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C L I M AT O L O G Y

An unprecedented fall drought drives Dust Bowl–like 
losses associated with La Niña events in US 
wheat production
Lina Zhang1†, Haidong Zhao1†, Nenghan Wan1†, Guihua Bai2,1, M. B. Kirkham1,  
John W. Nielsen-Gammon3, Thomas J. Avenson4, Romulo Lollato1, Vaishali Sharda5,  
Amanda Ashworth6, Prasanna H. Gowda7, Xiaomao Lin1*

Unprecedented precipitation deficits in the 2022–2023 growing season across the primary wheat-producing re-
gion in the United States caused delays in winter wheat emergence and poor crop growth. Using an integrated 
approach, we quantitatively unraveled a 37% reduction in wheat production as being attributable to both per–
harvested acre yield loss and severe crop abandonment, reminiscent of the Dust Bowl years in the 1930s. We used 
random forest machine learning and game theory analytics to show that the main driver of yield loss was spring 
drought, whereas fall drought dominated abandonment rates. Furthermore, results revealed, across the US winter 
wheat belt, the La Niña phase of the El Niño Southern Oscillation (ENSO), increased abandonment rates compared 
to the El Niño phase. These findings underscore the necessity of simultaneously addressing crop abandonment 
and yield decline to stabilize wheat production amid extreme climatic conditions and provide a holistic under-
standing of global-scale ENSO dynamics on wheat production.

INTRODUCTION
Global wheat production faces a challenge due to the ongoing con-
flict between Ukraine and Russia, which has resulted in a 60% re-
duction in wheat trade and, consequentially, a 50% surge in wheat 
prices (1, 2). In response to this crisis, the United States, which is 
recognized as the “wheat breadbasket of the world,” expanded its 
acreage of winter wheat by 11% during 2022/2023 compared to the 
previous year. During this period, the US wheat heartland encoun-
tered an unforeseen and unprecedented challenge from extreme 
weather events. In the fall of 2022 (August to October), most states 
in the US winter wheat belt, including Texas, Oklahoma, Kansas, 
Colorado, and Nebraska, experienced a substantial precipitation 
deficit (Fig.  1A). This drought was particularly detrimental in 
Kansas, known as the “wheat state,” which produces the most winter 
wheat in the United States (3). In the past 40 years (1981 to 2020), 
Kansas produced 359 million bushels of winter wheat per year on 
average, representing 23% of the US total. In 2022/2023, Kansas had 
a record-setting precipitation deficit dating back to 1896 (Fig. 1, A 
and B), with the amount of precipitation falling to 84 mm, 60% be-
low the average between 1981 and 2010. Similar precipitation pat-
terns and dryness rankings were observed across the entire US winter 
wheat belt (Fig. 1A).

Such an extreme drought affected winter wheat emergence, 
growth, and development, leading to the latest emergence date and 

the second-longest duration between planting and emergence dates 
in the past 40 years, which covers all available historical data (Fig. 1C). 
These adverse conditions dually compromised both establishment 
and growth. Furthermore, crop growth conditions in the first week of 
November 2022 were the poorest on record over the period from 
1987 to 2023 (Fig. 1D). The severe drought conditions persisted into 
the spring of 2023 (Fig. 1, A, B, and D), further hampering growth 
and tillering. In Kansas, the extreme lack of precipitation in the fall 
and spring resulted in large portions of winter wheat to emerge in late 
spring rather than in early fall, shortening the period of crop devel-
opment and compromising the crop’s yield potential. Using combina-
torial analytics, the extreme climatic conditions encountered during 
the 2022/2023 growing season presented a unique opportunity to 
understand how such events converge to influence winter wheat 
production.

