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Objectives: Primaquine is essential for the radical cure of Plasmodium vivax malaria and must be metabolized 
into its bioactive metabolites. Accordingly, polymorphisms in primaquine-metabolizing enzymes can impact the 
treatment efficacy. This pioneering study explores the influence of monoamine oxidase-A (MAO-A) on prima-
quine metabolism and its impact on malaria relapses. 

Methods: Samples from 205 patients with P. vivax malaria were retrospectively analysed by genotyping poly-
morphisms in MAO-A and cytochrome P450 2D6 (CYP2D6) genes. We measured the primaquine and carboxypri-
maquine blood levels in 100 subjects for whom blood samples were available on the third day of treatment. We 
also examined the relationship between the enzyme variants and P. vivax malaria relapses in a group of subjects 
with well-documented relapses. 

Results: The median carboxyprimaquine level was significantly reduced in individuals carrying low-expression 
MAO-A alleles plus impaired CYP2D6. In addition, this group experienced significantly more P. vivax relapses. 
The low-expression MAO-A status was not associated with malaria relapses when CYP2D6 had normal activity. 
This suggests that the putative carboxyprimaquine contribution is irrelevant when the CYP2D6 pathway is fully 
active. 

Conclusions: We found evidence that the low-expression MAO-A variants can potentiate the negative impact of 
impaired CYP2D6 activity, resulting in lower levels of carboxyprimaquine metabolite and multiple relapses. The 
findings support the hypothesis that carboxyprimaquine may be further metabolized through CYP-mediated 
pathways generating bioactive metabolites that act against the parasite.

© The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Background
Plasmodium vivax is a widespread malaria species, contributing sig-
nificantly to the overall malaria burden.1 The 8-aminoquinoline 
primaquine is a key drug used for the radical cure of P. vivax malaria, 
targeting latent hypnozoites in the liver.2 It is also recommended to 
interrupt Plasmodium falciparum transmission due to its activity 
against mature gametocytes.3 A major concern about the use of 
the 8-aminoquinolines such as primaquine or its synthetic ana-
logue tafenoquine is related to the risk of oxidative haemolysis 

in individuals with glucose-6-phosphate dehydrogenase (G6PD) 
deficiency, which is estimated to affect around 8% of the popula-
tion across P. vivax endemic countries.2

Primaquine is metabolized by two key enzymes in the liver, cyto-
chrome P450 2D6 (CYP2D6) and monoamine oxidase-A (MAO-A).4

Both the therapeutic efficacy and toxicity of primaquine (PQ) have 
been attributed to its hydroxylated metabolites (OH-PQm) pro-
duced mainly by CYP2D6.3–5 The oxidation and redox cycling of 
OH-PQm into its corresponding quinoneimine forms can produce 
hydrogen peroxide (H2O2) and lead to parasite killing.6,7 MAO-A is 
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implicated in the formation of the most predominant metabolite of 
primaquine, carboxyprimaquine.3,4,8 The oxidative deamination of 
primaquine through MAO-A pathway is responsible for its short 
elimination half-life (∼4–6 h).9 Albeit carboxyprimaquine does 
not show direct activity against the parasite, there is evidence 
that carboxyprimaquine may be metabolized through phase I 
CYP-mediated reactions with concomitant formation of hydroxy-
lated and quinoneimine metabolites.9

The MAO-A proximal promotor sequence is polymorphic, con-
taining a variable number of tandem repeat polymorphisms 
(uVNTR). It consists of a 30 bp sequence, present in 2–5 copies, 
which has been shown to influence transcription.10 MAO-A is an 
X-linked gene, meaning that males are considered hemizygotes. 
While the role of X chromosome inactivation in regulating MAO-A 
levels remains uncertain, there is evidence of higher MAO-A activity 
in heterozygous individuals.11 The gene CYP2D6 is highly diverse, 
with over 150 defined alleles and a wide range of phenotypes, 
from complete dysfunction to ultrarapid metabolism. Previous 
studies have shown that low-activity CYP2D6 variants reduce the 
hypnozoitocidal efficacy of primaquine, resulting in repeated re-
lapses in P. vivax malaria.3,12,13 Here, we interrogated to what ex-
tent MAO-A variants could contribute to the primaquine efficacy.

