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Objectives: MDR and XDR Neisseria gonorrhoeae strains remain major public health concerns internationally, 
and quality-assured global gonococcal antimicrobial resistance (AMR) surveillance is imperative. The WHO glo
bal Gonococcal Antimicrobial Surveillance Programme (GASP) and WHO Enhanced GASP (EGASP), including 
metadata and WGS, are expanding internationally. We present the phenotypic, genetic and reference genome 
characteristics of the 2024 WHO gonococcal reference strains (n = 15) for quality assurance worldwide. All 
superseded WHO gonococcal reference strains (n = 14) were identically characterized. 

Material and Methods: The 2024 WHO reference strains include 11 of the 2016 WHO reference strains, which 
were further characterized, and four novel strains. The superseded WHO reference strains include 11 WHO ref
erence strains previously unpublished. All strains were characterized phenotypically and genomically (single- 
molecule PacBio or Oxford Nanopore and Illumina sequencing). 

Results: The 2024 WHO reference strains represent all available susceptible and resistant phenotypes and gen
otypes for antimicrobials currently and previously used (n = 22), or considered for future use (n = 3) in gonor
rhoea treatment. The novel WHO strains include internationally spreading ceftriaxone resistance, ceftriaxone 
resistance due to new penA mutations, ceftriaxone plus high-level azithromycin resistance and azithromycin re
sistance due to mosaic MtrRCDE efflux pump. AMR, serogroup, prolyliminopeptidase, genetic AMR determinants, 
plasmid types, molecular epidemiological types and reference genome characteristics are presented for all 
strains. 

Conclusions: The 2024 WHO gonococcal reference strains are recommended for internal and external quality 
assurance in laboratory examinations, especially in the WHO GASP, EGASP and other GASPs, but also in pheno
typic and molecular diagnostics, AMR prediction, pharmacodynamics, epidemiology, research and as complete 
reference genomes in WGS analysis.
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Introduction
Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is 
compromising the treatment of gonorrhoea globally.1–8

Internationally, the extended-spectrum cephalosporin (ESC) ceftri
axone is the only remaining option for first-line empirical gonor
rhoea therapy, i.e. given as a high-dose monotherapy or with 
azithromycin.1,2,8–18 However, gonococcal strains with resistance 
to ceftriaxone and especially azithromycin have been described glo
bally.2,5–10 Furthermore, since 2015 international spread of the 
ceftriaxone-resistant MDR strain FC428 has been reported5,10,19–22

and since 2018 gonococcal XDR strains with ceftriaxone resistance 
combined with high-level azithromycin resistance have been de
scribed.23–27 Most of the currently identified ceftriaxone-resistant 
strains contain a mosaic penA-60.001 allele, which result in a mo
saic penicillin-binding protein 2 (PBP2).5,10,19–28 The international 
spread of ceftriaxone-resistant MDR and XDR gonococcal strains 
and sporadic treatment failures with ceftriaxone (mainly of pharyn
geal gonorrhoea) necessitate enhanced, quality-assured global 
gonococcal AMR surveillance.1–3,6–8

The WHO3 and ECDC29,30 have developed global and regional ac
tion plans, respectively, to control the transmission and impact of 
AMR gonococcal strains. One key component is to expand, improve 
and quality-assure the gonococcal AMR surveillance at local, national 
and global levels. The WHO global Gonococcal Antimicrobial 
Surveillance Programme (GASP) was relaunched in 2009 (www. 
who.int/initiatives/gonococcal-antimicrobial-surveillance- 
programme).3,6–8 Furthermore, the WHO Enhanced GASP 
(EGASP)26,31–33 is currently being expanded internationally (www. 
who.int/publications/i/item/9789240021341). WHO EGASP includes 
isolate AMR data linked to patient metadata and WGS, which is al
ready implemented in some regional GASPs.9,10 To fulfil all the 
aims of WHO GASP and EGASP, valid, internationally comparable 
and quality-assured AMR data are imperative. This is enabled 
through the use of WHO reference strains.34,35 In 2016, the latest 
WHO gonococcal reference strain panel was published.35

