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Abstract

Endometrial cancer screening is crucial for clinical treatment. Currently, cytopathologists

analyze cytopathology images is considered a popular screening method, but manual

diagnosis is time-consuming and laborious. Deep learning can provide objective guidance

efficiency. But endometrial cytopathology images often come from different medical cen-

ters with different staining styles. It decreases the generalization ability of deep learning

models in cytopathology images analysis, leading to poor performance. This study pres-

ents a robust automated screening framework for endometrial cancer that can be applied

to cytopathology images with different staining styles, and provide an objective diagnostic

reference for cytopathologists, thus contributing to clinical treatment. We collected and

built the XJTU-EC dataset, the first cytopathology dataset that includes segmentation and

classification labels. And we propose an efficient two-stage framework for adapting differ-

ent staining style images, and screening endometrial cancer at the cellular level. Specifi-

cally, in the first stage, a novel CM-UNet is utilized to segment cell clumps, with a channel

attention (CA) module and a multi-level semantic supervision (MSS) module. It can ignore

staining variance and focus on extracting semantic information for segmentation. In the

second stage, we propose a robust and effective classification algorithm based on con-

trastive learning, ECRNet. By momentum-based updating and adding labeled memory

banks, it can reduce most of the false negative results. On the XJTU-EC dataset, CM-

UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy

of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outper-

forms other competitive classical models. Our method robustly predicts endometrial can-

cer on cytopathologic images with different staining styles, which will further advance

research in endometrial cancer screening and provide early diagnosis for patients. The

code will be available on GitHub.
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Introduction

Endometrial cancer is one of the most common tumors in the female reproductive system and

usually occurs in postmenopausal women [1, 2]. It is the leading cause of cancer-related deaths

in women worldwide [3], with approximately 76,000 deaths each year [1]. And the incidence

and mortality of endometrial cancer is expected to continue to rise in the coming decades [4,

5]. Studies have shown that endometrial screening can help to detect cellular lesions, and

improve long-term patient outcomes [6, 7]. It would significantly improve survival rates [8].

So, endometrial cancer screening is crucial.

However, there are few tools available for the endometrial cancer screening. A minimally

invasive method based on cytopathology to address endometrial cancer screening is a hot

topic of current research and future development [9]. And it has been widely used in countries

such as Japan [10, 11]. Moreover, it is considered to be cost-effective and more useful for early

screening than invasive endometrial biopsy and hysteroscopy [12–15]. Nevertheless, there are

still many difficulties in advancing cytopathological screening.

Firstly, there are no endometrial cytopathology datasets that contain segmentation and clas-

sification labels, due to the difficulty of data acquisition and the high cost of high-quality anno-

tation. To combat the challenge, our team collecting 139 cytopathology whole slide images

(WSI) with our own designed endometrial sampling device Li Brush (20152660054, Xi’an Mei-

jiajia Medical Technology Co., Ltd., China). Among them, 39 WSIs are papanicolaou stained,

and 100 WSIs are hematoxylin and eosin (H&E) stained. These WSIs are annotated by two

cytopathologists, thus building a dataset for cytological screening of endometrial cancer. To

the best of our knowledge, this is the first cytopathology dataset that includes segmentation

and classification labels.

Secondly, diagnosing cytopathological slides is a time-consuming and complex task [16].

Subjective discrepancies and heavy workloads affect the productivity of cytopathologists [17].

As a powerful tool, deep learning can provide objective references for doctors and further

improve their work efficiency [18, 19]. Therefore, it is widely used in thyroid cancer [20], cer-

vical cancer [21], liver cancer [22, 23], and other diseases to improve the diagnostic efficiency

[24]. And in endometrial diagnosis, deep learning is usually used for segmentation and classifi-

cation tasks. In the field of segmentation, Erlend Hodneland et al. used a UNet-based 3D con-

volutional neural network (CNN) to segment endometrial tumors on radiology images, which

aimed at generating tumor models for better individualized treatment strategies [25]. Zhiyong

Xia et al. designed a dense pyramidal attention U-Net for hysteroscopic images and ultrasound

images, which can help doctors to accurately localize the lesion site [26]. In addition, segmen-

tation algorithms are often used to assist in confirming the depth of myometrial infiltration in

endometrial cancer [27–30].In the field of classification, Christina Fell et al. used CNNs to clas-

sify endometrial histopathology images at the WSI level, which are categorized as “malignant”,

“other or benign” and “insufficient” [31]. Sarah Fremond et al. proposed an interpretable

endometrial cancer classification system, which can further predict four molecular subtypes of

endometrial cancer through self-supervised learning [32]. Min Feng et al. develop a deep

learning model for predicting lymph node metastasis from histopathologic images of endome-

trial cancer, which is believed to predict metastatic status and improve accuracy [33]. In sum-

mary, In summary, we note that deep learning models are commonly used for radiology

images [34, 35] and histopathology images [36–38] in endometrial studies. Therefore, there is

still a lack of endometrial cancer screening algorithms based on cytopathologic images. The

aim of our study is to develop a new algorithm that learns cytopathological features and pro-

vides an assisted diagnostic strategy.
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Here we propose an innovative two-stage framework for endometrial cancer screening. In

this study, we found that the staining styles of slides was performed differently in different

medical centers [39]. Some endometrial samples were stained with H&E, while others were

stained with papanicolaou. In addition, the stained slides can also be highly variable due to the

preservation environment, changes in the scanner, etc [39]. This can affect the final diagnosis

results [40, 41]. Therefore, we have improved the automated screening framework to increase

its robustness and accuracy.