Methods
Samples from 205 subjects infected by P. vivax were retrospectively ana-
lysed. The first part included 100 subjects from Boa Vista, Roraima State, 
who were mostly involved in gold mining activities and had a high risk of 
infection by Plasmodium spp. Their blood levels of primaquine and car-
boxyprimaquine were measured on the third day of treatment. We also 
evaluated the association between the enzymatic variants and relapses 
in 105 subjects residing in areas with unstable transmission or no active 
malaria transmission: Souza in Minas Gerais State (n = 16), Cuiabá in Mato 
Grosso State (n = 40) and Porto Velho in Rondônia State (n = 49). Most 
samples were from cross-sectional studies, except for Porto Velho, which 
also included samples from a drug efficacy study. The study areas and 
participants have been described previously14–16 and are described in 
the Supplementary Data. The ethical and methodological aspects of 
the study were approved by the Ethics Committee of Research 
Involving Human Subjects of Institute René Rachou/Fiocruz (report no. 
2.803.756). All participants signed a written informed consent form, 
and the next of kin, caretakers or guardians signed on behalf of minors/ 
children enrolled in the study.

Most participants were adults with a median age of 34 years (IQR, 
25–46); none reported antimalarial use in the preceding 30 days or a 
history of chronic conditions (such as severe cardiac, hepatic or renal 
disorders). All patients were treated with a combination of a schizontici-
dal drug such as chloroquine (total dose of 25 mg/kg over 3 days) and 
primaquine (total dose of 3.5 mg/kg over 7 days).

Figure 1. Drug blood levels and frequency of P. vivax malaria relapses according to MAO-A and CYP2D6 status. (a) Association between carboxypri-
maquine blood levels and genetic status of CYP2D6 and MAO-A. Carboxyprimaquine was measured on Day 3 after the initiation of treatment in blood 
samples collected from participants from Boa Vista, Roraima State. The enzyme activity of MAO-A and CYP2D6 was inferred as follows: normal CYP2D6, 
normal/ultrarapid metabolizers (AS > 1·0); impaired CYP2D6, poor/intermediate metabolizers (AS ≤ 1·0); MAOA-H, MAO-A high expression; MAOA-L, 
MAO-A low expression. (b) Flowchart representing the number of individuals successfully genotyped in this study. For relapse analysis, we analysed 
individuals living in areas of unstable or without active transmission and subjects followed up for 2 months as part of a drug efficacy trial. (c) Frequency 
of malaria relapses among groups of individuals according to CYP2D6 and MAO-A activity status. ≤1R, non- or single relapse; MR, multiple relapses. This 
figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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The number of P. vivax malaria episodes for each participant was ob-
tained from the Epidemiological Surveillance System for Malaria 
(SIVEP-Malaria). P. vivax recurrence was defined as a new episode diag-
nosed microscopically, occurring within an interval ranging from 29 to 
180 days after the initial episode. For participants of the drug efficacy 
trial, parasite relapses were assayed within 63 days of follow-up.

The uVNTR polymorphism in MAO-A was genotyped by conventional 
PCR followed by fragment analysis with 1 bp precision through capillary 
electrophoresis.10 Heterozygous women carrying both high- and low- 
expression MAO-A alleles were classified as extensive metabolizers. 
CYP2D6 polymorphisms (C1584G, C100T, C1023T, G1846A, C2580T, 
G2988A, G3183A, G4180C and 2615_2617delAAG) and the copy number 
of the gene were assayed by qPCR.13 These are common genetic variants 
in Brazilians associated with reduced drug metabolism.

Primaquine and carboxyprimaquine were quantified on the third day 
of treatment using a reversed-phase HPLC system with a diode array de-
tector (Flexar System—Perkin Elmer Inc., Boston, MA, USA). The measure-
ment involved liquid–liquid extraction from blood spots on filter paper, 
following the protocol previously described.17

Statistical analysis was performed using GraphPad Prism version 8.0.2 
(GraphPad Software, San Diego, CA, USA). All tests were two-sided, and a 
P value of <0.05 was considered statistically significant.

Results and discussion
Initially, we measured the primaquine and carboxyprimaquine 
blood levels in 100 subjects for whom blood samples were avail-
able on the third day of treatment. Among them, 30% had im-
paired CYP2D6 activity inferred from genotype data (AS ≤ 1.0), 
and 31% carried low-expression MAO-A variants. No differences 
in primaquine levels were documented between high- and low- 
expression MAO-A variants [median = 179.0 ng/mL (IQR = 146.0, 
232.0) and 188.0 ng/mL (119.0, 217.5), respectively, P = 0.907] 

in the context of impaired CYP2D6 activity (Figure S1, available 
as Supplementary data at JAC Online). Interestingly, the median 
carboxyprimaquine level was significantly reduced in the specific 
group of subjects carrying low-expression/activity alleles in both 
MAO-A and CYP2D6 (P = 0.034) (Figure 1a). These results point to 
a potential gene–gene interaction where the status of the MAO-A 
promoter region is critical, prompting the working hypothesis of a 
nuclear receptor-mediated mechanism.18

