular mid-level 

visual features [82], and could thus be considered a continuation of the lower-level 

feature maps; future studies should take this into account when investigating attention to 

real-world stimuli.
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Figure 1. Selection principles across location and feature space.
(A) Locations and features are represented nearby each other in a map-like structure. The 

focus of attention can be tuned narrowly and broadly to select information over a small or 

large spatial region within the map (left), or small or large ranges of feature values (right). 

(B) When a specific location or feature is selected by attention, this can enhance processing 

of the target, with this enhancement falling off gradually (attentional gradient – broken 

line); but selection can also elicit a suppressive surround around the focus of attention, for 

example through lateral connections in location or feature maps. (C) Selection can lead 

to distortions in location or feature space, for example by increasing the representational 

distance between the selected target and surrounding representations (repulsion).
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Figure 2. Selective attention can induce changes in representational geometry.
(A) When a target is selected among a distractor, this may not only change processing 

of the target and distractor representations (e.g., by increasing or decreasing neural gain, 

respectively), but this may also lead to alterations in the entire feature space, for example by 

expanding the distance between features in one part of the space and compressing the feature 

representations in another part of the space. (B) Such changes in representational geometry 

can occur in any feature space, including spatial representations. (C) Representational 

geometry may also help explain the effects of attention on high-dimensional object 

representations. For example, attending to animate over inanimate objects may expand 

representations along the animacy dimension, resulting in a greater distance between objects 

as a function of their perceived animacy.
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