In clinical diagnosis, cell clumps are regions of interest (ROIs) for cytopathologists, while

the background contains unnecessary noises [42]. So, in the first stage, we propose an

improved segmentation network CM-UNet, which extracts ROIs from cytopathology images.

We introduce a channel attention (CA) module and a multilevel semantic supervision (MSS)

module to obtain more local and global contextual representations. In addition, we added

novel skip connections to efficiently extract multi-scale features.

In the second stage, we need to classify ROIs to screen positive cell clumps. Since the

obtained ROIs vary in shape and size, the different representations among these ROIs may

affect the performance of the classification model. We propose the contrastive learning based

algorithm ECRNet to classify ROIs. In contrast to current contrastive learning methods that

treat different augmentations of the same image as positive pairs, we introduce the label mem-

ory bank to preserve the representation information of the image and the corresponding labels.

ECRNet treats two instances with the same label as a positive sample pair, and two instances

with different labels as a negative sample pair. Thereby, different images with the same seman-

tics are better aggregated in the representation space, while negative sample pairs are separated

in the representation space. This makes better use of class-level discriminative information

and enhances the generality of the algorithm to some extent.

Finally, our experimental results show that the two-stage framework performs well on cyto-

pathology image with different staining styles. The framework can accurately present negative

and positive cell clumps to cytopathologists, providing objective decision support.

The main contributions of our study are as follows:

1. Computer-aided diagnostic studies for endometrial cancer screening are scarce and there is

a lack of available datasets. Therefore, our team created an endometrial cancer cytology

dataset, which was annotated by two cytopathologists. This dataset contains segmentation

labels and classification labels that can be used for deep learning.

2. Compared to histopathology image segmentation, endometrial cytology images have more

noise and sparser semantic features, which pose a challenge to segmentation algorithms.

We propose a segmentation model based on the UNet architecture, and for better extrac-

tion of semantic features in cytology images, we introduce the CA module and the MSS

module to learn more local and global contextual representations.

3. Considering that images with the same classification label may be represented differently

from each other, e.g., variations in staining styles, which may affect the classification model

performance. In order to make full use of the image content information and label informa-

tion, we propose ECRNet and introduce the label memory bank to make ECRNet focus

more on the class-level discriminative information.

4. The framework performs efficiently on H&E-stained and papanicolaou-stained cytopathol-

ogy images, and shows cytopathologists the negative and positive cell clumps. On the test

set, it achieved an average accuracy of 98.50%, an area under the curve (AUC) of 93.66%

compared to other classical models. The results show that our model can contribute to

medical decision-making.
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The rest of this paper is organized as follows: Section 2 describes the materials and methods;

Section 3 analyzes our results; Section 4 and Section 5 discuss and conclude our work,

respectively.

Methods

Data collection

From July 2015, we collected endometrial cells using a sampling device of our own design, the

Li Brush (20152660054, Xi’an Meijia Medical Technology Co., Ltd., Xi’an, China). This hospi-

tal routine work lasted for seven years since 2015 (XJTU1AHCR2014-007). Until after 2019,

endometrial cells obtained from the Li Brush were used in this study (XJTU1AFCRC2019SJ-

002). It is important to note that our team spent seven years collecting endometrial cells. How-

ever, all data that was used for analysis was obtained after 2019. Therefore, no retrospective

ethical approval was involved. The endometrial cells collected from 03/12/2019 to 03/12/2020

used in this study were done so under IRB approval.

From 2019 to 2020, our team collecting images. After 2020 and up to 2022, we are mainly

working on the annotation process, and building the endometrial cytopathology image dataset.

139 women who underwent curettage or hysterectomy at the First Affiliated Hospital of Xi’an

Jiaotong University were registered in the Obstetrics and Gynecology Registry. Patient exclu-

sion criteria were as follows: (1) diagnosed with suspected pregnancy or pregnancy; (2) diag-

nosed with acute inflammation of the reproductive system; (3) patients who had undergone

hysterectomy for a previous diagnosis of cervical cancer, cervical intraepithelial neoplasia, or

ovarian cancer and so on; (4) diagnosed with dysfunctional clotting diseases; and (5) women

who body temperature at 37.5˚C or higher twice a day were also excluded.