We additionally examined the relationship between the en-
zyme variants and P. vivax malaria relapses in a group of 105 in-
dividuals with well-documented relapses. Among them, 35% 
had impaired CYP2D6 activity (AS ≤ 1), and 38% of subjects car-
ried the low-expression MAO-A variants (Table S1). In terms of 
therapy efficacy, impaired CYP2D6 activity was associated with 
multiple relapse episodes of P. vivax, when compared with the 
group of extensive/ultra-rapid CYP2D6 metabolizers [50% (17 
out of 34) versus 19% (12 out of 64), P = 0.002] (Figure 1b), con-
firming the well-established importance of CYP2D6 activity and 
primaquine performance.

We next investigated whether the lower levels of carboxypri-
maquine observed among patients carrying low-expression 
MAO-A alleles plus impaired CYP2D6 would impact primaquine 
efficacy. This group, in fact, experienced significantly more P. vivax 
relapses (P = 0.010) (Figure 1c), a relatively surprising observation, 
as carboxyprimaquine is generally considered pharmacologically 
inactive in malaria therapy. The low-expression MAO-A status 
was not associated with malaria relapses when CYP2D6 had 
normal activity (P > 0.999), suggesting that the putative carboxy-
primaquine contribution is essentially irrelevant when the CYP2D6 
pathway is fully active.

For the moment, we propose as a hypothesis that carboxypri-
maquine does have a role of protection by producing its own set 

Figure 2. Schematic representation of the proposed mechanism of action of primaquine and carboxyprimaquine against liver hypnozoites. 
Primaquine (PQ) is metabolized into hydroxylated PQ metabolites (OH-PQm) by CYP2D6. OH-PQm undergoes spontaneous oxidation to quinoneimines 
(O = PQm) with concomitant generation of hydrogen peroxide (H2O2). Primaquine is converted to carboxyprimaquine, the most abundant plasma me-
tabolite, mainly by MAO-A. Carboxyprimaquine produces its own set of quinoneimines that kill the parasite through redox cycling and oxidative dam-
age. Created with BioRender.com. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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of quinoneimines that kill the parasite through redox cycling and 
oxidative damage, ultimately impacting the drug’s anti-hypnozoite 
activity (Figure 2). The first evidence for hydroxylation of carboxy-
primaquine followed by the formation of quinoneimines came 
from in vitro analysis using primary human hepatocytes.19 More re-
cently, the presence of these compounds was confirmed by in vivo 
phenotyping of primaquine metabolites in plasma and urine from 
healthy human volunteers.9 Carboxyprimaquine metabolite pro-
duction is smaller, but this is likely to be partially offset by a more 
extensive exposure, primarily considering carboxyprimaquine 
longer elimination half-life (∼15 h). Thus, less MAO-A activity would 
lead to a decreased rate of metabolite production and, hence, de-
creased protection. Nevertheless, this effect is likely to be second-
ary in the presence of fully active CYP2D6 activity, with primaquine 
metabolism through the MAO-A pathway alone not sufficient to 
produce enough active metabolites for effective protection against 
the parasite and prevent P. vivax relapses.

Our study has two main limitations. First, we could evaluate 
only a few subjects with altered activity of both enzymes (n =  
11). A larger study is necessary to further elucidate the relation-
ships between the spectrum of enzyme activities and relapses in 
P. vivax malaria. Second, we could not follow a standard ap-
proach related to the time of blood collection after drug intake, 
which may have contributed to the high variability observed in 
drug blood levels among subjects. Nonetheless, carboxyprima-
quine level measurements should be less affected due to its long-
er elimination half-life.

Conclusions
In conclusion, we present data supporting the potential import-
ance of MAO-A promoter polymorphism as a factor to be consid-
ered, in addition to the well-established importance of CYP2D6 
pharmacogenetics in primaquine efficacy. Our findings can 
have a significant impact on malaria epidemiology, considering 
that approximately 35% of subjects may show low expression 
of MAO-A or impaired CYP2D6.2,10 Finally, it remains to be evalu-
ated how individuals with genetic deficiency of G6PD can be af-
fected by these enzyme variants concerning the risk of 
haemolytic toxicity of primaquine.
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