Despite increasing research efforts, the quantitative linkages 
between extreme climatic change and wheat production remain 
ambiguous. Annual wheat production equals the product of per–
harvested acre yields and harvested acreage (4). Both production 
components can theoretically be affected by climate variability and 
climate change. Most studies have focused on how in-season climat-
ic factors, such as overall growing-season warming (3, 5), extreme 
in-season temperatures (6, 7), and crop-seasonal droughts (8, 9), af-
fect wheat yields. However, these studies may bear uncertain impli-
cations for estimating production variability because the far-reaching 
impact of climate extends beyond in-season effects and also beyond 
mere reductions in crop yields (8, 10–12). Specifically, crop aban-
donment, defined as the difference between planted and harvested 
area normalized to the planted area (13), contributes to market vola-
tility (14), global food insecurity (15), and greater crop insurance 
claims, which have been overlooked in many studies (9, 16). Recent 
studies have explored the relationship between climate variability 
and crop abandonment; the results of which are typified by crop fail-
ure (10), a decrease in harvested ratio (the ratio of harvested area to 
planted area) (17, 18), and changes in crop frequencies (number of 
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crops harvested per growing season) (19). For example, normal 
temperatures or precipitation tend to increase the harvested ratio, 
while extreme climate conditions cause it to decrease, particularly in 
maize and soybean (18). Consequently, relying solely on per–harvested 
acre wheat yield as a gauge of production variability can cause un-
certainty when estimating the impact of climatic variability on 
wheat production. To bolster global food security (20), it is impera-
tive to integrate crop abandonment data into that of wheat yields 
when assessing production declines that are attributable to extreme 
weather events and climatic changes.

The occurrence of an unprecedented drought in Kansas during 
the 2022/2023 preseason and growing season, along with the avail-
ability of long-term data on wheat production in the state dating back 
to 1926, allowed us to explore the underlying mechanistic impacts of 
extreme climatic events on variability of wheat production. Using a 
random forest (RF) regression model (21), we provide quantitative 
evidence of 2023 production loss resulting from both crop abandon-
ment and yield variation and compared that to the winter wheat pro-
duction loss in both the decade of the Dust Bowl (i.e., 1930s), which 
was marked by the most prolonged and severe drought in modern US 
history (22, 23), and the latest decade between 2013 and 2022. We 

then quantitatively disentangled the climatic drivers underlying the 
extreme events that caused the extreme crop abandonment and yield 
losses by integrating the RF model with a game theory tool (24). Our 
objectives were to understand the impact of preseasonal and in-
season droughts on winter wheat production including crop aban-
donment and yield losses per se. Considering the widespread influence 
of the El Niño Southern Oscillation (ENSO) on fall precipitation in 
the US winter wheat belt (25, 26) and high predictability of larger 
amplitude ENSO events (27, 28), we simultaneously explored the po-
tential connections between ENSO phases and crop abandonment 
that might benefit predictive crop monitoring and early warning sys-
tems (29) in the US winter wheat belt.

RESULTS AND DISCUSSION
Attributions of losses in winter wheat production
The observational data revealed that abandonment of winter wheat 
was the most severe during the 2022/2023 growing season in Kansas 
since the Dust Bowl era in 1930s, the exception being the year of 
1951 (Fig. 2A), with an abandonment of 29%, amounting to 951,011 ha. 
This severity of abandonment mirrors that of the broader US winter 

Fig. 1. Driest rankings in the United States over 128 years and the 2022–2023 winter wheat growth conditions in the wheat state of Kansas. (A) Rankings (driest) 
of accumulated precipitation (Prcp) during August to October 2022 and March to May 2023 over the past 128 years (1896 to 2023; harvested years). KS, Kansas. (B) Pre-
cipitation anomalies during August to October and March to May with the base period of 1981 to 2010 in Kansas. (C) Wheat phenological statistics of emergence date [day 
of year (DOY)] and duration between planting and emergence dates (days) from 1982 to 2023. (D) Wheat growth conditions (%) in early November (first week) and late 
May (fourth week) from 1987 to 2023. The boxes delimit the 25th and 75th percentiles; whiskers indicate 5th and 95th percentiles; and vertical black lines represent the 
50th percentile. Red solid circles in (B) and vertical lines in (C) and (D) are for the 2023 harvest year.
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wheat belt, in which 2022/2023 recorded the highest level of aban-
donment since the middle of the Dust Bowl period (Fig. 2A). Such 
pronounced abandonment can be attributed to delayed emergence, 
adverse crop developmental conditions (Fig. 1, C and D), and di-
minished yield prospects. These unfavorable outcomes ultimately 
compelled farmers to leave their crops unharvested. Similarly, we 
also found a large yield loss in Kansas (Fig. 2A), with a decrease of 
0.52 tonnes ha−1 compared to the expected yield, equivalent to 22% 
of expected yield (see Materials and Methods).

