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Abstract

Early identification of drug toxicity is essential yet challenging in drug development. At
the preclinical stage, toxicity is assessed with histopathological examination of tissue sec-
tions from animal models to detect morphological lesions. To complement this analysis,
toxicogenomics is increasingly employed to understand the mechanism of action of the
compound and ultimately identify lesion-specific safety biomarkers for which in vitro as-
says can be designed. However, existing works that aim to identify morphological corre-
lates of expression changes rely on qualitative or semi-quantitative morphological char-
acterization and remain limited in scale or morphological diversity. Artificial intelli-
gence (AI) offers a promising approach for quantitatively modeling this relationship at
an unprecedented scale. Here, we introduce GEESE, an AI model designed to impute
morphomolecular signatures in toxicology data. Our model was trained to predict 1,536
gene targets on a cohort of 8,231 hematoxylin and eosin-stained liver sections from Rattus
norvegicus across 127 preclinical toxicity studies. The model, evaluated on 2,002 tissue sec-
tions from 29 held-out studies, can yield pseudo-spatially resolved gene expression maps,
which we correlate with six key drug-induced liver injuries (DILI). From the resulting
25 million lesion-expression pairs, we established quantitative relations between up and
downregulated genes and lesions. Validation of these signatures against toxicogenomic
databases, pathway enrichment analyses, and human hepatocyte cell lines asserted their
relevance. Overall, our study introduces new methods for characterizing toxicity at an
unprecedented scale and granularity, paving the way for AI-driven discovery of toxicity
biomarkers.

Live demo: https://mahmoodlab.github.io/tox-discovery-ui/
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Introduction

Identifying and characterizing the potential toxicity of a drug early in its development is a
major challenge for the pharmaceutical industry1–3. At the preclinical phase, toxicity is assessed
in animal models through histological examination of tissue sections, in which pathologists
report drug-induced lesions and abnormalities to determine the dose-response relationship of
the compound (Fig. 1a). Despite advancements of in vitro assays for early toxicity detection,
safety concerns remain the leading cause of drug attrition at the preclinical stage4. For these
reasons, preclinical research increasingly relies on toxicogenomics5–8, such as gene expression
profiling, to develop a mechanistic understanding of the drug action. By correlating changes in
gene expression with specific morphological lesions, such as cellular necrosis, investigators can
characterize the morphomolecular response of the compound. When validated across multiple
studies and compounds, lesion-specific genetic biomarkers can serve as novel indicators for
early toxicity detection from in vitro testing, overall enhancing the likelihood of successfully
transitioning to early-stage clinical development9.

However, prior studies investigating relationships between gene expression changes and
morphological lesions have relied on pathology reports for morphological characterization of
the tissue, which provides limited information compared to the tissue itself10–14. Therefore,
these assessments remain qualitative and semi-quantitative, and may be subject to high inter-
observer variability, especially for severity scoring of lesions, which limits the ability to detect
subtle associations. In addition, existing works and toxicity databases aggregating findings,
such as the Comparative Toxicogenomics Database15–17 are limited to reporting biomarkers
linked to drug-induced injury rather than linking specific lesions, such as fatty change, to ex-
pression changes.

To overcome these limitations, artificial intelligence (AI) and computational pathology
offer a promising approach for quantitatively and spatially modeling the relationship between
morphology and gene expression changes at scale18–20. Multiple works have shown the abil-
ity to predict molecular profiles, such as gene mutations21–27, microsatellite instability 28, and
gene expression 29–32, directly from whole-slide images (WSIs). This direction holds promise
for identifying morphological correlates of molecular alterations and ultimately for biomarker
discovery25, 33. Existing works in this area have primarily focused on cancer cohorts, typically
with sample sizes under 1,000 cases per disease, such as those from The Cancer Genome At-
las Program (TCGA). Moreover, most studies have been limited to qualitative analyses, such
as examining attention weights or gradient attributions, rather than quantitative assessments.
Consequently, there remains an unmet need for quantitative, objective, and scalable methods to
analyze morphological correlates of gene expression.
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Here, we introduce the first AI model designed to identify and impute morphomolecu-
lar signatures in toxicology data by connecting specific morphologies to expression changes.
Our model, named Gene Expression Regressor (GEESE), is a deep learning architecture that
predicts bulk expression levels of 1,536 selected gene targets from digitized H&E-stained liver
sections (whole-slide images, WSIs). GEESE employs a weakly supervised training approach
to predict slide-level labels (i.e., gene expression) without requiring patch-level annotations and
enabling scalable training on large datasets. We trained GEESE on 8,231 hematoxylin and eosin
(H&E) WSIs from Rattus norvegicus liver, spanning 127 preclinical drug safety studies. The
model was evaluated on an independent test set of 29 studies comprising 2,002 WSIs and ex-
pression profile pairs (Fig. 1b). GEESE’s unique architecture enables fine-grained attribution
of gene expression predictions, yielding pseudo-spatially resolved gene expression maps for
all test samples (Fig. 1c). To connect gene expression with morphological lesions, we addi-
tionally developed a morphological classification model to identify six common drug-induced
liver injuries (DILI), including necrosis, fatty change, and increased mitosis. By correlating the
pseudo-spatially resolved expression predictions from GEESE with the lesion predictions, we
generated a dataset of 25 million morphology-expression pairs.

From this analysis, we established a robust and quantitative relation between up and down-
regulated genes and morphological lesions, with multiple associations being preserved across
multiple compounds (Fig. 1d). We curated lists of genes linked to each of the studied lesions
and identified biomarkers that were corroborated with public databases, such as the Compar-
ative Toxicogenomics Database15–17, and pathway-enrichment analyses. We further validated
these gene signatures against in vitro primary human hepatocyte cell lines, providing an initial
assessment of translatability to humans. Overall, our study introduces new methods to under-
stand toxicity and its underlying morphomolecular mechanisms at an unprecedented scale and
granularity, paving the way for enhanced prediction and mechanistic understanding of com-
pounds.

Results

Study overview

Our study leverages the publicly available Toxicogenomics Project-Genomics Assisted Toxi-
city Evaluation System (TG-GATEs) dataset34, a collection of preclinical drug safety studies
(Materials and Methods, section TG-GATEs protocol and table S1). TG-GATEs studies
were acquired as part of the Japanese Toxicogenomics Project consortium designed to test
the hepatotoxicity of known drugs and chemicals after in vivo compound exposure on Rattus
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Figure 1: Study overview. a. At preclinical stage, drug candidates undergo toxicity assess-
ment in animal models to characterize the dose-response relationship of the compound based
on histological examination. Toxicogenomics can be employed to complement the compound
characterization. b. Overview of TG-GATEs composed of 156 preclinical safety studies (and
compounds) accounting for 10,234 pairs of hematoxylin and eosin (H&E) whole-slide images
and gene expression profiles. TG-GATEs is split into a development set (127 studies, 8,232
slides) and a test set (29 studies, 2,002 slides). c. We developed two independent prediction
models: (1) a morphological lesion prediction model (denoted as Lesion classifier), which clas-
sifies 256×256 pixels (or 128 µm) image patches into six lesions, and (2) a gene expression
regression model (GEESE), which predicts bulk expression of 1,536 gene targets from an input
tissue section. Feature attribution enables GEESE to derive patch-level expression profiles to
yield pseudo-spatially resolved expression maps. d. The resulting output forms a dataset of
25 million predicted patch-level morphology-expression pairs, which we use for inferring and
validating morphomolecular signatures across several scales, from patches (small regions of in-
terest) to slides (entire tissue sections) to compounds (can include dozens of slides), then across
several compounds, and finally across species (rat in vivo to human in vitro).
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norvegicus. Here, we collected data from 156 drug safety studies accounting for 10,234 pairs
of haematoxylin and eosin (H&E) whole-liver tissue sections (20× magnification, 0.49µm/px)
with the corresponding gene expression profile measured with mRNA microarrays35. Each slide
represents the morphological changes caused by administering a specific dose of a compound at
a particular time post-administration. In addition, each slide was annotated with morphological
lesions identified by toxicologic pathologists, such as reporting the presence of hepatocellular
hypertrophy – with lesions that might be drug-induced or spontaneous (Materials and Meth-
ods, section Histopathology acquisition and annotation).

Analogously, bulk gene expression profiles was performed to encode the molecular land-
scape from the tissue section, which the action of the compound could have altered. Gene
expression was measured with mRNA microarrays, which provide a bulk whole-transcriptome
description post-drug administration. We limit our study from 31,042 probes to a set of 1,536
genes selected to cover a large biological space relevant to toxicology (Materials and Meth-
ods, section Gene expression of in vivo rat studies). Specifically, through complementary a
priori knowledge-driven and data-driven approaches, we filtered the full set of genes to a subset
that satisfies either of the two conditions: (1) genes that are biologically relevant to toxicology
(linked to liver metabolism and liver response to injury), as identified through works such as
T100036; and (2) genes whose measured expression levels were highly correlated with the pres-
ence of drug-induced lesions were included (e.g., TMBIM1, a gene involved in death receptor
binding activity and necrosis).

To rigorously assess the generalizability of our model to unseen studies, we split TG-
GATEs into a set for training and validation that comprises 127 studies and 8,232 slides, and a
test set that comprises 29 studies and 2,002 slides (Fig. 1b and Materials and Methods, section
Dataset split). Overall, 1,788 slides (17% of the TG-GATEs dataset) report morphological
lesions: 1,141 (17%) in train, 283 (17%) in validation, and 364 (18%) in test. In this study, we
focus our analysis on compounds that induce the following six commonly found morphological
lesions: abnormal increases in mitotic figures (2.4% of slides in TG-GATEs), necrosis (5.2% of
slides), cellular infiltration (5.1% of slides), bile duct proliferation (0.9% of slides), fatty change
(2.2% of slides), and hepatocellular hypertrophy (8.0% of slides).

Weakly-supervised expression prediction

We introduce the gene expression regressor (GEESE) method, a deep learning model based
on multiple instance learning (MIL)37–39 that can predict the expression profile associated with
an input whole-slide image (WSI). Following the MIL paradigm, we tessellate the slide into
256×256 pixels patches. We use a pre-trained vision encoder to extract patch embeddings from
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Figure 2: Gene expression profiling from whole-slide images using GEESE. a. Gene ex-
pression prediction of the top 100 best-predicted genes evaluated using Pearson correlation
and stratified by compound from the test set. The percentage of slides with lesions is dis-
played in red. Boxes indicate quartile values of gene-level Pearson correlation, with the center
line indicating the 50th percentile. Whiskers extend to data points within 1.5× the interquar-
tile range. b. Example of a liver section after exposure to bromobenzene (left). Overlay of
patch-level necrosis prediction. Predictions below 90% confidence are represented in blue,
and high-probability predictions are represented in red (center-left). Pseudo spatially-resolved
gene expression heatmaps of genes TNFRSF12A (center-right) and ATF3 (right). Examples of
high-probability necrotic patches from the slide pseudo gene expression of ATF3, TNFRSF12A,
MDM2, DDIT3 (also known as CHOP), HMOX1, and GADD45A (bottom).
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each patch. Here, to reduce the domain gap between the source training domain (such as nat-
ural images40 or human histology41–43) and the target domain (rodent histology), we trained a
Vision Transformer from scratch with iBOT44–46, a self-supervised learning (SSL) model47, 48.
Our SSL model was trained on 15 million patches extracted in 46,734 slides from TG-GATEs
(Materials and Methods, section iBOT pretraining). We then trained a MIL regression model
predicting gene expression from patch embeddings within the slide. Our method, GEESE, can
extract patch-level gene expression scores using a multilayer perceptron (MLP) mapping the
patch embedding to the expression profile. By summing patch-level predictions, GEESE can
derive slide-level expression levels, which represent the predicted log2 fold change expression
quantifying expression changes between the control and the tested configuration (zero means
no change). We employed the mean squared error (MSE) between the predicted and measured
expression to train GEESE end-to-end with the patch embeddings. This MIL formulation nat-
urally yields patch-level expression predictions, thereby enabling a pseudo-spatially resolved
expression map, where the resolution is given by patch size29. This differs from widely em-
ployed attention-based methods38, 39 or gradient attribution methods49, which rely on surrogate
attribution. Additional information is provided in the Materials and Methods, section Gene
expression regressor (GEESE).