The study is approved by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiao-

tong University (XJTU1AFCRC2019SJ-002), and written consent was obtained from all

patients. Minors were not included in the study. And the authors will not have access to infor-

mation that could identify individual participants. After three years of collection, 139 patients

are eventually included in the study and their details are shown in Table 1, which includes the

age of the patients, childbirth history, menstrual status, and any other diseases. The detailed

information of age distribution is shown in Fig 1. In addition, histopathological diagnosis was

also collected and the specific information is shown in Table 2. It is worth mentioning that the

protocols used in this study were all in accordance with the ethical principles of the Declara-

tion of Helsinki on Medical Research [43].

Our study was based on all the cases collected from 2019 to 2020. The data in this work was

cleaned so that it did not contain private patient information. The datasets used or analysed

during the current study are available from the corresponding author on reasonable request.

We collected endometrial cells with Li Brush, and H&E staining or papanicolaou staining

was used for liquid-based cytology specimens of endometrial cells. Histopathological diagnosis

of the same patient was also collected at the same time. When the cytopathologic diagnosis was

consistent with the histopathologic diagnosis, the case was included in the study. Finally, 39

whole slide images (WSIs) are papanicolaou stained and 100 WSIs are H&E stained.

The MOTIC digital biopsy scanner (EasyScan 60, 20192220065, China) with an ×20 lens was

used to scan cytopathological slides in the counterclockwise spiral. And the focal length is auto-

matically adjusted. Since each WSI is very large (e.g., 95200 × 87000 pixels), which cannot be

directly input to the deep learning model. We crop the WSIs into same-sized images

(1024 × 1024 pixels). Then a simple but effective thresholding algorithm is used to remove the

meaningless background images. Specifically, we first calculate the mean and standard deviation

PLOS ONE Endometrial cancer screening system for cytopathology image

PLOS ONE | https://doi.org/10.1371/journal.pone.0306549 July 31, 2024 4 / 22

https://doi.org/10.1371/journal.pone.0306549


of each image in RGB space. And then, those images with mean between 50 and 230 and stan-

dard deviation above 20 are retained. These images often contain meaningful cell clumps.

And the image annotation process includes segmentation label annotation and classifica-

tion label annotation. Segmentation labels were obtained by two experienced pathologists

using Adobe Photoshop CC (2019 v20.0.2.30). First, one senior cytopathologist segmented the

cell clumps and the results were reviewed by the other cytopathologist. After the review is

accurate, the pathologists annotated the cell clumps according to the International Society of

Gynecologic Pathologists and the 2014 World Health Organization classification of uterine

tumors. All cell clumps were classified into two categories: malignant (atypical cells of undeter-

mined significance, suspected malignant tumor cells, and malignant tumor cells), and benign

(non-malignant tumor cells). Benign diagnosis is defined as cell clumps with neat edges, nuclei

with oval or spindle shape, and evenly distributed, finely granular chromatin. Malignant diag-

nosis referred to a three-dimensional appearance, irregular (including dilated, branched, pro-

truding, and papillotubular) edge, with the nucleus poloidal disordering or disappearing

(including megakaryocyte appearance, nuclear membrane thickness, and coarse granular or

coarse block chromatin). Both benign and malignant tumors were followed up histologically.

Undoubtedly, the cell clumps in the negative slides are all negative, but the ones in the positive

slides have both negative and positive cell clumps. Therefore, the two cytopathologists again

vote on the labeling of each cell clump, when the votes do not agree, they will discuss it. If the

discussion fails to result in an accurate diagnosis, the cell clump is discarded. These measures

ensure the accuracy and consistency of segmentation and classification labels.

Based on the results annotated by pathologists, we established the XJTU-EC dataset, which

containing 3,620 positive images (endometrial cancer cell clumps and endometrial atypical

hyperplasia cell clumps) and 2,380 negative images.

Table 1. Patient characteristics.

Characteristics Number

SOURCE

IPD 81

OP 58

AGE

<40 years old 32

�40 years old 107

MENSTRUAL STATUS

Premenopausal 77

Postmenopausal 35

AUB 27

OTHER DISEASE

Ovarian cancer 18

Hypertension 24

Diabetes 24

Hormone replacement therapy 32

CHILDBIRTH EXPERIENCE

Yes 101

No 28

IPD, Inpatient Department. OP, Outpatient. AUB, Abnormal uterus bleeding. Some information of the patients is

missing.

https://doi.org/10.1371/journal.pone.0306549.t001
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Fig 1. The age distribution of the patients.

https://doi.org/10.1371/journal.pone.0306549.g001

Table 2. Pathological diagnosis.