To quantify the impact of extreme climate during the 2022/2023 
growing season on changes in abandonment and yields, we used an RF 
regression model. This model captured preseasonal and in-season tem-
perature and precipitation variations as well as wheat price fluctuations 
(see Materials and Methods and fig. S1). We then assessed the severity 
of wheat production losses in the 2022/2023 growing season by com-
paring them with those during both the decade of the US Dust Bowl 
(1931 to 1940) and the most recent decade (2013 to 2022). All results 
were expressed as a percentage relative to the estimated average produc-
tion driven by historical climate records (1981 to 2010). We found that 
climatic extremes during 2022/2023 resulted in a 37% loss in wheat 
production compared to average production during the period of 1981 
to 2010. This loss was the greatest for any year throughout the most recent 

decade as well as that of the Dust Bowl era, with the sole exception of 
1935 (Fig. 2B). The 2023 production losses were not merely due to yield 
decline per se, contributing to a 21% wheat production loss, but also to 
crop abandonment (Fig.  2B). The 16% production losses from crop 
abandonment in 2022/2023 are noteworthy because they are compara-
ble to the losses caused by extreme drought during the Dust Bowl era. 
During that historical period, three-quarters of the average production 
loss of 14% was attributed to crop abandonment, while the remainder 
(one-quarter) was due to yield reductions per se (Fig. 2B). The role of 
crop abandonment in influencing crop production was also under-
scored in maize and soybean (18). Generally, crop abandonment 
showed a nonlinear response to temperature and precipitation. How-
ever, crop abandonment in maize and soybean is more sensitive to tem-
perature (18), whereas wheat abandonment displays greater sensitivity 
to precipitation (fig. S2). To provide perspective, during the decade of 
the Dust Bowl, production losses due to changes in abandonment were 
much larger than losses resulting from changes in yield. In contrast, 
during the most recent decade, production losses caused by changes 
in yield were larger than those caused by changes in abandonment 
(Fig. 2B). In addition, we showed the comparison of observed and esti-
mated abandonment, which augmented the credibility of our find-
ings (fig. S3). To test the robustness of the findings, we also used two 

Fig. 2. Climate-driven changes in production attributed to crop abandonment and yields. (A) Observed time series for both crop abandonment and yield anomalies 
for Kansas (KS) and the United States winter wheat belt (US) including Nebraska, Colorado, Kansas, Oklahoma, and Texas. (B) State-level relative climate-driven production 
changes due to changes in abandonment and yields during the Dust Bowl decade (1931 to 1940), latest decade (2013 to 2022), and year 2023. The relative production 
changes are expressed as production changes relative to average production during 1981 to 2010. The boxes delimit the 25th and 75th percentiles, and the horizontal 
black lines represent the 50th percentile. (C) County-level relative production changes due to changes in abandonment and yield in the year 2023.
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alternative models with different sets of predictors (figs. S4A and S5A). 
Last, we showed the spatial distribution of climate-driven production 
changes in 2023, attributable to changes in crop abandonment and per–
harvested acre yields (Fig. 2C). The southwest regions of Kansas exhib-
ited the substantial production loss attributed to crop abandonment, 
whereas the central regions experienced severe decline in production 
due to yield loss (Fig.  2C), aligning with regions affected by severe 
spring drought (Fig. 1A). Overall, both crop abandonment and yield 
loss contributed to an average production decline of 50% across the 
central and western regions (Fig. 2C). A recent study (17) found that, 
on average, the projected future climate change by midcentury (2034 to 
2065) does not significantly increase production loss through crop 
abandonment relative to historical averaged climate. Consequently, it 
was suggested that neglecting crop abandonment as a factor in fu-
ture production levels would not substantially influence estimation of 
climate-driven production losses. However, the calibration period used 
in this study was relatively short and did not include most of the notable 
droughts of the past. Given the crucial role of crop production variabil-
ity in maintaining food stability (8) and the impact of crop abandon-
ment on production loss (Fig. 2, B and C), we encourage consideration 

of crop abandonment when estimating impact of climate variability on 
crop production, especially during extreme drought years. This addi-
tional measure could aid policy makers in devising effective risk man-
agement strategies and adaptation interventions.