We trained GEESE on a set of 127 studies (8,232 slides) and evaluated it on 29 held-out
studies (2,002 slides) (fig. S1 and S2). The model prediction is assessed using the Pearson cor-
relation and area under the ROC curve (AUC) adapted to regression (Materials and Methods,
section Evaluation and implementation). Predicted expression levels of several genes, such
as TNFRSF12A (involved in inflammation and cell death) and SLC10A1 (part of the sodium/bile
acid co-transporter family), show a high correlation with observed expression levels: r=0.722
(95% CI: [0.675, 0.762]) and r=0.688 (95% CI: [0.630, 0.733]), respectively. When considering
all selected genes, the average correlation is 0.29 and increases to 0.63 when considering the
top 100 best-predicted genes. We attribute these large variations in prediction to the fact that
(1) some genes (expressed or not) might not be reflected in the tissue morphology making them
undetected by GEESE, (2) other genes might have low expression in the test studies rendering
detection harder due to noise, and (3) some learned expression profiles associated with certain
morphologies in training might not generalize to test studies.

We additionally investigated model performance stratified by compound. Specifically, we
identified the top 100 best-predicted genes and computed the average Pearson correlation for
each study (Fig. 2a). Overall, we observe large variations from one study to another. In some
studies, such as thioacetamide and methylene dianiline, predictions have high correlations with
ground truth (r >0.8), while in others, such as carboplatin, correlations are smaller (r <0.5).
To understand such discrepancies, we investigated the percentage of slides per study that re-
ported on the six considered lesions (background or drug-induced). We observe that studies
with poorly predicted expression usually corresponded to compounds with little to no reported
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lesions. This suggests that the model uses the presence of morphological lesions to predict
expression.

We further inspected the slide-level expression prediction and ground truth in thioac-
etamide and methylene dianiline, the two best-predicted compounds for the genes SLC10A150

and TNFRSF12A51. Notably, we observe a substantial Pearson correlation (r ∈ [0.8, 0.9]),
where the presence of a lesion (as per TG-GATEs annotations) appears to be linked to SLC10A1
downregulation and TNFRSF12A upregulation (fig. S1c). Yet, samples with lesions highlight
different expression levels (from 0 to 4 log2 fold change in TNFRSF12A expression in methy-
lene dianiline), which require quantification methods for deeper analyses.

Analysis of morphological correlates of expression changes

As part of routine histological assessment, identified morphological lesions are reported with a
score describing the extent and severity of the lesion (in TG-GATEs, minimal, slight, moder-
ate, severe). However, lesion scoring remains based on qualitative or semi-quantitative assess-
ment and, as such, lacks consistency within and across studies, making it impractical for robust
quantification analyses. Instead, we leverage our in-domain vision encoder as a foundation
for training a lesion classifier. We gathered patch-level annotations from six commonly found
lesions: increased mitosis, necrosis, cellular infiltration, bile duct proliferation, fatty change,
and hypertrophy (Materials and Methods, section Patch encoding and lesion classification,
table S3 and table S4). In total, we acquired 24,631 patch annotations with lesions extracted
from 3,458 liver slides and 13,888 normal patch annotations from 3,531 slides, accounting for a
total of 38,519 patch annotations. The vision encoder was then fine-tuned on these annotations
and trained to minimize a multilabel binary cross-entropy objective on the six lesions of inter-
est (patches can include multiple lesions). Our fine-tuned lesion classifier reaches an average
performance of 98.9% macro-AUC across all lesions, making it a reliable and robust predictive
tool for subsequent analysis.

By running lesion classification on all 2,002 test slides, we can obtain high-quality patch-
level predictions on 25 million patches, where each prediction describes the likelihood that a
given lesion is present in the patch. Subsequently, we can compare the lesion prediction with the
pseudo-spatially-resolved gene expression obtained with GEESE (Fig. 2b). For instance, when
analyzing a sample from the bromobenzene study (administration of 100mg/kg for four days,
each day), we observe that the gene expression heatmap of TNFRSF12A51 and ATF352 focuses
on the same regions. In addition, both regions largely overlap with the prediction of necrosis.
This suggests that GEESE uses the presence of necrosis to predict the increased expression
of both genes. This finding is not limited to TNFRSF12A and ATF3, as other genes highlight
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Figure 3: Morphomolecular analysis of increased mitosis in danazol. a. For each slide-
expression pair, we correlate the predicted percentage of mitosis found in the slide with the
measured gene expression. Genes with a high correlation between measured expression and
predicted lesion extent can be seen as part of the morphomolecular signature associated with
the compound. TG-GATEs original annotations report 8/64 slides with increased mitosis in
danazol. b. Correlation between the estimated percentage of the mitosis in a slide and the gene
expression of CCNB2 and CDCA3 (left: measured, right: predicted). P-value derived from
testing the two-sided null hypothesis of non-correlation. c. Density distribution of patch-level
expression for patches predicted as normal by the lesion classifier (n=746,699 patches) and
patches predicted as containing mitosis (n=26,429). Patches were extracted from the 64 WSIs
of the danazol study.
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the same trend such as MDM2, DDIT3, HMOX1, and GADD45A, genes involved in a diverse
array of processes often related to inflammation, oxidative stress, and cell death such as positive
regulation of apoptotic process or response to endoplasmic reticulum (ER) stress.

When conducting a similar analysis across several test studies, such as on thioacetamide,
ethionamide, methylene dianiline, and methyldopa, we observe that the presence of necrosis
aligns with the upregulation of TNFRSF12A and ATF3, suggesting that this finding is compound-
agnostic – or that the mechanism of action of the compound is linked to both these genes (fig.
S2).

While this analysis was conducted with necrosis, similar behavior is observed with other
lesions. The upregulation of CCNA2, KNSTRN, CDKN3, CCNB1, ARHGAP11A, and HMMR
aligns with the presence of increased mitosis (fig. S3); the upregulation of CXCL1, BCL2A1,
S100A4, CXCL10, EVI2A, and FILIP1L aligns with the presence of cellular infiltration (fig. S4);
the upregulation of SERPINA7, BEX4, CDH13, CLDN7, CD24 and downregulation of SER-
PINA4 aligns with the presence of bile duct proliferation (fig. S5); the upregulation of ACOT1,
GSTP1, ACOT2, CYP1A1, HID1 and the downregulation of SLC6A6 aligns with the presence
of fatty change (fig. S6); and the upregulation of GSTA3, ALDH1A1, ADGRG2, RGD1559459,
and the downregulation of PLVAP and LOX aligns with the presence of hypertrophy (fig. S7).
Overall, by comparing patch-level lesion predictions with the pseudo-gene expression map from
GEESE, strong relationships are observed between the presence of each of the six lesions and
the upregulation or downregulation of specific genes.

Single-study morphomolecular analysis

We expanded the analysis to all WSIs within a study to refine and characterize the morpho-
molecular relationships previously identified. We rely on three quantitative measures for in-
depth investigation: 1) the gene expression (normalized as log2 fold change) as measured with
mRNA microarray, 2) the predicted pseudo-spatially-resolved expression map, and 3) the pre-
dicted size, type, and location of each lesion. We emphasize that the latter two measures are
enabled by our proposed lesion classifier and GEESE architecture.

By measuring the Pearson correlation between the measured slide-level expression and
the predicted lesion size, we observe a subset of genes with high correlation (r >0.7, Fig. 3a).
This is exemplified with increased mitosis after administration of danazol (Fig. 3), cellular
infiltration in methylene dianiline (fig. S8), bile duct proliferation in methylene dianiline (fig.
S9), fatty change in ethionamide (fig. S10), and hypertrophy in hexachlorobenzene (fig. S11).
This analysis further shows that genes showing a high correlation between measured expression
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and predicted lesion size overlap with the genes best predicted by GEESE. In addition, we
observe that certain genes are not associated with any of the considered lesions.

When focusing on specific genes, such as CCNB2 (Cyclin B2) and CDCA3 (Cell Division
Cycle Associated 3) in danazol, we observe how the measured expression varies with the pre-
dicted lesion size (Fig. 3b). We find CCNB2 and CDCA3 to be increasingly upregulated as the
predicted lesion size increases (r>0.7). The same observation holds when analyzing the slide-
level gene prediction (r>0.7 between predicted expression and predicted mitosis). We further
analyzed the distribution of the predicted patch-level expression for these two genes. To this
end, we assign a label to each patch (lesion or normal), according to whether the predicted lesion
probability crosses lesion-specific thresholds (Materials and Methods, section Lesion classi-
fier). We observe a bi-modal distribution, where normal patches (i.e., no sign of lesion) have
an average predicted expression centered around zero and patches with mitosis are predicted
as upregulated (Fig. 3c). Overall, by comparing gene expression in patches with and without
lesions, we can establish precise and quantitative relationships between up and downregulation
of genes and the extent of lesions.

Cross-study analysis of morphomolecular signatures

The next aim is to study whether these signatures are preserved across studies, for instance,
if the molecular correlates of mitosis identified in response to danazol are also found in other
compounds. This allows us to determine if observed genetic markers linked to particular mor-
phologies remain consistent across compounds, which would be suggestive of specific toxico-
logical mechanisms. To this end, we compiled a list of studies where a given lesion is observed
(table S5 and table S6), for instance, the eight studies from the TG-GATEs test set with mitosis
(fig. S12). For each slide from each study, we extracted all patches with lesions (for instance,
157,414 patches predicted with mitosis). A detailed description of the number of patches ex-
tracted for each study can be found in table S7. We then computd the macro-average of the
predicted expression for the selected patches across all studies and rank them from the highest
to lowest. Genes with the highest (absolute) expression are expected to be the most linked to
the lesions (Materials and Methods, section Post-hoc morphomolecular signature analy-
sis). We conducted similar analyses for all lesions: necrosis (four studies, fig. S13), cellular
infiltration (four studies, fig. S14), bile duct proliferation (two studies, fig. S15), fatty change
(four studies, fig. S16), and hypertrophy (eleven studies, fig. S17).

An overview of the analyses is shown in Fig. 4 where we highlight the 40 most upregu-
lated (in red) and most downregulated (in blue) genes for all lesions. Some genes are consis-
tently upregulated (such as ABCC3 and GPX2) or downregulated (such as NOX4, CAR3, and
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Figure 4: Cross-study morphomolecular analysis. Heatmap illustrating the mean expression
of genes in patches displaying specific lesions, comparing the top 40 upregulated and top 40
downregulated genes for each lesion type. Panels a. mitosis, b. cellular infiltration, c. bile
duct proliferation, d. fatty change, e. hypertrophy, and f. necrosis details the gene expression
dynamics, where each analysis spans across multiple compounds (table S5). Genes are ranked
by their absolute expression, with upregulated genes indicated in red (descending order) and
downregulated genes in blue (ascending order). Genes expressed for each specific lesion are
highlighted in purple. Genes with known connections to drug-induced liver injury (DILI) are
marked with a star (either as direct or inferred evidence). Direct evidence refers to known mech-
anistic and/or therapeutic connections between the gene and DILI. Inferred evidence with DILI
refers to genes with an inference score>400 as per the Comparative Toxicogenomics Database
(CTD)15–17 (inference score measured with the similarity between CTD chemical–gene–disease
networks and a similar scale-free random network).
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OAT) for multiple lesions (table S8). These genes do not appear to be lesion-specific but may
rather be indicative of general toxic exposure (for instance, ABCC3 is involved in transporting
organic anions and drugs out of cells). Interestingly, some of these genes are those best predicted
by GEESE, such as KLF6, NOX4, and CAR3, that have Pearson correlations of 0.717 (95% CI:
[0.672, 0.759]), 0.639 (95% CI: [0.605, 0.672]), 0.698 (95% CI: [0.659, 0.736]), respectively,
between predicted and observed expression on all test studies (fig. S1). A large number of the
identified genes (both up and downregulated) are linked to drug-induced liver injury accord-
ing to the Comparative Toxicogenomics Database (CTD)15–17, either through direct therapeutic
or mechanistic evidence (genes with filled black star in Fig. 4) or via inferred evidence from
network-based analysis (star with black contour in Fig. 4). For instance, 23/40 of the most
upregulated genes associated with hypertrophy are referenced in CTD as direct or inferred ev-
idence (inference score>400), such as CYP1A1, which encodes a member of the cytochrome
P450 superfamily of enzymes known for catalyzing reactions involved in drug metabolism53, 54.
This analysis validates the ability of GEESE to identify highly relevant gene sets connected to
toxicity.