Herein, the 2024 WHO gonococcal reference strain panel is 
presented and characterized in detail. This panel includes 11 of 
the 2016 WHO reference strains (n = 14),35 which were further 
characterized, and four novel WHO reference strains. These novel 
WHO strains represent highly relevant AMR phenotypes and/or 
genotypes that were not available for inclusion in the previous 
WHO reference strain panels.34,35 The novel WHO strains include 
the internationally spreading ceftriaxone-resistant, mosaic 
penA-60.001-containing FC428 strain (associated with several 
ceftriaxone treatment failures),5,10,19–22 one strain expressing 
ceftriaxone resistance due to a new penA mutation (associated 
with cefixime treatment failure),36 the first cultured strain with 
ceftriaxone resistance plus high-level azithromycin resistance 
(mosaic penA-60.001-containing and with 23S rRNA gene 
A2059G mutations, associated with ceftriaxone 1 g plus doxycyc
line treatment failure)24 and one internationally spreading 
azithromycin-resistant strain with a mosaic MtrRCDE efflux 
pump, i.e. with Neisseria lactamica-like mosaic 2 mtrR promoter 
and mtrD sequence.10,37,38 The 2024 WHO gonococcal reference 
strains were characterized in detail phenotypically {e.g. antibio
grams [25 antimicrobials] and genetically [e.g. AMR determi
nants, multi-locus sequence typing (MLST),39,40 N. gonorrhoeae 
multiantigen sequence typing (NG-MAST),40,41 N. gonorrhoeae 

sequence typing for AMR (NG-STAR)42 and NG-STAR clonal com
plexes (CCs)43]}. Complete and characterized reference genomes 
are also described. These 2024 WHO gonococcal reference 
strains are recommended for internal and external quality assur
ance in all types of laboratory investigation, especially in the 
GASPs, e.g. the WHO global GASP,6–8 WHO EGASP26,31–33 and 
other international or national GASPs but also for phenotypic 
and molecular diagnostics, AMR prediction, pharmacodynamics, 
epidemiology, research and genomics. All superseded WHO 
gonococcal reference strains (n = 14), including 11 not previously 
published WHO reference strains that have been used inter
nationally, were characterized similarly.

Materials and methods
Bacterial strains
The 2024 WHO gonococcal reference strains include 11 of the 2016 WHO 
gonococcal reference strains (n = 14)35 and four additional gonococcal 
strains. The novel strains are WHO H (Austria, 2011; ceftriaxone resistant 
due to a new penA mutation),36 WHO Q (UK, 2018; ceftriaxone resistant 
combined with high-level azithromycin resistance),24 WHO R (Japan, 
2015; FC428, internationally spreading ceftriaxone resistant)5,10,19–22

and WHO S2 (Sweden, 2020; internationally spreading azithromycin- 
resistant strain due to a mosaic MtrRCDE efflux pump).38 Furthermore, 
all the superseded WHO reference strains (n = 14) were characterized. 
All strains were cultivated as described.44

Detection of prolyliminopeptidase (PIP)
PIP45 production was detected using API NH (bioMérieux, Marcy l’Etoile, 
France) and genetically.

Antimicrobial susceptibility testing
MIC values (mg/L) for 22 antimicrobials were determined using the Etest 
(bioMérieux) on GCRAP agar plates [3.6% Difco GC Medium Base agar (BD, 
Diagnostics, Sparks, MD, USA) with 1% haemoglobin (BD) and 1% 
IsoVitalex (BD)]. MICs of zoliflodacin,46–54 gepotidacin55–57 and lefamu
lin,58,59 were determined using agar dilution methodology. Clinical break
points or the epidemiological cut off (ECOFF, for azithromycin) from the 
EUCAST (v.14.0, https://www.eucast.org/clinical_breakpoints) were 
used, where available. For additional antimicrobials, only the consensus 
MIC values are presented. For all strains and antimicrobials, each deter
mination was performed ≥3 times using new bacterial suspensions on 
separate batches of agar plates. β-lactamase production was detected 
using nitrocefin solution (Oxoid, Basingstoke, UK).

Isolation of bacterial DNA
Genomic DNA for short-read and long-read sequencing was isolated 
using the QIAsymphony instrument (Qiagen, Hilden, Germany) and 
Nanobind CBB kit (PacBio, Menlo Park, CA, USA), respectively. Purified 
DNA was stored at 4°C before WGS.