Histological diagnostic results Number

Proliferative endometrium 14

Secretory endometrium 8

Atrophic endometrium 10

Mixed endometrium 2

Endometrial hyperplasia without atypia 39

Endometrial atypical hyperplasia 4

ENDOMETRIAL CARCINOMA 62

Endometrioid carcinoma, G1/G2 47

Endometrioid carcinoma, G3 11

Serous carcinoma 2

Clear cell carcinoma 2

G1, G2, G3 represent grade 1, grade 2, grade 3 respectively.

https://doi.org/10.1371/journal.pone.0306549.t002
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Endometrial cancer screening

In this paper, we propose a novel framework for endometrial cytology image analysis, applying

two fully convolutional networks for early diagnosis. Firstly, a dense connection-based seman-

tic segmentation network, with CA and MSS modules, is used for extract ROIs; secondly, a

model based on contrastive learning is applied to classify ROIs. The final results confirm the

effectiveness of this strategy. All details as shown in Fig 2.

CM-UNet. To eliminate the interference of neutrophils, dead cells and other impurities

contained in the background, and helping the pathologist to better localize the lesion, the first

step is to segment the endometrial cell clumps.

The CM-UNet performed ResNet101 as the backbone, and computes the aggregation of all

feature maps at each node by applying dense connections [44–46]. As shown in Fig 3.

Let xi,j denote the output of node XI,J, then xi,j can be represented as follows:

xi;j ¼

HðDðxi� 1;jÞÞ; j ¼ 0

H xi;k½ �
j� 1

k¼0
;Uðxiþ1;j� 1Þ

h i� �
; j > 0

8
<

:
ð1Þ

where H(�) is a convolution operation followed by an activation function, D(�) and U(�) denote

Fig 2. The proposed pipeline for cancer screening using endometrial cytology data.

https://doi.org/10.1371/journal.pone.0306549.g002
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a down-sampling layer and an up-sampling layer respectively, and [�] denotes the concatena-

tion layer.

To better accommodate different image staining styles, inspired by [47], we apply CA mod-

ule at the bottleneck of the encoder-decoder network. The CA module integrates the semantic

relationships between different channel mappings, and emphasises strongly interdependent

channel mappings by adjusting the weights [48]. As shown in Fig 4.

We perform matrix multiplication between the feature maps x4,0 and the transpose of x4,0.

Then apply a softmax layer to calculate the influence of the ath channel on the bth channel:

Mba ¼
expðx4;0

a � x
4;0

b Þ
XK

a¼1
expðx4;0

b � x
4;0

b Þ
ð2Þ

Fig 3. Pipeline of the proposed framework for cell clumps segmentation. CM-UNet allows more flexible feature fusion at decoder nodes through densely

connected skip connections. L is the loss function. The bold links represent the necessary depth supervision and the light coloured links represent the

optional ones.

https://doi.org/10.1371/journal.pone.0306549.g003

Fig 4. The details of the channel attention module.

https://doi.org/10.1371/journal.pone.0306549.g004
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where K is the number of channels. On this basis, the final output E is described as follows:

Eb ¼ b
XK

a¼1

ðMbax
4;0

a Þ þ x4;0

b ð3Þ

the scaling parameter β is gradually learns a weight from 0, which is updated in subsequent

learning.

To solve the gradient disappearance/explosion problem, we introduce the MSS module

[49]. By setting appropriate weights for different side output layers, a deeper semantic repre-

sentation is learned. Assuming that the original input image is represented as R, and d repre-

sents the depth of the CM-UNet model, each output layer S performs a 1 × 1 convolution

operation, followed by the global average pooling to extract global contextual information.

And then we assign a weight factor α for each layer of the model. So, the side loss can be

defined as:

Lside ¼
Xd

i¼1
aiSiðR; yiÞ ð4Þ

where θi denotes the relevant parameter of the ith output layer. And α3, α2, α1, α0 is set sequen-

tially to 0.1, 0.3, 0.6, 0.9.

In addition, we introduce a hybrid segmentation loss LT,P to address the class imbalance in

the segmentation task:

LT;P ¼ �
1

N

XC

c¼1

XN

n¼1
ðtn;c log pn;c þ

2tn;cpn;c

t2
n;c þ p2

n;c

Þ ð5Þ

where tn,c 2 T, and pn,c 2 P denote the ground truth and predicted label for class c and nth pixel

in the batch. T represents the ground truth, and P represents the prediction probability. C rep-

resents the number of categories, and N represents the number of pixels in one batch.

Ultimately, the overall loss function of CM-UNet is defined as the weighted sum of the

hybrid segmentation loss LT,P and the side loss Lside. The final loss function is shown as below:

L ¼
Xd

i¼1
ðLT;P þ LsideÞ ð6Þ

where d represents the depth of the CM-UNet model.

We trained the segmentation network using the dataset annotated with pathologists, and

performed ten-fold cross-validation. It should be noted that segmentation results often have

some holes and flaws. Gaps and noise in the images are eliminated by morphological process-

ing. Finally, we obtained a ROI dataset consisting of cell clumps for the next stage.

ECRNet. After segmentation of the cytopathological images, noise such as single cells and

leukocytes are removed from the background, leaving only the ROIs, as shown in Fig 2. Next,

we filled its surroundings with pixels of value 0 until the size was adjusted to 512 × 512, in

order to further the image analysis task.