Certain genes exhibit changes in expression only for a specific lesion, indicating a closer
association with the lesion itself rather than general toxic exposure. To identify these lesion-
specific genes, we compared the average predicted patch-level expression containing a lesion
of interest against the expression of all other patches with lesions. A gene was then considered
lesion-specific if its expression was significantly larger than the ones of the other five lesions
(Materials and Methods, section Post-hoc morphomolecular signature analysis). For each
lesion, we identified a varying number of lesion-specific genes (genes marked in purple in Fig.
4). For instance, mitosis exhibits a distinct molecular signature, likely due to its unique na-
ture compared to other lesions, such as cellular infiltration and fatty change, that can co-occur
with other more prominent lesions in our dataset. To assess the relevance of the identified
lesion-specific molecular signatures, we conducted a pathway enrichment analysis using the
Rat Genome Database55 that aggregates previously established biological processes in rats and
humans (Fig. 5a,b,c and fig. S12b, S13b, S14b, S15b, S16b and S17b for lesion-wise anal-
ysis). GEESE-identified gene sets are significantly enriched for pathways linked to different
lesions. For instance, out of the 51 genes uniquely linked to mitosis (Fig. 5a and table S10),
such as CDK156 and CCNB1, 40 are involved in the cell cycle pathway in rats (p-value=6.53E-
34), with 41 also involved in the equivalent human pathway (p-value=5.31E-33), 29 genes are
involved in the chromosome segregation pathway in rats and humans (p-value=2.07E-36 and p-
value=1.69E-33, respectively), and 25 genes are involved in cell division (p-value=2.09E-26),
with 34 also involved in the equivalent human pathway (p-value=1.96E-37). When conducting
a similar analysis in necrosis (Fig. 5b and table S10), we found that out of the 33 upregulated
identified genes, such as ATF352, TNFRSF12A 51, DDIT357–59 and TRIB314, 21 genes are in-
volved in the apoptotic process in rats and humans (p-value=1.30E-14 and p-value=1.25E-13,
respectively), and 20 genes are involved in the cellular response to stress in rats (p-value=1.24E-
13), with 21 also involved in humans (p-value=3.18E-14). The 18 upregulated genes linked to
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Figure 5: Pathway enrichment analysis and human in vitro validation. a. Pathway en-
richment analysis of GEESE-identified genes uniquely linked to necrosis in rat and human
biological processes. b,c. Enrichment analysis conducted for hypertrophy and increased mito-
sis. Additional analysis is provided in fig. S12,13,14,15,16, and 17. d. Translation to in vitro
primary human hepatocyte cell lines in the gene set uniquely identified as linked to necrosis (in
vivo) with a focus on the 33 upregulated and 33 downregulated genes identified as related to
necrosis.

hypertrophy (e.g., ALDH1A1, ACSM260 and VNN161) are also significantly enriched for several
metabolic pathways such as fatty acid, lipid, and glucose metabolism. Similar analyses con-
ducted on the three other lesions further assert the relevance of GEESE-identified genes. This
illustrates the ability of GEESE to identify relevant lesion-specific genetic biomarkers with
promising transferability to humans.
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Translation to in vitro human cell lines

We further assessed the translatability of the GEESE-identified genes associated with necrosis to
human biology. To this end, we leveraged data from in vitro primary human hepatocytes (PHH)
cell lines collected as part of TG-GATEs on a subset of 140 compounds. For each tested com-
pound, expression changes were measured using mRNA microarrays after fixed time intervals
(Materials and Methods, section Gene expression of in vitro human studies). Specifically,
from the in vivo rat experiments, we defined two groups of compounds: (1) a group with 10
compounds where at least five necrotic slides were found (corresponds to 42 high-dose samples
in vitro), and (2) a group with 83 compounds without any slides with necrosis, which act as a
control group (corresponds to 331 high-dose samples in vitro). For each group, we computed
the average gene expression (log2 fold change) of the high-dose samples, specifically targeting
genes identified by GEESE in vivo (rat). We then reported the expression difference between
the first and second groups.

Several GEESE-identified genes were associated with necrosis, including ATF3, TRIB3,
and MAFF, which were also differentially expressed in PHH treated with necrosis-inducing
compounds (Fig. 5d and fig. S18). This suggests that these genes could be conserved markers
of necrosis across species and experimental systems. These findings align with our pathway
enrichment analysis and comparison against the CTD database. Other genes, such as MDM2
and AVPR1A, did not show the same differential expression patterns in PHH as observed in
rat livers, which several factors could explain: (1) the doses and time points used in the PHH
experiments may not elicit the full extent of necrosis-related gene expression changes observed
in vivo; (2) PHH cell lines have known limitations in fully recapitulating the complexity of the
intact liver, such as its 3D architecture, zonation, and cross-talk with non-parenchymal cells and
other organs62; and (3) inherent differences between rat and human hepatocytes could result in
a lack of direct translation for some genes. Despite the translational gap across species and
systems, GEESE successfully identified several genes that exhibit evidence of conservation as
biomarkers of liver lesions and could be further investigated.

Discussion

In this study, we demonstrated that large deep learning models can be used to elucidate mor-
phological correlates of molecular changes in toxicity studies. To this end, we built GEESE, a
weakly-supervised regression model (GEESE) trained on over 8,000 liver tissue sections from
129 preclinical safety studies to predict bulk gene expression changes of 1,536 gene targets. In
addition to slide-level profiling, GEESE can derive local gene expression changes by predicting
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pseudo-spatially-resolved gene expression maps of 1,536 genes. By combining GEESE with a
morphological lesion classifier that can precisely locate and quantify six commonly found mor-
phological lesions in liver, we extracted from 29 held-out safety studies a dataset of 25 million
image patches, each associated with a pseudo-expression profile and lesion labels. This anal-
ysis enabled us to identify various morphomolecular associations within and across multiple
compounds. For example, the upregulation of 33 genes such as ATF3, TNFRSF12A, DDIT3,
known for their involvement in stress response pathways and apoptotic signaling63, was asso-
ciated with the presence of hepatocellular necrosis in multiple studies. Similarly, the presence
of mitosis was consistently linked with the upregulation of 52 genes such as CCNA2, CCNB2,
KNSTRN and CDKN3, which are involved in the regulation of the cell cycle, DNA replication,
and mitotic spindle formation. This analysis allowed the curation of comprehensive gene sets
associated with each of the six studied lesion types that we further validated against public tox-
icogenomic databases, pathway enrichment analyses, and in vitro human cell line data. Overall,
GEESE enables the discovery of subtle and robust morphomolecular associations within and
across compounds at an unparalleled scale.

Even though the size of the cohorts used in this study is of unprecedented size in toxicol-
ogy, our study has limitations. First, our analysis is focused on rat liver tissue, which limits our
findings to a single organ. Analyzing other tissues and confirming the conservation of signatures
across species would strengthen the translational relevance. While we validate our analysis with
in vitro primary human hepatocyte cell lines, these data remain limited in representing the com-
plexity of an intact liver. Future studies, which employ more advanced in vitro models that better
mimic the in vivo liver microenvironments such as high-content imaging64, 3D spheroids65 or
organ-on-a-chip systems66, can accelerate such translational efforts. Additionally, the number
of compounds considered in the downstream analysis is limited to 29 in vivo rat studies (156
total, with 127 for model training) and 140 in vitro human studies. Therefore, our analysis
cannot encompass the morphomolecular diversity that the administration of any compound can
induce. Scaling to thousands of preclinical studies (and millions of slides) is needed to increase
the diversity of the discovered morphomolecular signatures. Lastly, validating the accuracy of
GEESE pseudo-spatially resolved expression profiles remains challenging. Immunohistochem-
istry (IHC) is not routinely performed in toxicology studies, and spatial transcriptomic (ST)
data remains scarce due to high cost.

We envision the incorporation of GEESE into the preclinical workflow, providing a valu-
able tool for toxicogenomic profiling from histology and imputation of spatially-resolved gene
expression maps. In addition, GEESE can be used to automatically identify, quantify, and char-
acterize the relationships between morphological lesions and gene expression changes. These
capabilities are crucial as toxicity remains a major cause of drug attrition, with preclinical tox-
icology studies as a critical threshold for the $1.8 billion total cost necessary to bring a new
molecular entity to market2, 67, 68. Given the high attrition rate of drug candidates due to toxi-
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city during preclinical testing with only about 5% of compounds that enter preclinical studies
ultimately receiving approval1, GEESE can contribute to streamlining toxicity assessment by re-
ducing manual semi-quantitative evaluations and providing molecular insights cost-effectively
without requiring specialized techniques like ST or IHC.

While additional validations will be required to ascertain some of our findings, our ap-
proach to morphomolecular signature discovery can seamlessly scale to more compounds, gene
targets, and species. In addition, joint efforts from the pharmaceutical industry and academia,
such as the BigPicture initiative69, will gather large cohorts of preclinical studies, which can be
harnessed as additional training data or validation. Furthermore, the integration of additional
clinical data, such as from the DrugMatrix10 and ToxCast70 programs, could help bridge the
translational gap between rodent studies and human toxicity. Finally, establishing community-
wide standards and infrastructure for structuring toxicological data for AI method incorporation
and foundation model development, such as through the eTRANSAFE71 consortia, will bring us
closer to translating AI methods into practical tools for drug and biomarker discovery. Overall,
our study lays the foundations for several promising avenues in AI-driven toxicology research
and preclinical drug safety assessment.
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Materials and Methods

Ethics statement

The study involves a retrospective examination of previously collected tissue samples of Rat-
tus Norvegicus liver sections, which are part of a public archive. Examination of the original
study’s documentation confirms that the experimental protocol was subject to an ethical review
and subsequently received approval from both the Ethics Review Committee for Animal Exper-
imentation at the National Institute of Health Sciences (NIHS) and the relevant contract research
organizations.

Study design

TG-GATEs protocol: Four contract research organizations conducted animal experiments on
male Crl:CD Sprague-Dawley (SD). Animals were allocated into groups of 20, each using a
computerized stratified random grouping method based on body weight34. Two types of dose
administration were conducted: single-dose and repeated-dose. In single-dose experiments,
groups of 20 animals were administered a compound, and then five animals were sacrificed 3,
6, 9, and 24 hours after administration. In repeated-dose experiments, groups of 20 animals
received a dose every day, and five animals were sacrificed 4, 8, 15, and 29 days after adminis-
tration. For each sample group (unique compound, dose, sacrifice time), three animals under-
went a toxicogenomic analysis with mRNA microarrays. Animals were not fasted before being
sacrificed. The compounds examined (as detailed in table S1) were chosen through literature
reviews and agreement among toxicologists from the pharmaceutical industry and the Japanese
government. In most compounds, three dose levels were tested with a dose ratio between the
low, middle, and high levels of 1:3:10.