Whole-genome sequencing
Multiplexed PacBio Single-Molecule, Real-Time (SMRT) DNA genome se
quencing was performed from post-shearing DNA fragment sizes 
(10.8–17 kb) using the Sequel System (PacBio), v.3.0 sequencing chemis
try. The average length of the reads was 4120 bp and the sequencing 
depth averaged 335× (range 224–834×). Paired-end short-read sequen
cing was performed using Illumina NextSeq 550 with an average sequen
cing depth of 410× (range 198–597×).
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Pacbio SMRT Tools v.7.0.1 indexed the long-read raw sequencing data 
in bam format using pbindex and convert it to fastq with bam2fastq. 
Genome assembly of these long reads were performed using both 
HGAP v.4.060 and Canu v.1.9.61 Complete chromosomes were circularized 
starting on the dnaA using Circlator v1.5.5.62 Illumina short reads were 
mapped against the circularized chromosome with BWA-MEM 
v.0.7.1763 and the output filtered with samtools v.1.1164 to only keep 
proper-paired reads that map with a mapping quality of ≥25. These map
pings were used to detect and fix base errors, small insertions/deletions 
(indels), local misassemblies and fill gaps in the initial long-read assembly 
using Pilon v.1.23.65 A minimum base and mapping qualities of 20 were 
required, and ≥25% of the reads mapping had to support a single nucleo
tide polymorphism (SNP) or indel. HGAP and Canu assemblies were com
pared using ACT v.18.1.66 To resolve discrepancies, we ran Trycycler 
v.0.4.167 using the raw long-read data and both chromosome sequences 
from each strain. No changes were needed by Pilon on the Trycycler con
sensus assemblies. When required, a hybrid assembly approach with 
Unicycler v.0.4.9b68 was performed using the long- and short-read 
data. Depth of coverage was obtained by mapping to the final chromo
some assemblies using pbmm2 (https://github.com/PacificBiosciences/ 
pbmm2, based on minimap269), and BWA-MEM, respectively, followed 
by the samtools depth command.

A short-read-only assembly was performed using SPAdes v.3.1270

with k-mer sizes of 21, 33, 55, 63, 77, 99, 111 and the –careful option 
to minimize mismatches and short indels. Both the long- and short-read 
assemblies were screened for the three known gonococcal plasmids, 
pCryptic, pBla and pConj,35 using blastn v.2.10.1+.71 The plasmids 
pCryptic, pBla and pConj were circularized starting on replication initiator 
protein, repA and TrfA gene using Circlator v.1.5.5, respectively.

Finalized circular chromosomes and plasmids were annotated using 
the National Center for Biotechnology Information (NCBI) Prokaryotic 
Genome Annotation Pipeline v.6.6,72 which also re-annotated the 2016 
WHO gonococcal reference strains.35 Mapping of Illumina reads over 
the final assemblies was visually inspected using Artemis and sequencing 
depth across the genomes was obtained with samtools v.1.11. The core 
genome among the 29 strains was inferred using Panaroo v.1.2.673 with 
default parameters and strict mode, polymorphic sites were obtained 
using SNP-sites74 and a maximum-likelihood tree was reconstructed 
from them using IQ-TREE v.2.0.375 with automatic detection of the best 
substitution model76 (best-fit model TVM + F + ASC + R7) and 1000 ultra
fast bootstrap replicates.77 Long-read sequencing data for WHO S2 was 
generated on a MinION Mk1C device (Oxford Nanopore Technologies) 
using a v.R10 flow cell (FLO-MIN114). The sequencing library was pre
pared without DNA fragmentation, and selection of long fragments 
(>3 kb) using duplex Nanopore chemistry (SQK-LSK114). Sequence data 
were deposited at the NCBI under BioProject PRJNA1067895.