Due to the complexity of the endometrial cell features, there is an urgent need for a power-

ful deep learning classifier to learn and classify cell features. We propose a state-of-the-art

method based on contrastive learning to address the above needs, and named ECRNet. The

details are shown in Fig 5.

ECRNet consists of two parts: contrastive learning and supervised learning. In contrastive

learning, we want to import classification labels in the training data to improve the perfor-

mance of the classification task. Therefore, we introduce the label memory bank [50]. Two

instances with the same label are considered as the same pair, while two instances with differ-

ent labels are considered as different pairs. This process can be considered as a dictionary
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look-up task. Given an encoding query q (with label y), we need to look up the corresponding

positive key k from a dictionary. Assume that a dictionary of n encoded labeled keys {(k1, y1),
(k2, y2),. . ., (kn, yn)}, for the given encoded query (q, y), its label contrastive loss Lcon can be cal-

culated as:

Lcon ¼ � log

Xn

i¼1
IIyi¼y expðsimðq; kiÞ=tÞ

Xn

i¼1
expðsimðq; kiÞ=tÞ

ð7Þ

where II is an indicator function that takes the value of 1 if y (the label of the q) and yi (the

label of the ki) are the same, otherwise it is 0. sim(�) is a similarity function, and τ is a tempera-

ture parameter.

In order to store the large number of image representations and labels in the label memory

bank, we introduce the momentum update method so as to dynamically construct a large and

consistent dictionary [51]. This not only reduces the computational overhead, but also allows

the learned representations transfer well to the downstream task. The specific update equation

is as follows:

yk  myk þ ð1 � mÞyq ð8Þ

Here m2is a momentum coefficient, taking values between [0,1). θk is the parameter of the

encoder fk, θq is the parameter of the encoder fq.
In supervised learning, we choose the VGG-16 as the classifier [52, 53]. The cross-entropy

loss function is our classifier loss functions and defined as follows:

Lcla ¼ �
1

jQj

X

qi2Q

X

j2Y

IIqi ;j logðpqi ;j
Þ ð9Þ

Fig 5. The details of ECRNet.

https://doi.org/10.1371/journal.pone.0306549.g005
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where Q is the set of the query image representations, Y is the label set, pqi ;j
is the predicted

probability that the query image qi is predicted to be j. II is an indicator function that takes the

value of 1 if the query image qi is classified correctly, otherwise it is 0.

Finally, the ECRNet total loss is calculated as follows:

Ltotal ¼ Lcla þ bLcon ð10Þ

where β is a hyperparameter to adjust the relative weight between classification loss and con-

trastive loss. The value of β in general is 0.5.

Evaluation metrics

We chose the Dice coefficient to evaluate the segmentation model. It is a measure of the simi-

larity between two samples and is one of the commonly used evaluation criteria for segmenta-

tion [54]. When the Dice coefficient is 1, it means that the segmentation model achieves

perfect results. The Dice coefficient is then calculated as follows:

Dice ¼
2jT \ Pj
jTj þ jPj

ð11Þ

where T is the set of ground truth, and P is the set of corresponding segmentation results,

respectively.

To better evaluate the performance of the classification model, we use four commonly used

quantitative indicators of accuracy, sensitivity, specificity, and F1-Score as the evaluation indi-

cators of the classification model. The indicators are defined as follows:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
ð12Þ

Sensitivity ¼
TP

TP þ FN
ð13Þ

Precision ¼
TP

TP þ FP
ð14Þ

F1 Score ¼
2 Precision� Sensitivityð Þ

Precisionþ Sensitivity
ð15Þ

where TP, TN, FP and FN represent true positives (correctly classified as positive), true nega-

tives (correctly classified as negative), false positives (incorrectly classified as positive) and false

negatives (incorrectly classified as negative), respectively.

In addition, in order to compare the different performance of various classifiers, we select

ROC curve and AUC value to visualize the classification results of each classifier. The ROC

curve graph reflects the relationship between sensitivity and specificity. Its abscissa represents

FPR (false positive rate), and the ordinate is called TPR (true positive rate). The AUC value

can be obtained by calculating the area under the ROC curve. A higher AUC value can prove

the superiority of the classification model.
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Experiments and results

Implementation details

The cytopathology images are all augmented by vertical flipping, horizontal flipping, random

rotation (90˚, 180˚, 270˚), scaling and graying to improve the framework performance. We use

the ImageNet 25 pre-trained weights as the encoder weights to initialize the segmentation and

classification models, respectively, while the weights for the decoder part are randomly initial-

ized. And the Adam optimizer is introduced to optimise the model, with an initial learning

rate of 5 × 10−3 [55]. The temperature parameter τ is 0.07, the momentum parameter m is 0.9.

Finally, the training batch size is set to 32.