Histopathology acquisition and annotation: All liver sections were stained with H&E (hema-
toxylin and eosin) and mounted on glass slides. Tissue sections were converted into digital
pathology images using a ScanScope AT scanner (Aperio Technologies Inc., CA, USA) at 20×
magnification (0.49 µm/px). The histopathology data from TG-GATEs include annotations that
detail the lesions observed in the slides. These annotations are unnormalized, with various stud-
ies employing differing terminologies and taxonomies to describe identical findings. In total,
66 different lesion types were identified across 23,136 liver sections. However, many of these
are either synonyms or more specific classifications of broader lesion categories. In our analy-
sis, we grouped related lesions into six lesions of interest: increased mitosis, necrosis, cellular
infiltration, bile duct proliferation, fatty change, and hypertrophy. A description of each lesion
is provided in table S4.
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Gene expression of in vivo rat studies: The raw transcriptomic data consists of microarrays
(Affymetrix Rat Genome 230 2.0 Array GeneChip) with 31,042 probes. All data followed
probe-wise normalization using log2 fold change with respect to a control group. Log2 fold
change quantifies the proportional difference, on a logarithmic scale, between the expression
levels of a particular probe under two conditions: a control group (on average 22 slides per
study in TG-GATEs) and a sample group (a defined set of compound, time and sacrifice). The
log2 fold change gene expression changes were not further normalized before processing by
our models. Each probe was mapped to a unique gene name identifier, resulting in 13,404 gene
expression measurements per sample. From there, we reduced the number of genes analyzed to
(1) discard genes unrelated to liver metabolism, drug administration, and toxicity, (2) simplify
training of the gene expression prediction model (GEESE), and (3) simplify the post-hoc anal-
ysis. Here, we selected genes based on two strategies to ensure the use of a biologically diverse
set. Firstly, we included the T1000 gene set36, a set of 1,000 genes responsive to chemical expo-
sures from which we retrieved 867 genes. Second, we used a data-driven approach, where we
computed the Pearson correlation between each measured gene expression and slide-level lesion
labels (as reported in TG-GATEs annotations) in the train studies. We then retained genes with
a Pearson correlation larger than a threshold set to 0.15. The threshold was decided arbitrar-
ily to include promising genes that may be morphologically expressed while keeping the total
number of genes analyzed around 1,500. The integration of genes from distinct methodologies
results in a consolidated subset of 1,536 gene targets.

Gene expression of in vitro human studies: In-vitro human experiments were conducted using
the Affymetrix human U133 Plus assay with 54,613 probes on primary human hepatocytes
(PHH) cell lines34, 72. This assay was conducted on a subset of 140 compounds with three dose
levels: low, medium, and high, followed by sample collection after 2h, 8h, and 24h.

Dataset split: To avoid compound-specific information leakage when training the gene expres-
sion regressor, we extracted 29 studies for testing (N=2,002 slides) and kept 127 studies from
8,232 pairs for training and validation. We further split training and validation slides to obtain
a train (N=6,585 slides) and validation set (N=1,647 slides). From the 6,585 samples in the
training set, 1,141 (17%) were annotated as containing one or multiple lesions: 154 with in-
creased mitosis (2.3%), 314 with necrosis (4.8%), 321 with cellular infiltration (4.9%), 54 with
bile duct proliferation (0.8%), 143 with fatty change (2.2%), and 526 with hypertrophy (8.0%).
From the 2,002 samples from the testing set, 364 samples were annotated as containing one or
multiple lesions: 53 with increased mitosis (2.6%), 150 with necrosis (7.5%), 116 with cellular
infiltration (5.7%), 21 with bile duct proliferation (1.0%), 47 with fatty change (2.3%), and 166
with hypertrophy (8.3%). The complete distribution of lesions in test studies is provided in
table S6.

Deep learning modeling
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All slides are preprocessed by first segmenting tissue regions and then tesselating the slide into
patches (see Tissue segmentation and patching). Then, we learn a vision encoder based on
self-supervised learning to derive a compressed representation of image patches (see iBOT pre-
training). The learned patch embeddings serve as input to the expression regressor (GEESE)
following the Multiple Instance Learning (MIL) paradigm38, 39 (see Gene expression regres-
sor). In addition, patch-level annotations are used to fine-tune the patch encoder and extract
pseudo-lesion labels (see Lesion classifier).

Tissue segmentation and patching Before MIL training, each slide was segmented using the
CLAM toolbox39 that includes modules for automatic detection of tissue vs. background. After
segmentation, non-overlapping 256 × 256-pixel patches were extracted at 20× magnification
(0.5 µm/px) and then resized to 224×244 pixels image patches.

iBOT pretraining We employed the iBOT framework46, a state-of-the-art approach in self-
supervised learning for building compressed morphological descriptors (patch embeddings)
of image patches. iBOT employs a student-teacher knowledge distillation strategy designed
for pretraining Vision Transformer (ViT)45. iBOT uses two main objectives: self-distillation
loss47, 73, which aims to align the representations of a student and teacher network, and masked
image modeling loss74, which aims to reconstruct the original image from partially observed
inputs. We trained a ViT-Base model that yields 768-dimensional embeddings on 15 million
patches extracted from 46,734 WSIs. We trained the network for 1,176,640 iterations (or 80
epochs). The specific hyperparameters used for training are listed in table S15.

Gene expression regressor (GEESE) We cast gene expression prediction as a weakly super-
vised regression task, where we learn a pooling function to aggregate the iBOT patch embed-
dings into a slide-level gene expression prediction. We propose the gene expression regressor,
denoted as GEESE, that enables joint derivation of patch and slide prediction scores using slide-
level supervision only. Namely, each patch embedding, denoted as hi ∈ Rd, is passed to a patch
regressor network f(.). Then, the slide-level regressor is built by taking the arithmetic mean
over all patch-level regression scores, resulting in a slide prediction. Formally, we define it as:

s =
1

N

N∑
i=1

si =
1

N

N∑
i=1

f(hi), (1)

where s ∈ RNG denotes the slide-level log2 fold change gene expression scores. As the slide
prediction is directly defined as the mean of the individual patch contributions, denoted as
si ∈ RNG , the gene-wise patch importance can be readily obtained without the need for an-
alyzing attention scores39 or gradient attribution33, 75. The resulting patch attribution si can,
therefore, be seen as a pseudo-spatially-resolved gene expression, where the resolution is given
by the patch resolution (for the patch of 256×256 pixels at 0.5µm/px, the resolution is 128µm).
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Here, f(.) is implemented using a 4-layer MLP patch regressor with LayerNorm, dropout (0.1)
between all layers, and GELU activation (see table S16). This formulation has connections
with AdditiveMIL76.

Lesion classifier We use the iBOT model as a foundation for classifying six common liver le-
sions at patch-level (each patch is 256×256 pixels or 128µm). As the TG-GATEs cohort only
includes slide-level labels, we curated a set of patch annotations. To this end, we employed four
different approaches: 1) Public annotations We used publicly available annotations provided
by Bayer Pharmaceuticals and Aignostics GmbH https://zenodo.org/record/7541930. These
annotations consist of polygonal annotations within 230 whole slide images from TG-GATEs.
These polygonal annotations were subsequently converted into patch annotations, with patches
retained based on their overlap with annotations. 2) Human-in-the-loop annotation Semi-
annotated human-in-the-loop annotations were generated using a weakly supervised slide clas-
sification system. A subsequent manual review led to the selection of true positive examples. 3)
Normal patches To include normal patches, we extracted ten random patches from lesion-free
slides, each thoroughly examined to exclude small lesions such as mitosis or single-cell necro-
sis. 4) Manual annotation Human annotations were performed using the QuPath software77 to
extract missing lesions such as fatty change. The process yielded 24,631 patch annotations with
lesions extracted from 3,458 slides, and 13,888 normal patch annotations from 3,531 slides (see
table S3).

The pretrained iBOT vision encoder was fine-tuned on these annotations and trained to
minimize classification loss, defined as a multilabel binary cross entropy objective on all six
classes. Note that each patch can either be normal (no lesion detected) or include one or multi-
ple lesions. Here, we used a class-stratified 80/20% train/validation split. The network was fine-
tuned for 20 epochs using the AdamW optimizer with an initial learning rate of 4e-4 and lay-
erwise learning decay of 0.65. Basic patch augmentations were performed during fine-tuning,
based on random color jittering, mirroring, and rotation. The lesion classifier provides the like-
lihood that each patch contains one of the six lesions (expressed as a probability post-Sigmoid
activation). To ensure that we only include positive patches, we use conservative classification
thresholds set to 0.95 for cellular infiltration, 0.9 for necrosis, 0.9 for bile duct proliferation,
0.99 for fatty change, and 0.9 for increased mitosis. Each threshold was determined using an
independent set of patches for each lesion.

Post-hoc morphomolecular signature analysis

Using GEESE, we inferred the patch-level pseudo-expression on the 2,002 slides from TG-
GATEs test set. We proceeded analogously to extract patch-level lesion prediction using our
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morphological lesion classifier. Each patch becomes assigned to 1,536 gene expression scores
(expressed as a log2 fold change), and a single or multiple morphological labels, such as necro-
sis, cellular infiltration and fatty change, or normal if no lesion was detected. In total, this
operation yielded 25 million lesion-expression pairs. We used all pairs for the downstream
quantitative analyses.

Gene identification We present the detailed steps for the post-hoc analysis of necrosis. A sim-
ilar process is conducted for all other five lesions. We start by selecting compounds associated
with necrosis (for instance, we selected 4 out of 29 studies from the TG-GATEs test set, see
table S5). Out of the 25 million lesion-expression pairs, we subsequently selected patches that
contain necrosis in the selected studies, yielding 53,542 patches (fig. S13). Using the corre-
sponding patch-level expression of the selected patches, we extract the most upregulated and
the most downregulated genes out of the 1,536 gene targets. Specifically, we compute the aver-
age patch expression per selected compound and further average across all selected compounds.
We then extract genes with a mean expression above 1 log2 fold change (upregulated genes),
and with a mean expression below -1 (downregulated genes). We proceed similarly for other le-
sions using a threshold of -0.5 and 0.5 (instead of 1 and -1) for increased mitosis, fatty change,
cellular infiltration, and hypertrophy. These thresholds were set arbitrarily so that a pool of
genes could be identified for further analysis and validation. Varying this threshold controls the
number of genes used for additional investigation.

We refine the gene selection as a final step to focus on genes that are only differen-
tially expressed for a single lesion (e.g., CCNA2 is only upregulated in the presence of mitosis,
whereas ABCC3 is associated with multiple lesions, such as necrosis, cellular infiltration, and
fatty change). A gene is selected as specific to necrosis if it satisfies the following three con-
ditions simultaneously: (1) no other lesion is more differentially expressed than necrosis, (2)
its absolute average expression across the five other lesions is at least two times lower, and
(3) the absolute Pearson correlation between measured and predicted slide-level gene expres-
sions, for slides identified as containing necrosis, is above 0.3. Formally, we express these three
conditions as,

Condition-(1) : |GeneExpressionnecrosis| > c×max(|GeneExpressionother lesions|) (2)

Condition-(2) : |GeneExpressionnecrosis| > 2×mean(|GeneExpressionother lesions|) (3)
Condition-(3) : |Pearsonmeasured–predicted| > 0.3 (4)

where the constant c is set to 1.5. Intuitively, Condition-(1) screens an initial subset of genes
associated with necrosis. Condition-(2) serves to refine this subset, where the constant c is set
arbitrarily to 2 to identify genes with the largest correlation to necrosis while removing those
primarily indicative of generic toxic exposure effects. Condition-(3) ensures that only the genes
that can be satisfactorily predicted from tissue morphology, with GEESE, are retained. We
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follow the same process for other lesions besides cellular infiltration, where the first condition is
relaxed such that no other lesion is more differentially expressed than 75% of its value (c=0.75).
This relaxation reflects the fact that cellular infiltration often co-appears with necrotic patches
and bile duct proliferation. For the same reason, in the analysis of bile duct proliferation and
necrosis, we exclude cellular infiltration from Condition-(1) and Condition-(2).

Pathway analysis To validate our findings, we identify biological pathways related to previ-
ously identified genes. The goal of this analysis is two-fold: (1) confirm the biological relevance
of the identified molecular signatures and (2) identify new biomarkers that have previously been
poorly explored and characterized. To this end, we utilized the Rat Genome Database11, 55,
a state-of-the-art public resource for multi-species pathway enrichment analysis that includes
both rats and human pathways. Specifically, we employed the Multi-Ontology Enrichment Tool,
MOET, available within the Rat Genome Database to identify the most relevant biological pro-
cesses based on the Gene Ontology database. For this analysis, overlaps were computed on the
child terms of the term biological process (GO:0008150), which include 20,292 process sets for
rats and 19,761 process sets for humans. This allowed the identification of biological pathways
in which the genes from each lesion’s gene list were most involved.