Molecular sequence types (NG-MAST, NG-STAR and MLST)39–42 and 
AMR determinants were obtained from the N. gonorrhoeae scheme at 
Pathogenwatch.10,78 NG-STAR CCs were assigned using eBURST clustering 
on the NG-STAR ST database downloaded on 29 February 2024 (https:// 
ngstar.canada.ca/).43 The number of copies of the 23S rRNA gene muta
tions, pip gene mutants and the presence of the cppB gene in the pCryptic 
plasmid were inspected manually in Artemis using the finalized assem
blies. Individual genome characteristics were also obtained using 
Artemis. DNA uptake sequences (DUSs) were located in each chromo
some using the EMBOSS application fuzznuc.79

Results
Phenotypic characterization
One (6.7%; WHO F) and 14 (93.3%) of the 2024 WHO reference 
strains belonged to serogroup PorB1a (WI) and PorB1b (WII/ 
III), respectively (Table 1). One strain (6.7%; WHO U) was 

PIP-negative, and four (26.7%) strains (WHO M, O, R, and V) pro
duced β-lactamase. The antimicrobial susceptibility testing re
sults are described in Table 1. The strains represent all relevant, 
available resistant; susceptible, increased exposure; and suscep
tible phenotypes observed for most antimicrobials currently or 
previously recommended in national and international gonor
rhoea treatment guidelines or antimicrobials in advanced clinical 
development for future treatment. These included strains with 
clinical resistance to ceftriaxone (n = 7), cefixime (n = 7), azithro
mycin (n = 5), spectinomycin (n = 1), ciprofloxacin (n = 10), penicil
lin G (n = 9) and tetracycline (n = 13), and high MICs of 
cefuroxime, cefepime, ceftaroline, ampicillin, temocillin, aztreo
nam, erythromycin, moxifloxacin, chloramphenicol, rifampicin 
and trimethoprim-sulfamethoxazole. No clinical strains with 
high MICs of ertapenem, gentamicin, kanamycin, fosfomycin, zo
liflodacin, gepotidacin and lefamulin were available (Table 1).

The phenotypic characteristics of the superseded WHO refer
ence strains (n = 14) are described in Table S1 (available as 
Supplementary data at JAC Online).

Genetic characterization
WHO F harboured a wild-type penA allele, seven strains (WHO H, K, 
Q, R, X, Y, Z) contained six different mosaic penA alleles (main ESC 
resistance determinant)1,2,9,10,19–28,42,80 and seven strains dis
played the D345 insertion in the β-lactam main target PBP2, which 
is frequently found in chromosomally mediated penicillin resistance 
(Tables 1 and 2).1,2,42,80 WHO Q and R contained the mosaic 
penA-60.001 allele that causes ceftriaxone resistance in most 
currently-spreading ceftriaxone-resistant strains.5,10,19–28 WHO H 
contained a PBP2 T534A mutation, which causes ceftriaxone and 
cefixime resistance.36 WHO L and Y harboured a PBP2 A501 V and 
A501P alteration, respectively, which can also increase the MICs 
of ESCs.1,2,42,80,86,87 WHO L, O and V contained PBP2 G542S or 
P551S, which also may increase the ESC MICs.1,2,42,80,86,88

None of the isolates carried any other known potential 
ceftriaxone-resistance mutations (e.g. rpoB P157L, G158 V or 
R201H or rpoD D92–95 deletion or E98K).78,117 Eleven strains con
tained a deletion of a single nucleotide (A; n = 9) or an A→C substi
tution (n = 2) in the 13 bp inverted repeat of the mtrR promoter 
sequence, resulting in an increased MtrCDE efflux of substrate anti
microbials, e.g. macrolides and β-lactam antimicrobials.1,2,86,89–91

Also WHO L has an over-expressed MtrCDE efflux pump, however, 
this is caused by its mtr120 mutation, resulting in an additional pro
moter for mtrCDE.92 WHO S2 has a N. lactamica-like mosaic 2 mtrR 
promoter and mtrD sequence,10,37,38,78 while WHO P has a 
N. meningitidis-like mosaic 1 mtrR promoter and mtrD sequence.10,78

These mosaics increase the activity of the MtrCDE efflux pump and 
increase the MICs of antimicrobials such as macrolides.10,78,93–97 By 
contrast, a two base pair deletion in a GC dinucleotide repeat in 
mtrC decreases the MICs of antimicrobials, especially macrolides.120