We used ten-fold cross-validation to test our models. All networks are implemented based

on the TensorFlow framework, and trained by two GPU cards (NVIDIA GeForce GTX 1080),

with Python 3.6.12(Python Software Foundation, Wilmington, DE, USA), keras 2.4.3 (Google

Brain, Mountain View, CA, USA) and TensorFlow 2.2.0 (Google Brain, Mountain View, CA,

USA).

Segmentation results

We applied our segmentation algorithm and other classical segmentation algorithms, such as

fully convolutional networks (FCN) [56], UNet [44], UNet++ [45], LinkNet [57], DeepLabV3

[58], and DeepLabV3+ [59] on HE-stained images and papanicolaou-stained images, respec-

tively. The experimental results are shown in Table 3. Our model shows great potential in seg-

menting cell clumps, with the average Dice value exceeding 0.85. In addition, we conducted

ablation experiments, as shown in Table 3, to verify the role played by the CA module and the

MSS module in the segmentation model.

The segmentation results are shown in Fig 6. The first column is the cytological image, the

second column is the result of FCN, the third column is the result of UNet, the fourth column

is the result of UNet++, the fifth column is the result of LinkNet, the sixth column is the result

of DeepLabV3, the seventh column is the result of DeepLabV3+, the eighth column is the

result of CM-UNet, and the ninth column is the ground truth annotated by the pathologist.

The red boxes represent the over-segmented area, and the yellow boxes represent the under-

segmented area. As can be seen from this figure, FCN and UNet have more under-segmenta-

tion and fail to identify all cell clumps, which is not suitable for cytopathology image

Table 3. Comparison experiments.

Model Dice Training time Inference time Params

FCN 0.61 2.17h 0.045s 270M

UNet 0.75 2.50h 0.022s 33M

UNet++ 0.85 1.49h 0.029s 30M

LinkNet 0.79 1.21h 0.030s 12M

DeepLabV3 0.81 2.30h 0.030s 54M

DeepLabV3+ 0.85 1.80h 0.025s 41M

UNet++

(with CA)

0.86 1.52h 0.030s 31M

UNet++

(with MSS)

0.88 1.88h 0.039s 33M

CM-UNet 0.89 1.90h 0.039s 33M

Comparison experiment of our segmentation algorithm with other classical segmentation algorithms. The inference time is calculated by the single image.

https://doi.org/10.1371/journal.pone.0306549.t003
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segmentation. Whereas LinkNet and DeepLabV3 tend to over-segment, mistaking mucus and

single cells for cell clumps, which does not benefit the subsequent classification task and is

therefore also not applicable. The segmentation results of UNet++, DeepLabV3+ and CM-U-

Net basically conform to the gold standard. However, UNet++ performed moderately well on

H&E-stained images but poorly on papanicolaou-stained images, occasionally missing cell

clumps. DeepLabV3+, on the other hand, made fewer errors on the papanicolaou-stained

images but missed cell clumps on the H&E-stained images. Taken together, the segmentation

result of CM-UNet is closer to the annotation of pathologists. It is able to segment all cell

clumps and extract ROIs. This demonstrates the performance of our segmentation network.

Fig 6. Comparison with classical segmentation algorithms. We randomly show the segmentation results of four H&E-stained and four papanicolaou-

stained cytopathology images. The red boxes represent the over-segmented area, and the yellow boxes represent the under-segmented area.

https://doi.org/10.1371/journal.pone.0306549.g006
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Classification results

We input the ROIs into ECRNet for ten-fold cross-validation. Table 4 shows the results of the

ablation experiments. The backbone (VGG-16) classified the extracted ROI dataset with an

accuracy of 91.07%. In contrast, VGG-16 with contrastive learning component achieves 7.43%

higher accuracy than backbone.

As shown in Table 5, we compared ECRNet with five classical deep learning models. There

are the MobileNet [60], the ResNet-101 [61], the Inception-V3 [62], the ViT [63], the

ResNeXt-101 [64], the EfficientNet [65], the DenseNet-121 [66], and VGG-16 [67]. Note that

all network parameters remain the same as previously described, and the initialization weights

Table 4. Ablation experiments.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

VGG-16

(One stage)

84.29 83.23 88.74 85.90

VGG-16

(Two stage)

91.07 90.38 93.38 91.86

ECRNet

(One stage)

89.17 88.03 90.67 89.33

ECRNet

(Two stage)

98.50 99.32 97.67 99.33

Table 4 also shows the importance of the segmentation strategy. In the two-stage strategy, we first segment the cytopathology images to obtain ROIs, and apply the

classifier to classify the ROIs. In the one-stage strategy, the classifier directly classifies the cytopathology images containing the background. All data sizes are scaled to

512 × 512. The results of the experiment. Among them, VGG-16 performed the worst under the one-stage strategy, with an accuracy of 84.29%. In contrast, ECRNet

performed best under the two-stage strategy.

https://doi.org/10.1371/journal.pone.0306549.t004

Table 5. Comparison with baseline methods.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Params