Evaluation and implementation

Training details All weakly supervised expression regression models are trained using the
AdamW optimizer with an initial learning rate of 1e-04, a mean-squared error objective, a
maximum of 40 epochs with early stopping (patience set to 10) with respect to the validation
loss.

Metrics GEESE predictive performance is evaluated using the Pearson correlation, Area under
the ROC Curve (AUC), log2 fold change, R2, and Mean Squared Error.

Pearson correlation describes the linear relationship between two sets of scalars. It varies
between -1 and +1, with 0 implying no correlation. The corresponding p-value (2-tailed p-
value) represents the two-sided null hypothesis of non-correlation. We employ the pearsonr
implementation from the Python package Scipy version 1.13.0.

AUC is the area under the receiver operating curve plotting the true positive rate against the false
positive rate as the classification threshold is varied. This metric is mainly used for classification
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tasks but can be adapted for regression. Formally, we define AUC for regression as,

AUC =
1

N

n∑
i=1

n∑
j=i+1

(
1{ytrue[i] ̸=ytrue[j]}

(
1{sign(ytrue[i]−ytrue[j])=sign(ypred[i]−ypred[j])} +

1

2
· 1{ypred[i]=ypred[j]}

))
(5)

where ytrue ∈ Rn and ypred ∈ Rn are vectors with the true and predicted regression values, N
is the number of valid pairs (i,j).

Log2 fold change is a measurement commonly used to quantify the relative change between
two experimental conditions. It is calculated by taking the base 2 logarithm of the ratio between
the percentage of a certain lesion under some conditions (such as high dose, sacrifice time of 29
days) and the percentage of that same lesion in the control group.

R2 is a metric used to assess the quality of a regression model, where 1 indicates perfect re-
gression, and 0 random regression. R2 measures the goodness of the fit and represents the
proportion of variance in the dependent variable that is explained by the model. We employ the
metrics.r2 score implementation from the python package scikit-learn version 1.2.1.

Mean Squared Error (Standardized) is computing the average of the squares of the errors
and is used to quantify how far model predictions are from the actual values. Before com-
puting the mean square error, the gene expression measured and predicted was standardized
(subtracted by the mean and divided by the standard deviation of the gene expression mea-
sured). This standardization is made to make this metric consistent across genes. We employ
the metrics.mean squared error implementation from the python package scikit-learn version
1.2.1.

Statistical analysis The reported error bars correspond to 95% confidence intervals derived
using non-parametric bootstrapping using 100 bootstrap iterations.

Computing hardware and software.

In this study, all coding was conducted using Python version 3.9. The neural networks
were implemented with PyTorch version 2.1.0 with CUDA version 11.7. For whole slide image
(WSI) pre-processing and manipulation, we utilized OpenSlide version 4.3.1 and openslide-
python version 1.2.0. Metrics were implemented using Scikit-learn version 1.2.1. and Scipy
version 1.13.0 Data processing tasks were performed using Pandas version 1.4.2, Numpy ver-
sion 1.21.5, Pillow version 9.3.0 and OpenCV-python version 3.3.1. Matplotlib version 3.7 was
employed for generating plots. The training of the patch encoder was based on the original iBOT
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implementation, which is available at 1. The pretraining of iBOT was carried out on 8 × 80GB
NVIDIA A100 GPUs, configured for multi-GPU training using distributed data parallelism.
Downstream experiments were conducted on 3 × 24GB NVIDIA 3090 GPUs. Slide annotation
and visualization were done using QuPath version 0.4.3. Finally, rat microarray probes were
converted using SynGoPortal, accessible at 2, and human microarray probes were converted
using the python API of PythonBio, version 1.83. The viewer used for the online demo is based
on OpenSeadragon (version 4.1.0) and JavaScript (version ES13). The GO processes for rats
and humans were queried using the MOET tool (Multi Ontology Enrichment Tool) from the
Rat Genome Database accessible at 3. Genes linked to chemical and drug-induced liver injury
were retrieved using the Comparative Toxicology Database accessible at 4.

Data availability

The TG-GATEs data, which includes histopathology whole-slide images and labels, is openly
accessible on the National Institute of Biomedical Innovation portal at 5. A subset of 230 TG-
GATEs with pixel annotations can be freely accessed from Zenodo at 6. Patch annotations, as
well as pseudo-patch annotations generated by the fine-tuned patch encoder, are available on
a case-by-case basis, depending on specific needs. The microarray data, part of The Japanese
Toxicogenomics Project, were obtained from the Toxigates portal, accessible at 7.

Code availability

Upon publication, the authors will release code and pre-trained models for extracting patch-
level embeddings and lesion classification, performing weakly-supervised gene expression re-
gression, and analyzing gene expression predictions and lesion predictions.
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Figure S1: GEESE model architecture and performance. a. Overview of the gene ex-
pression regressor (GEESE) architecture, which can predict expression changes (log2 fold
change) from an input tissue section (a whole-slide image). Patch attribution enables deriv-
ing a pseudo-spatially-resolve expression map, where each patch becomes associated with a
pseudo-expression profile for all predicted genes (n=1,536). b. Slide-level gene expression
prediction performance evaluated using Pearson correlation and macro-AUC regression on TG-
GATEs test set (N=2,002 slides). We report predictive performance for the top 10 predicted
genes, the average predictive performance across all genes (n=1,536), and the top 100 best-
predicted. Error bars represent 95% confidence intervals using non-parametric bootstrapping
(100 iterations). c. Expression prediction of TNFRSF12A and SLC10A1 genes on compounds
thioacetamide and methylene dianiline. Each dot represents a sample. Samples without lesions
are clustered around the origin (small log2 fold change), while samples with lesions are either
downregulated (SLC10A1) or upregulated (TNFRSF12A). P-value derived from testing the two-
sided null hypothesis of non-correlation.
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Figure S2: Pseudo spatially-resolved gene expression and visualization of necrosis. a. H&E
liver section after exposure to bromobenzene (left). Overlay of patch-level necrosis prediction.
Predictions below 90% confidence are represented in blue and high-probability predictions are
represented in red (center-left). Pseudo-spatially-resolved gene expression heatmaps of genes
TNFRSF12A (center-right) and ATF3 (right). b. Additional examples of necrotic patches from
four studies (thioacetamide, ethionamide, methylene dianiline, and methyldopa) highlight sim-
ilar upregulation of TNFRSF12A, ATF3, DDIT3, MAFF and IFRD1, and downregulation of
NREP.
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Figure S3: Pseudo spatially-resolved expression and visualization of mitosis. a. H&E liver
section after exposure to danazol (left). Overlay of patch-level bile duct proliferation prediction.
Predictions below 20% confidence are represented in blue, and high-probability predictions are
represented in red (center-left). Pseudo-spatially-resolved gene expression heatmaps of CCNA2
and CCNB1 (center-right and right). b. Additional examples of patches with mitosis from
four studies (ethionamide, griseofulvin, methyltestosterone, and hexachlorobenzene) highlight
similar upregulation of CCNA2 and CCNB1, CDKN3, KNSTRN, ARHGAP11A and HMMR.
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Figure S4: Pseudo spatially-resolved expression and visualization of cellular infiltration.
a. H&E liver section after exposure to bromobenzene (left). Overlay of patch-level cellular
infiltration prediction. Predictions below 50% confidence are represented in blue and high-
probability predictions are represented in red (center-left). Pseudo-spatially-resolved gene ex-
pression heatmaps of CXCL10 and S100A4 (center-right and right). b. Additional examples
of patches with cellular infiltration from four other studies (thioacetamide, methylene diani-
line, ethionamide, and cyclophosphamide) highlight similar upregulation of CXCL10, S100A4,
CXCL1, BCL2A1, EVI2A and FILIP1L.
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Figure S5: Pseudo spatially-resolved expression and visualization of bile duct prolifera-
tion. a. H&E liver section after exposure to methylene dianiline (left). Overlay of patch-level
bile duct proliferation prediction. Predictions below 50% confidence are represented in blue
and high-probability predictions are represented in red (center-left). Pseudo-spatially-resolved
gene expression heatmaps of SERPINA7 and CLDN7 (center-right and right). b. Additional
examples of patches with bile duct proliferation from four other studies (thioacetamide, mefe-
namic acid, griseofulvin and flutamide) highlight similar upregulation of SERPINA7, CLDN7,
BEX4, CDH13 and CD24, and downregulation of SERPINA4.
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Figure S6: Pseudo spatially-resolved expression and visualization of fatty change. a. H&E
liver section after exposure to ethionamide (left). Overlay of patch-level fatty change prediction.
Predictions below 50% confidence are represented in blue and high-probability predictions are
represented in red (center-left). Pseudo-spatially-resolved gene expression heatmaps of GSTP1
and ACOT2 (center-right and right). b. Additional examples of patches with fatty change from
four other studies (cycloheximide, diazepam, puromycin aminonucleoside and hexachloroben-
zene) highlight similar upregulation of GSTP1, ACOT2, ACOT1, HID1 and CYP1A1 and down-
regulation of SLC6A6.
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Figure S7: Pseudo spatially-resolved expression and visualization of hypertrophy. a. H&E
liver section after exposure to hexachlorobenzene (left). Overlay of patch-level hypertrophy pre-
diction. Predictions below 50% confidence are represented in blue and high-probability predic-
tions are represented in red (center-left). Pseudo-spatially-resolved gene expression heatmaps
of ALDHA1A and GSTA3 (center-right and right). b. Additional examples of patches with
hypertrophy from four other studies (hydroxyzine, flutamide, thioacetamide, and diazepam)
highlight similar upregulation of GSTA3, ALDH1A1, ADRG2 and RGD1559459, and downreg-
ulation of PLAVP and LOX.
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Figure S8: Morphomolecular analysis of cellular infiltration in methylene dianiline. a. For
each slide-expression pair, we correlate the percentage of cellular infiltration predicted by the
lesion classifier with the measured gene expression. Genes with a high correlation between mea-
sured expression and lesion size define morphomolecular signatures associated with the com-
pound. b. Correlation between the estimated percentage of the slide containing cellular infiltra-
tion and the gene expression of LGALS3 and CXCL16 (measured with microarray and predicted
with GEESE). P-value derived from testing the two-sided null hypothesis of non-correlation. c.
Distribution of patch-level expression for patches predicted as normal (n=991,268) and patches
predicted as containing cellular infiltration (n=8,297).
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Figure S9: Morphomolecular analysis of bile duct proliferation detection in methylene
dianiline. a. For each slide-expression pair, we correlate the percentage of bile duct prolifer-
ation predicted by the lesion classifier with the measured gene expression. Genes with a high
correlation between measured expression and lesion size define morphomolecular signatures
associated with the compound. b. Correlation between the estimated percentage of the slide
containing bile duct proliferation and the gene expression of CD24 and CLDN7 (measured with
microarray and predicted with GEESE). P-value derived from testing the two-sided null hy-
pothesis of non-correlation. c. Distribution of patch-level expression for patches predicted as
normal (n=991,268) and patches predicted as containing bile duct proliferation (n=4,216).
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Figure S10: Morphomolecular analysis of fatty change detection in ethionamide. a. For
each slide-expression pair, we correlate the percentage of fatty change predicted by the lesion
classifier with the measured gene expression. Genes with a high correlation between measured
expression and lesion size define morphomolecular signatures associated with the compound.
b. Correlation between the estimated percentage of the slide containing fatty change and the
gene expression of ACOT1 and GSTP1 (measured with microarray and predicted with GEESE).
P-value derived from testing the two-sided null hypothesis of non-correlation. c. Distribution
of patch-level expression for patches predicted as normal (n=970,457) and patches predicted as
containing fatty change (n=38,503).
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Figure S11: Morphomolecular analysis of hypertrophy detection in hexachlorobenzene.
a. For each slide-expression pair, we correlate the percentage of hypertrophy predicted by the
lesion classifier with the measured gene expression. Genes with a high correlation between
measured expression and lesion size define morphomolecular signatures associated with the
compound. b. Correlation between the estimated percentage of the slide containing hypertrophy
and the gene expression of GSTA3 and ALDH1A1 (measured with microarray and predicted
with GEESE). P-value derived from testing the two-sided null hypothesis of non-correlation. c.
Distribution of patch-level expression for patches predicted as normal (n=838,359) and patches
predicted as containing hypertrophy (n=534,787).
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Figure S12: Caption next page.
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Figure S12: Cross-study analysis of the molecular signature of mitosis. a. Average pre-
dicted gene expression of patches with mitosis in eight different studies from TG-GATEs test
set. Zoom of the top 100 upregulated (top, red) and downregulated genes (bottom, blue). Genes
are sorted in decreasing order by their absolute mean gene expression across all considered stud-
ies. b. Top 20 biological pathways (ranked by highest p-values) of the 51 upregulated genes
identified as specific to increased mitosis (table S9). The analysis was conducted using the
rat genome database (RGD). Identified pathways, including cell cycle, mitotic nuclear division,
and DNA replication, are highly relevant to mitosis. Most of the genes found, such as CCNA2,
CCNB1, and CCNB2 from the cyclin family, are known to play crucial roles in cell division
and reproduction pathways are closely related to mitosis. Other genes, such as HMMR (in-
volved in microtubule stabilization) and ARHGAP11A (associated with Rho GTPase signaling),
demonstrate a less direct linkage but are still involved in related processes such as cytoskele-
tal organization. A lower p-value, obtained using hypergeometric distribution test, signifies a
higher degree of over-representation.
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Figure S13: Cross-study analysis of the molecular signature of necrosis. a. Average pre-
dicted gene expression of patches with necrosis in four different studies from TG-GATEs test
set. Zoom of the top 100 upregulated (top, red) and downregulated genes (bottom, blue). Genes
are sorted in decreasing order by their absolute mean gene expression across all considered stud-
ies. b. Top 20 biological pathways (ranked by highest p-values) of the 33 upregulated genes
identified as specific to necrosis (left), and the top 20 biological pathways (ranked by highest
p-values) of the 33 downregulated genes identified as specific to necrosis (right) (table S10).
The analysis was conducted using the rat genome database (RGD). Most identified biological
pathways, including the apoptotic process, cell death, and cellular response to stress, are highly
relevant to cellular necrosis. We observe known genes such as ATF3 (known for modulating
the stress response), TNFRSF12A (involved in inflammation and cell death), HMOX1 (associ-
ated with the oxidative stress response), and MYC (playing roles in the cell cycle, apoptosis,
and DNA damage response). Other genes like DDIT3, TRIB3, FOSL1, and CXCL2 are also
upregulated and associated with processes like response to oxidative stress, cellular response to
unfolded protein, and cellular response to chemical stress. Conversely, genes such as ACSS2,
ACACA, CYP7A1, and AVPR1A are downregulated and linked to small molecule biosynthetic
processes, lipid biosynthetic processes, and fatty acid metabolic processes. Other genes like
MAFF (a gene implicated in transcriptional regulation) or NREP (a gene known for its in-
volvement in neural development and tissue repair) demonstrate a less known direct linkage to
necrosis despite showing high correlation with necrosis in our analysis. A lower p-value, ob-
tained using hypergeometric distribution test, signifies a higher degree of over-representation.
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Figure S14: Cross-study analysis of the molecular signature of cellular infiltration. a.
Average predicted gene expression of patches with cellular infiltration in four different studies
from TG-GATEs test set. Zoom of the top 100 upregulated (top, red) and downregulated genes
(bottom, blue). Genes are sorted in decreasing order by their absolute mean gene expression
across all considered studies. b. Top 20 biological pathways (ranked by highest p-values) of
the 27 upregulated genes identified as specific to cellular infiltration (table S11). Analysis was
conducted using the rat genome database (RGD). Genes found such as CXCL1, CXCL10, noted
for their roles in directing leukocytes to the site of infiltration, BCL2A1, a gene known for
its role in immunity response and the anti-apoptotic role and S100A4, involved in modulating
the inflammatory response and attracting leukocytes have a biological pathway with links to
cellular infiltration. Other genes such as FILIP1L and EVI2A (gene not currently linked to any
specific biological processes in humans and rats according to Gene Ontology Biological Process
annotations) demonstrate a less direct linkage to cellular infiltration. A lower p-value, obtained
using hypergeometric distribution test, signifies a higher degree of over-representation.
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Figure S15: Cross-study analysis of the molecular signature of bile duct proliferation. a.
Average predicted gene expression of patches with cbile duct proliferation in two studies from
TG-GATEs test set. Zoom of the top 100 upregulated (top, red) and downregulated genes (bot-
tom, blue). Genes are sorted in decreasing order by their absolute mean gene expression across
all considered studies. b. Top 15 biological pathways (highest p-values) of the 17 upregulated
genes identified as specific to bile duct proliferation (table S12). Analysis was conducted using
the rat genome database (RGD). Several genes identified are involved in biological pathways
relevant to bile duct proliferation, such as epithelial cell proliferation, extracellular matrix orga-
nization, and response to wounding. For instance, genes from the SERPINA family (SERPINA7
and SERPINA4), known for their roles in protease inhibition, may impact inflammation and tis-
sue remodeling processes associated with bile duct proliferation. Other genes like LGALS2,
involved in cell-cell adhesion, protein-carbohydrate interactions, and immune response mod-
ulation, or CDH13, known for its role in cell adhesion, also show relevance to the molecular
mechanisms underlying bile duct expression. A lower p-value, obtained using hypergeometric
distribution test, signifies a higher degree of over-representation.
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Figure S16: Cross-study analysis of the molecular signature of fatty change. a. Average
predicted gene expression of patches with fatty change in four different studies from TG-GATEs
test set. Zoom of the top 100 upregulated (top, red) and downregulated genes (bottom, blue).
Genes are sorted in decreasing order by their absolute mean gene expression across all consid-
ered studies. b. Top 10 biological pathways (ranked by highest p-values) linked to the 10 upreg-
ulated genes identified as specific to fatty change (table S13). Analysis was conducted using the
rat genome database (RGD). Some identified pathways, including fatty acid metabolic process,
lipid metabolic process, and response to oxidative stress, support the relevance of the identified
genes to fatty change. Genes such as ACOT1 and ACOT2 from the ACOT family, which are
involved in the hydrolysis of acyl-CoA thioester compounds, a key process in lipid metabolism
are highly relevant to fatty change. Additionally, GSTP1, a gene implicated in detoxification
and the response to oxidative stress, is also upregulated in fatty change. A lower p-value, ob-
tained using hypergeometric distribution test, signifies a higher degree of over-representation.