However, this two base pair deletion was not found in any of 
the strains. Among the PorB1b strains (n = 14), all except WHO U 
displayed mutations in A102 [A102D (n = 10) and A102N 
(n = 3)] and 12 also a G101K alteration, which cause a decreased in
flux of target antimicrobials through the porin PorB1b.1,2,86,99,100

Twelve strains contained the L421P alteration in the second 
β-lactam target PBP1, which is found in high-level chromosomally 
mediated penicillin resistance.101 Of the β-lactamase-producing 
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strains (n = 4), two (WHO M, O) contained African-type plasmid and 
two (WHO R, V) Asian-type plasmid, which harboured blaTEM-1 
(WHO M, O, V) or blaTEM-135 (WHO R) resulting in high-level penicillin 
resistance (Tables 1 and 2).1,86,111–113 Ten strains contained GyrA 
S91F plus GyrA D95G (n = 4), D95N (n = 4) or D95A (n = 2) alterations, 
and nine of these strains additionally had 1–2 amino acid alterations 
in ParC D86, S87 or S88, which cause resistance to ciprofloxacin and 
other fluoroquinolones.1,2,42,78,102 One strain (WHO O) contained a 
C1192T spectinomycin target mutation in all four alleles of the 16S 
rRNA gene (spectinomycin MIC > 1024 mg/L104). One strain (WHO 
U) comprised the 23S rRNA C2611T gene mutation and two strains 
(WHO Q, V) harboured the 23S rRNA A2059G gene mutation that 
cause low- and high-level resistance to azithromycin, respective
ly.1,2,42,106,107 No azithromycin-resistance mutations were found in 
the rplD or rplV gene (encoding ribosomal protein L4 and L22, respect
ively)78 and none of the macrolide resistance-associated genes 
mefA/E (encoding Mef efflux pump),118 ereA and ereB (encoding 
erythromycin esterase) or ermA-C and ermF (encoding RNA methy
lases that block macrolides from binding to the 23S subunit target)119

were identified. Three strains (WHO M, P, R) contained the H552N tar
get mutation in RpoB (RNA polymerase subunit B), causing high-level 
rifampicin resistance.109 A tet(M)-carrying conjugative plasmid 
(Dutch type) causing high-level tetracycline resistance was detected 
in WHO Q (Tables 1 and 2).86,114,115 All strains except WHO F con
tained the V57M mutation in rpsJ, encoding ribosomal protein S10, 
contributing to chromosomally mediated tetracycline resist
ance.86,108 All strains except WHO F and WHO L contained the 
R228S mutation in the sulfonamide target dihydropteroate synthase 
(DHPS), encoded by folP, associated with sulfonamide resistance.110

Finally, no strain had any transcription-modulating mutations in the 
promoter sequence for the macAB operon (encoding the 
MacA-MacB efflux pump)121 or in the putative –35 promoter hexamer 
sequence (CTGACG) of the promoter sequence for the norM gene (en
coding the NorM efflux pump) or in its ribosome binding site 
(TGAA).122

Regarding novel antimicrobials for gonorrhoea treatment, no 
strain contained any gyrB mutations associated with increased 
MICs of zoliflodacin (in GyrB D429 and K450) or predisposition 
for emergence of zoliflodacin resistance (GyrB S467N).49–53

Furthermore, no alterations in GyrA A92, i.e. one of the two tar
gets for the new antimicrobial gepotidacin, was observed. 
However, one strain (WHO L) contained the ParC D86N alteration 
in the other gepotidacin target, i.e. which can predispose for 
emergence of gepotidacin resistance.55,56

Of importance for molecular (and/or phenotypic) detection of 
gonococci, cppB81–83 (WHO F), pip45 (WHO U) and porA pseudo
gene84 (WHO U) mutant strains were included. Finally, the strains 
represented 11, 14, 15 and 10 MLST STs, NG-MAST STs, NG-STAR 
STs and NG-STAR CCs (including one ungroupable strain), respect
ively (Table 2).

The genetic characteristics of the superseded WHO reference 
strains (n = 14) are described in Table S2.