Drivers for extreme abandonment and yield loss
We subsequently disentangled the underlying deleterious climatic 
conditions that led to both extreme wheat abandonment and the ex-
treme yield loss, defined as events above the 90th percentile and be-
low the 10th percentile, respectively, across all years (1926 to 2023) 
for each of the 105 counties in Kansas. The 10th and 90th percentiles 
were also selected for determining climatic extremes, including low 
and high precipitation as well as cold and warm temperature events. 
When we embedded a game theory tool [Shapley additive explana-
tions (SHAP)] (24) into the RF regression model (Materials and 
Methods and Supplementary Text), our results illustrated that pre-
seasonal fall precipitation (August to October) was the most impor-
tant climate variable in relation to the extreme wheat abandonment 
globally, whereas spring precipitation (March to April) played a piv-
otal role in the extreme yield loss (Fig.  3, A and B). Specifically, 

Fig. 3. Climate drivers of extreme abandonment and extreme yield losses. (A) Importance (SHAP values) of climate variables during county-years of extreme aban-
donment ordered from greatest to least important. (B) Same as (A) but during county-years of extreme yield losses. (C) Influence of the precipitation (Prcp) during August 
to October (the most important variable on extreme abandonment). Circles are sample points for county-years of extreme abandonment. Black solid line is the fitted line, 
and shaded area around the solid line indicates 95% confidence interval. (D) Same as (C) but for influence of the precipitation during March to April (the most important 
variable on extreme yield losses). (E) The width (or numbers) of the chords indicates the fractions (%) of area that suffered extreme abandonment (total 75%) driven by 
primary climatic extremes (low and high precipitation and cold and warm temperatures) across Kansas from 1926 to 2023. Black dashed lines highlight the most primary 
climatic drivers. (F) Same as (E) but for fraction of the area that suffered extreme yield losses (total 74%).
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abandonment rates exhibited a nonlinear response to fall precipita-
tion, especially with deficits in fall precipitation correlating to higher 
abandonment rates (Fig. 3C). Conversely, spring precipitation deficits 
were associated with the occurrence of extreme yield loss (Fig. 3D). 
Last, we estimated the primary climate extreme driving severe aban-
donment and yield loss (fig. S6 and Supplementary Text). We found 
that climatic extremes were the primary factors in 75 and 74% of the 
areas that suffered severe abandonment and yield loss across Kansas 
from 1926 to 2023, respectively (Fig.  3, E and F). In addition, ex-
tremely low wheat prices (<10th percentile) accounted for 6.6% of 
the areas that experienced severe abandonment (fig.  S6). We also 
found that drought in March to April was the primary factor in 19% 
of the areas of extreme yield losses (Fig. 3F). In contrast, abandon-
ment was predominantly triggered by fall drought events, which con-
tributed 24% to the severe abandonment area (Fig. 3E). Moreover, the 
excessive precipitation in May was associated with both extreme 
abandonment and yield loss, which is consistent with another study 
estimating climate-driven crop failure in the United States (10). These 
results were consistent with those based on two alternative models 
(figs. S4, B and C, and S5, B and C). The role of spring and early sum-
mer drought, which is critical for grain filling and yield formulation, 
has been extensively studied (3, 30). We also found that droughts in 
the fall and winter largely contributed to extreme yield losses (Fig. 3F), 
consistent with another study (31). To our knowledge, however, the 
significance of fall drought as a catalyst for crop abandonment and 
subsequent production losses has not previously been highlighted. 
The impact of fall drought on wheat abandonment can be attributed 
to the fact that winter wheat is usually sown in autumn, relying on 
sufficient soil moisture during this period to establish seedlings with 
robust root systems that promote healthy growth. Our study substan-
tiates the relationship between fall precipitation and both observed 
abandonment rates (fig. S7) and crop growing conditions at the end 
of the fall season (fig. S8).