50

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.19.604355doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.19.604355
http://creativecommons.org/licenses/by-nc/4.0/


Figure S17: Caption next page
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Figure S17: Cross-study analysis of the molecular signature of hypertrophy. a. Average pre-
dicted gene expression of patches with hypertrophy in eleven different studies from TG-GATEs
test set. Zoom of the top 100 upregulated (top, red) and downregulated genes (bottom, blue).
Genes are sorted in decreasing order by their absolute mean gene expression across all consid-
ered studies. b. Top 20 biological pathways (ranked by highest p-values) linked to the 18 genes
upregulated genes identified as specific to hypertrophy (table S14). Analysis was conducted us-
ing the rat genome database (RGD). Genes involved in managing increased metabolic demands,
such as ACSM2, VNN1, and ME1, are relevant in different aspects of metabolism—fatty acid,
lipid, and glucose metabolism, respectively. Genes like GSTA3, ALDH1A1, and ALDH1A7
are involved in detoxifying oxidative and aldehyde by-products, which are more prevalent as
metabolic activities intensify in hypertrophic cells. The enrichment of pathways such as fatty
acid metabolic process, oxidation-reduction process, and extracellular matrix organization fur-
ther supports the relevance of these genes to the cellular adaptations occurring during hyper-
trophy. Additionally, LOX’s role in collagen synthesis and extracellular matrix assembly is
necessary for the structural adaptation of tissues undergoing hypertrophy. A lower p-value, ob-
tained using hypergeometric distribution test, signifies a higher degree of over-representation.
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Figure S18: Translation of necrosis genetic biomarkers to human in vitro primary hu-
man hepatocytes cell lines. Dose-response relationship of six necrosis-inducing selected com-
pounds of in vitro human cell lines at three different time points. Genes tested (ATF3, TRIB3,
and MAFF) were identified as connected to necrosis in the in vivo rat experiments.
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Name Number of slides Number of microarrays Split

Labetalol 155 71 Train/Val
Glibenclamide 159 71 Train/Val
Methyltestosterone 160 72 Test
Griseofulvin 160 72 Test
Tetracycline 160 72 Train/Val
Perhexiline 160 72 Train/Val
Flutamide 160 72 Test
Lomustine 160 72 Train/Val
Azathioprine 157 71 Train/Val
Methimazole 160 72 Train/Val
Monocrotaline 154 69 Train/Val
Pemoline 159 72 Train/Val
Chlormezanone 159 71 Train/Val
Metformin 160 72 Test
Ethinylestradiol 159 71 Train/Val
Tamoxifen 160 72 Train/Val
Methyldopa 160 72 Test
Vitamin a 158 72 Train/Val
Tacrine 148 65 Train/Val
Ciprofloxacin 160 72 Train/Val
Chloramphenicol 160 72 Train/Val
Nitrofurazone 157 72 Train/Val
Imipramine 159 72 Train/Val
Moxisylyte 160 72 Train/Val
Iproniazid 160 72 Train/Val
Amitriptyline 158 72 Train/Val
Hydroxyzine 160 72 Test
Ibuprofen 157 71 Train/Val
Mefenamic acid 158 72 Test
Furosemide 158 72 Train/Val
Fenofibrate 160 72 Train/Val
Chlorpropamide 160 72 Train/Val
Famotidine 160 72 Train/Val
Nifedipine 160 72 Train/Val
Chlorpheniramine 160 72 Train/Val
Diltiazem 159 72 Train/Val
Quinidine 159 72 Train/Val
Naproxen 153 69 Train/Val
Nicotinic acid 159 72 Train/Val
Ranitidine 160 72 Train/Val

Table S1: Overview of TG-GATEs compounds. For each compound, we report the number
of slides, microarrays (also corresponding to the number of pairs), and whether the study was
used for training/validation or testing. 53
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Name Number of slides Number of microarrays Split

Erythromycin ethylsuccinate 159 72 Train/Val
Tannic acid 158 72 Train/Val
Caffeine 160 72 Train/Val
Captopril 159 72 Train/Val
Clofibrate 160 72 Train/Val
Naphthyl isothiocyanate 160 72 Train/Val
Enalapril 160 72 Train/Val
Phenobarbital 158 72 Train/Val
Allyl alcohol 160 72 Train/Val
Rifampicin 160 72 Train/Val
Carbon tetrachloride 225 72 Train/Val
Phenylbutazone 160 72 Train/Val
Isoniazid 304 72 Test
Acetaminophen 269 74 Train/Val
Indomethacin 153 69 Train/Val
Omeprazole 160 72 Train/Val
Thioacetamide 159 72 Test
Ethionine 160 72 Train/Val
Carbamazepine 160 72 Train/Val
Chlorpromazine 139 60 Train/Val
Coumarin 160 72 Train/Val
Allopurinol 157 72 Train/Val
Diclofenac 160 72 Train/Val
Wy-14643 160 72 Train/Val
Gemfibrozil 160 72 Train/Val
Nitrofurantoin 160 72 Train/Val
Bromobenzene 160 72 Test
Amiodarone 159 72 Train/Val
Sulfasalazine 160 72 Train/Val
Adapin 140 60 Train/Val
Cimetidine 160 72 Train/Val
Cyclophosphamide 160 72 Test
Phenytoin 160 72 Train/Val
Valproic acid 160 72 Train/Val
Ketoconazole 144 66 Train/Val
Ethambutol 158 72 Train/Val
Papaverine 159 72 Train/Val
Penicillamine 160 72 Train/Val
Disopyramide 159 72 Train/Val
Sulindac 156 72 Train/Val