Reference genome characterization
The general characteristics of the reference genomes of the 2024 
WHO gonococcal reference strains (n = 15) as well as the super
seded WHO gonococcal reference strains (n = 14) are summar
ized in Table 3 and Table S3. The genome size ranged from Ta
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2 163 258 bp (WHO-β) to 2 308 468 bp (WHO A). The GC content, 
number of coding sequences (CDS) and average CDS size varied 
between 52.1%–52.7%, 1945–2125 and 836–856 bp. The num
ber of core genes was 1791 and accessory genes varied from 
248 to 402 (Table 3 and Table S3).

Figure 1 describes the phylogenomic relationship among all 
the 2024 WHO reference strain core genomes (n = 15, 1791 
loci), including their molecular epidemiological types, key AMR 
determinants and phenotypic AMR patterns.

Discussion
Herein, the 2024 WHO N. gonorrhoeae reference strains (and 
superseded WHO gonococcal reference strains) and their de
tailed phenotypic, genetic and reference genome characteristics 
are described. The utility of these strains includes internal and ex
ternal quality assurance in all types of laboratory investigation, 
especially in the AMR testing (phenotypic and genetic) in GASPs, 
such as the WHO global GASP6–8 and WHO EGASP,26,31–33 but 
also for phenotypic (e.g. culture, species verification) and molecu
lar (e.g. NAATs) diagnostics, AMR prediction, pharmacodynamics, 
epidemiology, research and genomics. The strains include all im
portant global susceptible; susceptible, increased exposure; and 
resistant phenotypes and the ranges of resistances seen for 
most antimicrobials currently or previously recommended in 

national and international gonorrhoea treatment guidelines or 
antimicrobials in advanced clinical development for future treat
ment of gonorrhoea. However, the consensus MIC values 
(Table 1 and Table S1) were determined using one MIC-based 
method only (Etest). Accordingly, these MIC values may vary 
slightly using other MIC-based methods, however, the resistance 
phenotypes should be consistent. The 2024 WHO gonococcal 
reference strains are available through WHO sources and 
from the National Collection of Type Cultures (https://www. 
culturecollections.org.uk).

In many countries, NAATs have more or less replaced culture 
for gonococcal detection and, consequently, genetic detection 
of AMR determinants to predict resistance or susceptibility to 
antimicrobials has become increasingly important for AMR sur
veillance and, ideally, to also guide individually tailored treat
ment.123–125 The genetic AMR determinants that result in the 
different AMR phenotypes in the 2024 WHO gonococcal refer
ence strains were characterized in detail and included most 
known gonococcal AMR determinants. Accordingly, the 2024 
WHO reference strains can be used for internal and external qual
ity assurance and quality controls of both conventional pheno
typic AMR surveillance and surveillance using molecular AMR 
prediction. Molecular AMR methods can never entirely replace 
phenotypic culture-based AMR testing because they only detect 
known AMR determinants and new ones will continue to evolve. 

Figure 1. Phylogenomic tree of the 2024 WHO Neisseria gonorrhoeae reference core genomes (n = 15). Typing, key genetic determinants of AMR and pheno
typic AMR patterns of the 2024 WHO gonococcal reference strains are shown alongside the tree. Only antimicrobials with EUCAST breakpoints (v.14.0, https:// 
www.eucast.org/clinical_breakpoints) are displayed. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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However, molecular prediction of AMR or susceptibility can sup
plement the phenotypic AMR surveillance, i.e. with varying sen
sitivity and specificity for different antimicrobials.123–125 The 
accuracy of the AMR prediction will also vary across geographic 
settings and time, due to the dynamics of the gonococcal 
population, regional variations in AMR and drug use, and evolu
tion as well as importation of gonococcal strains in the set
tings. Finally, several challenges for direct testing of clinical, 
especially oropharyngeal, NAAT specimens and for accurate 
prediction of resistance to the currently recommended ceftri
axone and azithromycin remain.123 Nevertheless, WGS has re
volutionized the molecular prediction of AMR or antimicrobial 
susceptibility, AMR surveillance and in general molecular epi
demiological surveillance of N. gonorrhoeae strains nationally 
and internationally.9,10,23,24,27,28,35,37,38,43,52,78,93,95,97,120,123 However, 
to fully use the power of WGS joint analyses of quality-assured 
WGS, AMR and clinical and epidemiological data should be per
formed. This will substantially enhance the understanding of the 
spread, introduction, replacement, evolution and biofitness of 
AMR, and antimicrobial susceptible, clades/clones in risk groups 
nationally and internationally,9,10 which can inform gonorrhoea 
epidemiology, preventative measures, prediction of AMR or anti
microbial susceptibility, diagnostics and development of new anti
microbials and gonococcal vaccines. To support this development, 
we present the fully characterized and annotated chromosomes 
and plasmids of the 2024 WHO gonococcal reference strains, re
presenting genomes that cover mainly the whole gonococcal spe
cies phylogeny (Figure S1), to enable quality assurance of N. 
gonorrhoeae WGS and its analysis. Ultimately, point-of-care genet
ic AMR methods, combined with gonococcal detection, should be 
used to guide individually tailored treatment of gonorrhoea, which 
can ensure rational use of antimicrobials (including sparing last- 
line antimicrobials) and affect the control of both gonorrhoea 
and gonococcal AMR.