VGG-16 +SVM 78.83 75.62 78.15 76.86 138M

ResNet-101 +SVM 88.55 84.30 85.71 85.00 24M

Inception-V3 +SVM 87.60 80.77 88.24 84.34 22M

MobileNet-V1 82.99 79.11 74.79 76.89 5M

Inception-V3 82.17 81.43 83.33 82.37 22M

ViT 65.00 62.43 95.58 75.52 343M

ResNeXt-101 86.50 81.16 99.12 89.24 79M

EfficientNet-B7 88.50 88.79 91.15 89.96 66M

ResNet-101 92.17 97.03 87.00 91.74 24M

DenseNet-121 93.50 92.23 95.00 93.59 8M

Ours 98.50 99.32 97.67 99.33 138M

In this part, we found that the ViT model performs poorly, which may be due to the small size of our dataset and overfitting of the ViT model. In addition, the

MobileNet-V1 model also performs poorly, which may be due to the fact that lightweight networks are not good at learning complex cytopathological features. In

contrast, the Inception-V3, the ResNeXt-101, the EfficientNet-B7, the ResNet-101, the DenseNet-121, and the ECRNet models performed better, with mean values of

accuracy, precision, recall, and F1-scores above 80%. Specifically, ResNeXt-101 has the highest recall, but has 12% less classification accuracy than ECRNet. And ResNet-

101 has a precision of 97.03%, second only to ECRNet, which indicates that it has a lower false positive rate. However, the recall of ResNet-101 is only 87.00%, which

indicates that it has a higher false negative rate. And it is more likely to miss cancer cell clumps. And ECRNet has the best classification performance, outperforming

other classification models in terms of accuracy, precision and F1-score.

https://doi.org/10.1371/journal.pone.0306549.t005
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are the ImageNet pre-trained weights. These results are obtained in the two-stage framework,

which is based on the classification of cell clumps.

Furthermore, several studies [68] show that using CNNs to extract features and train linear

support vector machines (SVMs) achieves better performance than end-to-end CNN-based

classifiers. Therefore, we use three classical CNNs, that is VGG-16, ResNet-101 and Inception-

V3, to obtain the image feature vectors. These feature vectors are then used to train a linear

SVM that classifies all ROIs as positive or negative. As the dimensionality of the feature maps

is large, we used principal component analysis to reduce the dimensionality of the image fea-

tures. The SVM classifier uses a radial basis function kernel with parameters γ and C set to

0.0078 and 2, respectively. And the rest of the experimental settings are consistent with those

described previously. The results are shown in Table 5. As can be seen, all results are unsatis-

factory, with VGG-16+SVM having an accuracy of only 78.83%.

We further plotted the ROC curves for the classifiers in the binary classification task. As

can be seen from Fig 7, ECRNet outperformed all the models. This experiment suggests that

the model benefits more from two-stage framework than one-stage framework. Our two stage

strategy is effective.

Finally, we also discuss the ECRNet classification failure cases. As shown in Fig 8, we ran-

domly listed 8 correctly classified cell clumps and 8 failure cases in the test set. Of these, the 4

false-negative (missed diagnosis) cases consisted of 1 well-differentiated endometrial adeno-

carcinoma and 3 poorly differentiated endometrial adenocarcinomas. In contrast, 4 false-posi-

tive (over diagnosed) cases included 3 normal cell clumps that were classified as cancer. In

some of these classification failure samples, it was difficult for the classification model to

extract deeper features because of cell stacking and obscure structural features. In addition,

another part of the failed cases showed that the number of cells in the image was small, which

was easier to be misclassified by the classification model. This suggests that ECRNet’s ability to

classify small targets needs to be strengthened in future work.

In addition, we conducted an external validation of the paper’s algorithm using the public

dataset. The externally validated data were obtained from the public data platform, AIstudio,

accessible via the Internet [69]. It is worth noting that the data used for external validation

came from the public dataset and did not contain segmentation labels, so this external valida-

tion mainly evaluated the classification performance of ECRNet.

The dataset used for external validation consisted of 848 negative endometrial cytopathol-

ogy images and 785 positive endometrial cytopathology images. The ratio of negative to posi-

tive images was 1.08:1. All images are papanicolaou stained images. During this external

validation, we also chose four classification models (the ResNet-101 model, the DenseNet-121

model, the EfficientNet-B7 model, and the ResNeXt-101 model) to compare with our model.