ENSO teleconnections on winter wheat abandonment
Droughts in the US winter wheat belt have been confirmed to be influ-
enced by the ENSO (25, 32, 33). During La Niña, which is characterized 
by cooler-than-normal sea surface temperatures (SSTs) in the eastern 
tropical Pacific, the US winter wheat belt tends to experience fall 
droughts (fig. S9), as was observed in the 1930s (26), potentially leading 
to crop abandonment. To explore the direct role of ENSO in explaining 
variations in crop abandonment, we calculated average anomalies of 
crop abandonment during both El Niño and La Niña phases (see Mate-
rials and Methods) (34, 35). The statistical significance of the changes 
was determined by bootstrapping (n =  10,000) at a 95% confidence 
level. We found that crop abandonment was reduced during the El Niño 
phase across five winter wheat production states, with a significant 
decrease of 3% on average, ranging from 0.6 to 5.2% (Fig. 4A). This is 
expected because El Niño causes the jet stream to shift southward and 
extend eastward over southern United States. Conversely, during the 
La Niña phase, crop abandonment showed a notable increase of 5%, 
with ranges between 2.7 and 8.6% across states (Fig. 4A). Except for 
Nebraska, all states exhibited a notable increase in crop abandonment 
during the transition from El Niño to La Niña phase, with variations 
observed among states (Fig. 4B). In Kansas, the transition from El Niño 
to La Niña phase intensified crop abandonment by 9%, equivalent to 
the US level (Fig. 4B). We further explored the impacts of ENSO on 
crop abandonment at a county level across the US winter wheat belt 
and found that the La Niña phase significantly increased abandonment 

rates compared to the El Niño phase. The main regions affected by 
abandonment were in western Kansas, the panhandle areas of 
Oklahoma, and western Texas (Fig. 4C), which mirrored the footprint 
of Dust Bowl–affected regions in the 1930s (7, 23).

Several studies have suggested the urgent need for a twofold in-
crease in global crop production by 2050 in response to the growing 
population (36). Whether or not we are on track to double produc-
tion by 2050 depends on sustainable and improved harvestable crop 
yields (37, 38). Future production variability in projected climatic 
scenarios will be influenced by the often-overlooked changes in 
crop abandonment (Fig. 2), an especially noteworthy risk given the 
threats of climatic extremes (39, 40).

In sum, our analyses revealed climatic drivers underlying crop 
abandonment and the influence of ENSO dynamics on winter wheat 
production. La Niña events increased the probability of drought 
events before planting (preseason) of winter wheat in the US Great 
Plains. The extremely dry climate in 2022–2023 that followed nearly 
three consecutive years of La Niña events provided an opportunity to 
determine the underlying drivers of climatic extremes that negatively 
affect wheat production. Our study emphasized both the overlooked 
role of crop abandonment on wheat production in the US winter 
wheat belt and the underlying climate extremes that drive the two 
components of production loss—abandonment and yield loss. Recog-
nizing that preseason droughts primarily drive crop abandonment, 
farmers could adapt their strategies, such as adjusting planting sched-
ules, selecting drought-resistant cultivars, or investing in water man-
agement strategies tailored for the preseason. These measures can 
mitigate the effects of these droughts and stabilize crop production. It 
is also important for policy makers to design and promote initiatives 
encouraging drought mitigation practices for stable food production.