Table S1: Continuation.
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Name Number of slides Number of microarrays Split

Triamterene 160 72 Train/Val
Mexiletine 159 72 Test
Tolbutamide 159 72 Train/Val
Sulpiride 159 72 Train/Val
Colchicine 159 72 Train/Val
Acarbose 160 72 Train/Val
Triazolam 160 72 Train/Val
Simvastatin 158 72 Train/Val
Clomipramine 160 72 Train/Val
Ajmaline 160 72 Train/Val
Trimethadione 159 72 Train/Val
Dantrolene 160 72 Train/Val
Terbinafine 160 72 Train/Val
Bendazac 159 72 Train/Val
Meloxicam 151 68 Train/Val
Benziodarone 160 72 Train/Val
Lornoxicam 151 69 Train/Val
Etoposide 159 72 Train/Val
Tiopronin 160 72 Train/Val
Ethionamide 153 69 Test
Methapyrilene 79 36 Train/Val
Nimesulide 158 72 Train/Val
Disulfiram 159 72 Train/Val
Ethanol 160 72 Train/Val
Aspirin 160 72 Train/Val
Promethazine 160 72 Train/Val
Phenacetin 160 72 Test
Bucetin 160 72 Train/Val
Chlormadinone 160 72 Train/Val
Danazol 160 72 Test
Phenylanthranilic acid 151 71 Train/Val
Acetamidofluorene 159 75 Train/Val
Cisplatin 156 70 Test
Benzbromarone 157 72 Train/Val
Carboplatin 160 72 Test
Nitrosodiethylamine 151 67 Train/Val
Bromoethylamine 160 72 Test
Ticlopidine 159 71 Train/Val
Cyclosporine a 160 72 Test
Cephalothin 160 72 Test

Table S1: Continuation.

55

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.19.604355doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.19.604355
http://creativecommons.org/licenses/by-nc/4.0/


Name Number of slides Number of microarrays Split

Puromycin aminonucleoside 149 66 Test
Gentamicin 155 72 Test
Doxorubicin 157 71 Train/Val
Theophylline 155 71 Test
Acetazolamide 160 72 Test
Cycloheximide 77 35 Test
Tunicamycin 80 36 Test
Phalloidin 60 18 Train/Val
Galactosamine 79 35 Train/Val
Phorone 80 36 Train/Val
Tnfa 80 36 Train/Val
Buthionine sulfoximine 80 36 Train/Val
Diethyl maleate 80 36 Train/Val
Diazepam 160 72 Test
Hexachlorobenzene 160 72 Test
Rosiglitazone maleate 160 72 Train/Val
Rotenone 159 72 Train/Val
Dexamethasone 80 36 Train/Val
Fluoxetine hydrochloride 160 72 Train/Val
Methylene dianiline 159 71 Test
Desmopressin acetate 160 72 Train/Val
Butylated hydroxyanisole 160 72 Train/Val
Amphotericin b 132 57 Train/Val
2-nitrofluorene 20 9 Train/Val
N-nitrosomorpholine 20 9 Train/Val
N-methyl-n-nitrosourea 20 9 Train/Val
Aflatoxin b1 20 11 Train/Val
Acetamide 80 36 Train/Val
Propranolol 160 72 Train/Val
Bortezomib 72 31 Train/Val
3-methylcholanthrene 80 36 Train/Val
Gefitinib 80 36 Train/Val
Propylthiouracil 160 72 Train/Val
Haloperidol 39 11 Train/Val
Fluphenazine 159 72 Train/Val
Thioridazine 31 19 Train/Val

Table S1: Continuation.
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Gene Pearson correlation AUC R2 MSE

STAC3 0.762 0.695 0.546 0.454
OAT 0.757 0.688 0.572 0.428
DHTKD1 0.722 0.643 0.279 0.721
TNFRSF12A 0.722 0.608 0.510 0.490
KLF6 0.717 0.632 0.486 0.514
RNASE4 0.715 0.636 0.464 0.536
LOC100911177 0.714 0.645 0.498 0.502
CXCL12 0.711 0.668 0.450 0.550
S100A10 0.706 0.629 0.487 0.513
CAR3 0.698 0.676 0.456 0.544
LOC100912041 0.696 0.616 0.470 0.530
KRT18 0.695 0.669 0.460 0.540
FAM210B 0.688 0.635 0.416 0.584
SLC10A1 0.688 0.595 0.232 0.768
CPQ 0.685 0.614 0.429 0.571
ATRN 0.683 0.630 0.422 0.578
ABCC6 0.683 0.650 0.450 0.550
ANG 0.680 0.637 0.363 0.637
ALDH1A1 0.680 0.706 0.392 0.608
BMF 0.673 0.673 0.383 0.617
ODC1 0.664 0.675 0.394 0.606
GSTA3 0.659 0.693 0.376 0.624
SERPINA4 0.659 0.617 0.367 0.633
IFRD1 0.658 0.631 0.391 0.609
APOA4 0.657 0.634 0.372 0.628
TIMP1 0.657 0.587 0.385 0.615
NXPE4 0.655 0.606 0.349 0.651
ACOT9 0.655 0.618 0.375 0.625
DPYS 0.652 0.624 0.268 0.732
RIOK3 0.651 0.604 0.406 0.594
APP 0.651 0.621 0.371 0.629
AKR7A3 0.651 0.681 0.364 0.636
CLCN4 0.650 0.622 0.398 0.602
CYP2D3 0.648 0.610 0.367 0.633
SDC2 0.647 0.621 0.316 0.684
SLC19A2 0.645 0.654 0.385 0.615
BTG2 0.645 0.634 0.410 0.590
CDO1 0.644 0.628 0.293 0.707
NEURL3 0.642 0.610 0.390 0.610
BBOX1 0.642 0.643 0.111 0.889
NOX4 0.639 0.690 0.384 0.616
GPLD1 0.638 0.638 0.377 0.623
CCDC86 0.637 0.637 0.380 0.620
AIMP2 0.637 0.644 0.374 0.626
SLC22A8 0.636 0.670 0.375 0.625
RGN 0.628 0.604 0.121 0.879
AGT 0.628 0.651 0.389 0.611
MAOB 0.626 0.639 0.116 0.884
PPP1R15A 0.625 0.596 0.380 0.620
C8A 0.624 0.625 0.266 0.734

Table S2: Gene expression prediction performance of top-100 best predicted genes. We re-
port Pearson correlation, AUC, R2, and MSE. Each metric is described in the Online methods,
section Metrics.
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Gene Pearson correlation AUC R2 MSE

ABCC3 0.623 0.656 0.336 0.664
FADS1 0.623 0.632 0.292 0.708
ADHFE1 0.620 0.611 0.368 0.632
SLC25A13 0.620 0.610 0.298 0.702
NREP 0.620 0.657 0.097 0.903
HSPB8 0.618 0.604 0.360 0.640
EPCAM 0.616 0.621 0.373 0.627
LIPC 0.613 0.620 0.244 0.756
NOC2L 0.613 0.630 0.356 0.644
SULT1C3 0.608 0.622 0.271 0.729
GULO 0.608 0.654 0.266 0.734
AVPR1A 0.607 0.637 0.204 0.796
STK17B 0.606 0.636 0.340 0.660
C8B 0.606 0.604 0.344 0.656
GADD45A 0.606 0.634 0.361 0.639
F10 0.605 0.612 0.287 0.713
F12 0.605 0.602 0.347 0.653
OTC 0.602 0.601 0.088 0.912
JUN 0.602 0.631 0.345 0.655
C2CD2 0.602 0.624 0.359 0.641
ICAM1 0.601 0.602 0.328 0.672
HES6 0.601 0.656 0.275 0.725
COQ8A 0.601 0.668 0.084 0.916
PC 0.600 0.623 0.339 0.661
BRIX1 0.600 0.608 0.350 0.650
GSTZ1 0.600 0.610 0.225 0.775
MDM2 0.599 0.621 0.275 0.725
ADRA1B 0.599 0.627 0.314 0.686
BAAT 0.598 0.629 0.012 0.988
GOT1 0.597 0.672 0.337 0.663
AADAT 0.597 0.625 0.325 0.675
OBP3 0.597 0.665 0.331 0.669
AADAC 0.596 0.614 0.147 0.853
CYP2A2 0.595 0.603 0.191 0.809
BDH1 0.593 0.623 0.290 0.710
C8G 0.591 0.577 0.292 0.708
IGFALS 0.590 0.654 0.142 0.858
RHOB 0.590 0.627 0.335 0.665
AGMO 0.588 0.620 0.238 0.762
KRT8 0.587 0.629 0.289 0.711
IQGAP2 0.586 0.619 0.281 0.719
SLCO1A1 0.586 0.587 0.249 0.751
UST5R 0.586 0.671 0.291 0.709
EIF2S1 0.586 0.634 0.326 0.674
ATF3 0.583 0.592 0.327 0.673
CDIP1 0.583 0.616 0.228 0.772
SLC17A2 0.583 0.633 0.258 0.742
SCP2 0.582 0.612 0.260 0.740
HDHD3 0.581 0.620 0.198 0.802
ABCA8A 0.580 0.659 0.169 0.831

Table S2: Continuation.
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Patch Positive Patch Negative WSI Positive WSI Negative
Lesion

Cellular infiltration 2,232 3,315 984 1,167
Necrosis 6,568 26,400 1023 538
Hypertrophy 4,525 5,451 29 698
Fatty change 2,127 6,935 144 1,019
Bile duct proliferation 1,564 1,630 94 96
Increased mitosis 3,496 8,978 404 1,079

Table S3: Number of patch-level annotations per lesion. Patch positive refers to the number
of patches containing the lesion, and Patch negative refers to the number of patches that do not
contain it (can be a normal patch or a patch containing another lesion). A description of each
lesion is provided in table S4.

Lesion Definition

Cellular infiltration
Infiltrations of inflammatory cells in the liver.
Includes neutrophil, mononuclear and peribiliary.

Necrosis
Cell death of hepatocytes.
Includes single-cell necrosis (apoptosis), focal/multifocal,
and zonal (centrilobular, midzonal, periportal and diffuse).

Hypertrophy
Enlargement of the hepatocyte cytoplasm,
secondary to increase in the cytosolic protein or number of organelles.

Fatty change
Hepatocellular vacuolation, consistent with
intracytoplasmic lipid accumulation.
Includes macro and microvesicular.

Bile duct proliferation
Increased number of small bile ducts arising in
portal region. Biliary epithelium appears normal
or may show degenerative or atrophic changes.

Increased mitosis Increased hepatocyte mitoses above normal background levels.