This is because these four models perform well in the classification task, second only to ECR-

Net. Specifically, these models above were first trained using images (1024 × 1024 pixels) from

the XJTU-EC dataset instead of cell clumps (ROIs), and then tested directly on an external

dataset. The specific results are shown in Table 6 as following:

In this external validation experiment, ResNet-101 has the highest precision of 100%, which

means it has no false positives in the external validation. However, both ResNeXt-101, Effi-

cientNet-B7 ResNet-101, and DenseNet-121 have low recall, which means they can easily miss

screening positive patients. This is unacceptable for clinical tasks. In contrast, our model

achieved the highest recall of 96.17%. In addition, ECRNet has the highest accuracy of 95.32%,

followed by the DenseNet classifier with 83.53%. It is worth noting that ECRNet significantly

outperforms the other four classifiers in terms of the F1 score. The F1 score is the reconciled

average of precision and recall, which combines the information of precision and recall to pro-

vide a more comprehensive assessment of the performance of the classifiers, and the higher
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the F1 score, the better the performance of the classifiers. The higher the F1 score, the better

the performance of the classifier. In summary, ECRNet has the best performance in this exter-

nal validation experiment.

Discussion

Currently, there is no well-established method to screen endometrial cancer. The main screen-

ing tests for endometrial cancer include ultrasound, hysteroscopy and endometrial biopsy.

Sequential transvaginal ultrasound scan is a less invasive method of assessment, but lacks a

high degree of specificity. Until now, the collection of tissue samples from the endometrium

and analysis of histopathological images by physicians has been the gold standard for the

Fig 7. The false positive rate, the y-axis represents the true positive rate. The points above the diagonal line are indicated by dashed lines indicating a better

than random classification result, i.e. an AUC value of 0.5.

https://doi.org/10.1371/journal.pone.0306549.g007
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diagnosis of endometrial cancer. However, both endometrial biopsy and hysteroscopy are

invasive and require the cooperation of anaesthetists, which is expensive. As a result, cytopa-

thology-based screening for endometrial cancer is becoming increasingly desirable.

Due to the lack of relevant data and the complexity of cell morphology, endometrial cancer

screening based on cytopathology is difficult to promote. Therefore, our team spent three

years collecting and annotating WSIs from 139 patients to create the endometrial

Fig 8. Examples of correct and incorrect predictions of ECRNet.

https://doi.org/10.1371/journal.pone.0306549.g008
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cytopathology image dataset, named the XJTU-EC dataset. Since our dataset contains both

papanicolaou and H&E stained images, which are the most common staining modalities for

cytology images. Therefore, it can be somewhat considered a representative dataset. In addi-

tion, the data includes patients of different age, so the XJTU-EC dataset has more diversity.

Based on this dataset, we investigated the first clinically automated deep learning framework

for extracting and identifying normal or cancerous endometrial cell clumps. The results will be

presented to cytopathologists as a reference.

In order to adapt to different staining styles, in the cell clump extraction stage, we use the

robust UNet as the backbone, which has been previously generalized to many datasets. Based

on this, we introduced the CA module pay attention to global contextual information, and

MSS module to aggregate semantic features at multiple scales. So, our method achieves better

segmentation results. Experiments demonstrate that CM-UNet is able to perform well on both

H&E-stained images and papanicolaou-stained images.

In the cell clump classification stage, we design an ECRNet based on contrastive learning,

which considers both instances and label facts. Specifically, different staining style images with

the same classification label are considered similar. In addition, we learn meaningful and con-

sistent anatomical features through the label contrastive loss, and introduce a label memory

bank and a momentum update encoder to maintain encoded feature consistency. Experimental

results show that our method achieves excellent performance on mixed staining style datasets,

indirectly demonstrating its robustness. Compared to other methods, ECRNet achieves the best

performance in both classification tasks with the two-stage strategy and the one-stage strategy.

Finally, there are two limitations of this work. On the one hand, because the data comes

from a single institution, our approach is not externally validated on different institutional

datasets. Although we have tried to ensure as much diversity as possible in the dataset during

the data collection process, and used contrastive learning to enhance the generalization of the

screening framework. However, we still lack external validation results from different medical

centers. In future work, we will extend our method to other medical center datasets for exter-

nal validation. In addition, annotation has been a challenge due to the scarce number of cyto-

pathologists. We will focus on investigating self-supervised learning to reduce the annotation

workload of cytopathologists.

Conclusions

In this paper, we present a clinically motivated deep learning framework for endometrial can-

cer cell clumps screening. in the first stage, we propose CM-UNet to obtain the ROI set, and

the CA and MSS modules are able to fuse features from different scales to obtain more seman-

tic information. In the second stage, we utilize ECRNet to classify ROIs. Contrastive learning

is used to bring instances of the same class in the representation space closer together and

push instances of different classes apart. Experiments show that our framework performs well

on the XJTU-EC dataset. Our future work will focus on providing objective and

Table 6. External validation comparison results.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

ResNeXt-101 64.50 86.20 44.20 58.44

EfficientNet-B7 83.53 78.72 59.2 67.58

ResNet-101 73.50 100.00 53.10 69.37

DenseNet-121 80.10 77.20 67.20 71.90

Ours 95.32 94.57 96.17 95.37

https://doi.org/10.1371/journal.pone.0306549.t006
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complementary diagnostic input for clinical diagnosis, and supporting effective deployment

by advanced algorithms. We believe that this can help reduce the burden on patients and

physicians.
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