MATERIALS AND METHODS
Data
County- and state-level winter wheat yield, harvested area, and planted 
area data were retrieved from the US Department of Agriculture, 
National Agricultural Statistics Service (USDA-NASS) for all coun-
ties in Kansas and spanning the years 1926 to 2023. State-level plant-
ing and emergence dates (1982 to 2023) and weekly crop condition 
reports (1987 to 2023) were also collected from the USDA-NASS, 
which are the longest length available for the data. Climatic data (pre-
cipitation, maximum temperature, and minimum temperature) from 
1895 to 2023 were obtained from the monthly US Historical Clima-
tology Network maintained by the National Oceanic and Atmo-
spheric Administration (NOAA). The monthly SSTs were taken from 
the Met Office Harley Centre Observations datasets (HadISST v1.1) 
(41) for calculating ENSO signals based on the Niño3.4 region (5°N–
5°S, 120°W–170°W). Crop conditions were evaluated using an index 
ranging from 0 to 100% (42). The growing season of winter wheat is 
generally considered to be September to May in Kansas (7), but we 
used climatic data starting in August to capture the effects of climate 
in the month preceding planting. We divided the growing season into 
fall (August to October), winter (November to February), spring 
(March to April), and early summer (May; wheat grain filling).

Modeling
On the basis of the conceptual framework (Supplementary Text), we 
ran two separate RF models to estimate two components of production 
losses due to climate variation: the abandonment fraction and 
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yield anomalies. Abandonment fraction here is expressed as PA−HA

PA
 , 

where PA and HA are the planted and harvested areas, respectively, 
in hectares. This expression enables meaningful comparisons across 
different county-years with varying planted areas. Yield anomalies 
were calculated as the difference between actual yields and expected 
yields, with expected yields representing the historical yield trends 
driven by agricultural advancements in breeding technology and 
crop management. Thus, a negative anomaly suggests that yields are 
less than expected, possibly due to an adverse climate, disease, or 
other challenges. Yield trends were evaluated using a locally weight-
ed smoothing regression (43) with the standard setting of the func-
tion (fig. S10).

The RF specifications for abandonment fraction (fab) and yield 
anomaly (ΔY) are

where F is an RF function; clmc,y represents the climate variables 
including monthly or seasonal maximum temperature (Tx, °C) and 
minimum temperature (Tn, °C), and accumulated precipitation (Prcp, 
mm) during four growth periods for county “c” and year “y”; the 
detrended pricey (inflation-adjusted based on the consumer price 
index of 2023) by the locally weighted smoothing regression was in-
corporated into the “fab” model to isolate the effects of price chang-
es on farmers’ decisions to abandon their crop; and εc,y refers to the 
error. The number of trees and the number of variables tested at 
each node in the RF model are two key parameters (21). To determine 
the optimum parameters for each model above, we partitioned 90% 

of data to the train model and the remaining 10% of data to the test 
model. Model predicted performance was estimated by the coeffi-
cient of determination (R2) and root mean square error (table  S1 
and fig. S1).

The RF results were used to estimate climate-driven production 
changes from yield and abandonment relative to the historical 
climate-driven average production over 1981 to 2010 ( P̂base ) for the 
Dust Bowl decade (1931 to 1940), the latest decade (2013 to 2022), 
and the year 2023. The wheat price in the fab model was fixed to the 
average of 1981 to 2010 to isolate price effects. State-level produc-
tion change (%P′) in specific years of interest (e.g., 2023) was de-
fined as a relative change with respect to P̂base

where ∆Pfab,y and ∆PY,y are defined as climate-caused production 
changes from the changes in abandonment and in yields, respec-
tively. Details of calculations for these two components are given in 
the Supplementary Text.

The climate driver of extreme abandonment or yield loss
Next, we integrated a game theory (SHAP) (24) into the RF models 
(Eqs. 1 and 2) to assess the critical climate drivers in extreme wheat 
abandonment and yield loss. Specifically, for all instances of extreme 
wheat abandonment and yield loss events, we used SHAP values to 
infer variable importance in the model outcome (44). SHAP values 
are a machine learning analog of partial regression, quantifying the 
relative importance of each variable on the outcome while considering 
all other variables in the model. The overall variable importance was 

fabc,y = F(clmc,y , pricey) + εc,y (1)

ΔYc,y = F(clmc,y) + εc,y (2)