The 2024 WHO N. gonorrhoeae reference strain panel includes 
11 of the 2016 WHO reference strains (n = 14),35 which were fur
ther characterized, and four novel WHO reference strains. The 
four novel 2024 WHO strains (WHO H, Q, R and S2) represent phe
notypes and/or genotypes that were not available when the 2016 
WHO reference strains35 were published. Accordingly, WHO R is 
the first internationally spreading ceftriaxone-resistant strain 
FC428 (ceftriaxone caused by the mosaic penA-60.001 allele), as
sociated with ceftriaxone treatment failures5,10,19–22; WHO Q is 
the first identified strain with ceftriaxone resistance (mosaic 
penA-60.001 allele) plus high-level azithromycin resistance (23S 
rRNA gene A2059G in all four alleles), associated with ceftriaxone 
1 g plus doxycycline treatment failure24; WHO H is also expres
sing ceftriaxone resistance (mosaic penA-34.009, i.e. 
penA-34.001 plus the unique PBP2 T534A mutation), associated 
with cefixime treatment failure36 and WHO S2 is representing the 
main internationally spreading azithromycin-resistant clade 
(mosaic MtrRCDE efflux pump, i.e. with Neisseria lactamica-like 
mosaic 2 mtrR promoter and mtrD sequence10,37,38,78), which ac
count for most of the mainly low-level azithromycin resistance in 
many countries.10,37,38,78,93–95 Furthermore, internationally 
spreading multidrug-resistant clones that have accounted for 
most of the ESC resistance globally such as MLST ST7363, 
ST1901 and ST1903, as well as NG-MAST ST1407, CC90 and 
CC199 are represented (Table 2).4–6,9,10,19–22,38,43 Notably, for 

the previously published WHO reference strains additional anti
microbial phenotypes and genotypes have been described and 
some consensus MICs have slightly changed when additional 
MIC determinations using different MIC-determining methodolo
gies have been performed. Finally, all superseded WHO gonococ
cal reference strains (n = 14), including 11 not previously 
published WHO reference strains, were characterized in identical 
manners. It is important to provide quality-assured genetic and 
phenotypic characteristics for also these strains as they are still 
in use in some settings. Considering any historical data, the full 
characterization of the strains provides additional quality assur
ance to already published data. However, the use of the more 
relevant and updated 2024 WHO panel is strongly encouraged.

In conclusion, the 2024 WHO N. gonorrhoeae reference strains 
were extensively characterized both phenotypically and genetic
ally, including characterizing the reference genomes, and are in
tended for internal and external quality assurance and quality 
control purposes in laboratory investigations. This is particularly 
in WHO GASP, WHO EGASP and other GASPs (to allow valid 
intra- and inter-laboratory comparisons of AMR data derived by 
different methods in various countries), but also in phenotypic 
(e.g. culture, species determination) and molecular diagnostics, 
genetic AMR detection, AMR prediction, pharmacodynamics, 
molecular epidemiology, research (including pre-clinical drug de
velopment) and as fully characterized, annotated and finished 
reference genomes in WGS analysis, transcriptomics, proteomics 
and other molecular technologies and data analysis. When add
itional resistant phenotypes and/or genotypes emerge, novel 
WHO gonococcal reference strains will be selected, characterized 
and added to the WHO gonococcal strain panel.
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