%P�

y
=

ΔPfab,y + ΔPY ,y

P̂base
× 100 (3)

Fig. 4. Impacts of ENSO phases on crop abandonment anomalies. (A) Distributions of state-level crop abandonment (fab) anomalies during El Niño (red) and La Niña 
(blue) phases in Nebraska (NE), Colorado (CO), Kansas (KS), Oklahoma (OK), and Texas (TX). Negative and positive values indicate ENSO phases decreased and increased 
crop abandonment, respectively. (B) Changes in fab during the transition from El Niño to La Niña phase. Black solid circles indicate averages, and error bars represent 2.5th 
and 97.5th percentiles. (C) County-level changes in crop abandonment between La Niña and El Niño phases. Black dots indicate statistical significance at a 95% confidence 
level. Note that the state-level impact of the ENSO phase on crop abandonment was estimated by using state-level data shown in table S2.
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determined by the mean of the absolute value of the SHAP values, 
and the marginal effect of variable with the highest relative impor-
tance was visualized by plotting the covariate versus the correspond-
ing SHAP value for each observation. Last, we assessed the critical 
extreme climate drivers in severe wheat abandonment and yield 
losses (Supplementary Text).

Robustness checks
To ensure the robustness of our analysis, we conducted two checks 
on the RF models with two additional sets of predictors. First, we 
substituted the precipitation in our preferred RF models with the 
mean monthly Palmer’s Z-index sourced from the NOAA. The Z-
index is a measure of the monthly moisture anomaly and reflects the 
departure of moisture conditions from normal moisture conditions 
in a particular month (45). Second, because of the high collinearity 
between mean temperature and extreme hot/cold days, we tested 
the fraction of warm days and cold days to replace the mean Tx and 
Tn in our models to evaluate our results (figs. S4 and S5 and table S1). 
Specifically, the daily maximum and minimum temperatures were 
taken from the daily Global Historical Climatology Network (GHCN) 
and interpolated with a Delaunay triangulation method (46) to the 
centroid of each county in Kansas. Then, we defined the fraction of 
warm/cold days by calculating the number of days with maximum/
minimum temperatures above/below the local historical 90th/10th 
percentile divided by the duration of growing season.

Crop abandonment statistics during ENSO phases
To spatially analyze the impacts of ENSO oscillation on crop aban-
donment, we broadened our coverage to encompass the entire US 
winter wheat belt, including Nebraska, Colorado, Kansas, Oklahoma, 
and Texas. Data for planted and harvested areas at the county and 
state levels were collected from the USDA-NASS, and correspond-
ing available years are provided in table  S2. We selected counties 
with both more than 50 available years of data and an average har-
vested area (1981 to 2010) exceeding 5000 ha. We next calculated 
averages of detrended crop abandonment (fab) based on locally 
weighted smoothing regression (i.e., fig. S11) at specific ENSO phases

where fabEl Niño,c and fabLa Niña,c are the average crop abandonment 
anomalies in El Niño and La Niña years (y) for county c, respectively; 
N refers to year numbers of the specific ENSO phase; and fab′ refers 
to detrended crop abandonment anomalies. The ENSO signal here 
is defined as a 3-month running mean after being linearly detrended 
and standardized. We specifically calculated the average ENSO sig-
nals for Texas and Oklahoma from December to February and those 
for Kansas, Colorado, and Nebraska from August to October. These 
selected periods align with the planting dates of winter wheat (7). On 
the basis of the same method, the state-level fabEl Niño and fabLa Niña 
were also calculated. We then calculated the difference of fab anom-
alies between La Niña and El Niño phases as

Positive (or negative) values of ∆fab indicate that the La Niña phase 
exacerbates (or mitigates) crop abandonment relative to the El Niño 
phase. The statistical significance for changes in ∆fabc were deter-
mined through a bootstrapping sampling procedure (n = 10,000) at 
a 95% confidence level. The mean change for each bootstrap sample 
was calculated, and the change was considered statistically signifi-
cant if, in a two-sided t test, over 95% of the sample means were 
consistently smaller or larger than zero.
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