Table S4: Morphological lesion definition. Morphological characterization of the lesions con-
sidered in this work are based on INHAND guidelines78, the International Harmonization of
Nomenclature and Diagnostic Criteria, a publicly accessible resource that defines guidelines to
diagnose lesions found in rodent toxicity and carcinogenicity studies.
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Lesion Compound

Necrosis thioacetamide, ethionamide,
methylene-dianiline, bromobenzene

Cellular Infiltration ethionamide, thioacetamide,
cyclophosphamide, methylene-dianiline

Bile duct proliferation thioacetamide, methylene-dianiline
Fatty change ethionamide, puromycin-aminonucleoside,

cycloheximide, diazepam
Hypertrophy hexachlorobenzene, diazepam, thioacetamide,

hydroxyzine, ethionamide, methylene-dianiline,
flutamide, phenacetin, bromobenzene, griseofulvin,
methyltestosterone

Increased mitosis methyltestosterone, griseofulvin, flutamide,
ethionamide, puromycin aminonucleoside,
danazol, hexachlorobenzene, methylene-dianiline

Table S5: List of compounds used for inferring morphomolecular signatures for each le-
sion.
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Necrosis
Cellular

infiltration
Bile duct

proliferation
Fatty

change Hypertrophy
Increased
mitosis

Lesion
(any)

No
lesion

Ethionamide 45 25 0 19 2 10 59 59
Methylene dianiline 40 42 18 0 19 7 45 64
Thioacetamide 25 20 3 0 29 0 42 72
Cycloheximide 19 0 0 1 0 0 20 35
Hexachlorobenzene 1 1 0 13 20 6 28 66
Flutamide 2 7 0 0 16 1 25 71
Griseofulvin 2 0 0 0 3 12 17 60
Bromobenzene 3 5 0 0 17 0 18 72
Hydroxyzine 0 0 0 6 17 0 17 72
Cyclophosphamide 0 14 0 0 0 0 14 72
Phenacetin 0 0 0 0 11 0 11 72
Diazepam 0 0 0 1 10 0 11 72
Isoniazid 1 2 0 0 8 0 11 72
Methyltestosterone 0 0 0 0 6 5 10 67
Danazol 0 0 0 0 0 8 8 64
Tunicamycin 4 0 0 0 0 0 4 36
Puromycin aminonucleoside 1 0 0 1 1 4 6 62
Mexiletine 1 0 0 0 5 0 6 72
Bromoethylamine 0 0 0 6 2 0 6 72
Methyldopa 3 0 0 0 0 0 3 72
Theophylline 2 0 0 0 0 0 2 71
Mefenamic acid 1 0 0 0 0 0 1 72
Cisplatin 0 0 0 0 0 0 0 70
Carboplatin 0 0 0 0 0 0 0 72
Cyclosporine A 0 0 0 0 0 0 0 72
Cephalothin 0 0 0 0 0 0 0 72
Gentamicin 0 0 0 0 0 0 0 72
Acetazolamide 0 0 0 0 0 0 0 72
Metformin 0 0 0 0 0 0 0 72

Table S6: Distribution of lesions in TG-GATEs test set stratified by compound. Compounds
are sorted by their percentage of slides with lesions.
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Necrosis
Cellular

infiltration
Bile duct

proliferation Hypertrophy
Fatty

change
Increased
mitosis

Lesion
(any)

No
lesion

Hexachlorobenzene 2.53e+03 6.10e+03 3.28e+02 5.35e+05 5.01e+03 1.82e+04 5.60e+05 8.38e+05
Thioacetamide 2.24e+04 9.50e+03 4.85e+02 1.78e+05 1.83e+02 1.17e+04 2.14e+05 8.52e+05
Diazepam 6.35e+02 1.47e+03 7.90e+01 2.20e+05 8.88e+02 7.29e+03 2.29e+05 9.67e+05
Ethionamide 2.55e+04 9.04e+03 3.03e+02 9.02e+04 3.85e+04 3.15e+04 1.79e+05 9.70e+05
Gentamicin 5.38e+02 1.39e+03 2.63e+02 1.19e+04 1.50e+01 8.64e+04 1.00e+05 6.64e+05
Cephalothin 4.91e+02 1.97e+03 4.20e+02 1.17e+04 2.10e+01 8.03e+04 9.47e+04 6.81e+05
Carboplatin 2.13e+03 2.21e+03 1.24e+02 7.78e+04 1.90e+01 1.11e+04 9.31e+04 6.29e+05
Acetazolamide 1.89e+03 1.38e+03 2.30e+02 8.27e+04 1.18e+02 6.34e+03 9.24e+04 6.42e+05
Puromycin aminonucleoside 4.57e+03 3.69e+03 4.71e+02 6.22e+04 4.44e+02 1.22e+04 8.28e+04 6.28e+05
Hydroxyzine 4.40e+01 1.27e+03 3.10e+01 9.60e+04 3.37e+03 2.45e+02 9.76e+04 9.14e+05
Cyclosporine A 4.40e+03 2.77e+03 4.83e+02 4.21e+04 2.07e+02 1.81e+04 6.74e+04 6.68e+05
Cycloheximide 1.43e+04 2.99e+02 6.30e+01 2.24e+03 5.47e+03 1.12e+04 3.11e+04 3.19e+05
Cisplatin 1.33e+03 1.74e+03 3.13e+02 4.30e+04 1.13e+02 7.44e+03 5.35e+04 6.59e+05
Isoniazid 5.23e+03 6.84e+03 6.09e+02 5.64e+04 7.90e+01 6.86e+03 7.51e+04 1.08e+06
Bromoethylamine 8.59e+02 2.07e+03 1.59e+02 3.51e+04 5.80e+01 8.72e+03 4.68e+04 6.88e+05
Methylene dianiline 4.23e+03 8.30e+03 4.22e+03 4.25e+04 3.32e+03 2.92e+03 6.07e+04 9.91e+05
Mexiletine 1.75e+03 5.86e+02 3.30e+01 2.32e+04 6.00e+00 2.33e+04 4.88e+04 8.08e+05
Flutamide 2.09e+02 6.47e+03 2.58e+03 2.87e+04 1.10e+01 1.57e+04 5.16e+04 1.21e+06
Theophylline 7.78e+02 1.96e+02 1.36e+02 1.04e+04 3.10e+01 1.97e+04 3.12e+04 7.43e+05
Tunicamycin 7.99e+02 6.60e+01 6.00e+00 2.54e+03 1.00e+00 1.24e+04 1.58e+04 3.79e+05
Danazol 1.39e+02 2.56e+02 5.60e+01 2.26e+03 1.90e+01 2.64e+04 2.91e+04 7.47e+05
Bromobenzene 1.43e+03 6.70e+03 4.20e+01 1.95e+04 4.00e+01 6.83e+03 3.31e+04 9.27e+05
Phenacetin 1.14e+02 1.04e+03 3.20e+01 2.64e+04 3.90e+01 6.67e+02 2.82e+04 8.00e+05
Griseofulvin 1.16e+02 5.01e+03 1.82e+03 6.82e+03 8.00e+00 2.58e+04 3.82e+04 1.22e+06
Methyltestosterone 1.60e+02 2.05e+03 1.20e+01 2.37e+02 1.50e+01 2.47e+04 2.70e+04 1.06e+06
Mefenamic acid 3.31e+02 6.39e+03 2.68e+03 6.74e+03 3.00e+00 1.70e+04 3.10e+04 1.24e+06
Cyclophosphamide 3.07e+02 3.58e+02 8.00e+00 3.52e+03 2.00e+00 7.19e+03 1.14e+04 8.15e+05
Methyldopa 1.76e+02 1.81e+03 1.02e+02 1.80e+01 1.67e+02 5.56e+03 7.69e+03 9.84e+05
Metformin 1.81e+02 1.75e+03 4.70e+01 1.68e+02 5.10e+01 4.14e+03 6.23e+03 1.01e+06

Table S7: Number of patches with lesions per test study. Compounds are sorted by their
percentage of slides with lesions.
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Necrosis
Cellular

infiltration
Bile duct

proliferation
Fatty

change Hypertrophy
Increased
mitosis Macro average

ABCC3 3.20 3.00 3.28 4.39 5.17 2.20 3.54
GSTM3 2.64 2.71 2.93 3.10 3.12 1.29 2.63
GPX2 3.60 2.77 3.11 2.42 2.75 1.00 2.61
GSTA3 1.50 1.71 2.15 3.00 4.02 1.73 2.35
ALDH1A1 0.84 1.43 2.28 2.58 3.64 1.58 2.06
ALDH1A7 0.99 1.35 2.15 2.32 3.31 1.36 1.91
ADAM8 2.48 2.22 2.81 1.57 1.37 0.40 1.81
ATF3 3.27 2.64 1.96 1.44 0.98 0.50 1.80
ACOT1 2.25 1.40 2.27 1.35 1.15 1.97 1.73
TRIB3 2.84 2.01 1.31 1.50 1.65 0.65 1.66
AKR7A3 1.26 1.30 1.02 2.19 2.56 1.59 1.66
CCL2 3.12 2.54 2.15 1.29 0.70 0.02 1.64
TNFRSF12A 2.97 2.21 1.54 1.46 1.10 0.51 1.63
AKR1B8 2.67 1.91 1.61 1.44 1.40 0.61 1.61
ASNS 2.33 1.76 1.87 1.29 1.69 0.59 1.59
RND1 3.13 2.28 1.95 1.18 0.87 0.06 1.58
PHGDH 1.85 1.38 1.49 1.57 1.99 0.98 1.54
OLR59 -2.45 -1.74 -1.68 -1.27 -1.16 -0.71 -1.50
ABCG8 -2.06 -1.54 -1.80 -1.47 -1.38 -0.86 -1.52
PKLR -2.42 -1.75 -1.91 -1.34 -1.40 -0.78 -1.60
MTMR7 -2.09 -1.76 -2.05 -1.50 -1.78 -0.69 -1.64
AKR1C1 -2.73 -1.95 -1.97 -1.46 -1.44 -0.77 -1.72
NREP -3.33 -2.02 -1.89 -1.38 -1.47 -0.43 -1.75
THRSP -2.90 -2.18 -2.35 -1.40 -1.28 -0.57 -1.78
OAT -2.23 -1.86 -2.02 -1.86 -2.09 -1.08 -1.85
LOX -1.49 -1.53 -2.13 -2.08 -3.11 -0.84 -1.86
SLC22A8 -2.43 -2.07 -2.52 -1.71 -1.65 -0.82 -1.87
BMF -3.01 -2.17 -2.21 -1.66 -1.56 -0.68 -1.88
INMT -3.13 -2.63 -3.16 -1.77 -1.57 -1.22 -2.25
NOX4 -3.21 -2.62 -2.96 -2.02 -2.00 -0.98 -2.30
CAR3 -3.30 -2.50 -3.16 -2.22 -2.10 -0.95 -2.37
OBP3 -3.02 -2.70 -3.66 -2.21 -2.15 -1.26 -2.50
STAC3 -5.14 -4.07 -4.97 -3.91 -4.16 -2.04 -4.05

Table S8: Genes indicative of general toxic exposure. Listed genes with the highest mean
absolute predicted gene expression across patches with lesions. Analysis was conducted using
five studies that report a large range of lesions: thioacetamide, methylene dianiline, ethion-
amide, bromobenzene, hexachlorobenzene.
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Increased mitosis Mean expression Correlation prediction

CCNA2 2.52 0.33 0.40
KNSTRN 2.50 -0.01 0.42
CDKN3 2.41 0.01 0.27
ECT2 2.32 0.31 0.51
CENPW 2.10 0.10 0.46
CDK1 2.09 0.21 0.44
CCNB1 2.05 0.20 0.45
CDCA3 2.05 0.17 0.51
SKA1 2.04 0.31 0.60
MKI67 2.01 0.44 0.58
TOP2A 1.90 0.17 0.46
KIF18B 1.84 0.37 0.40
AURKB 1.81 0.39 0.59
UBE2C 1.80 0.25 0.47
SPC24 1.77 0.12 0.70
BUB1 1.73 0.27 0.57
NUSAP1 1.73 0.13 0.52
PTTG1 1.72 0.17 0.41
IQGAP3 1.67 0.29 0.53
CCNB2 1.67 0.15 0.39
AURKA 1.66 0.27 0.57
NCAPH 1.66 0.34 0.53
HMMR 1.52 0.26 0.53
ARHGAP11A 1.51 0.53 0.70
ASPM 1.49 0.22 0.56
SKA3 1.48 0.27 0.68
HJURP 1.45 0.46 0.61
ANLN 1.30 0.29 0.49
CENPF 1.30 0.21 0.49
FAM83D 1.28 -0.06 0.33
BIRC5 1.17 0.17 0.37
CDC20 1.07 -0.09 0.61
EXO1 0.99 0.21 0.35
E2F1 0.96 0.37 0.57
CKS2 0.93 0.24 0.53
CDKN2C 0.91 0.00 0.56
HAUS4 0.88 0.10 0.49
H2AX 0.88 0.32 0.52
RBL1 0.87 0.36 0.70
TUBB5 0.84 0.41 0.75
DCTPP1 0.83 0.32 0.41
SMC4 0.75 0.14 0.33
TK1 0.74 0.16 0.40
MBOAT1 0.72 0.35 0.67
H2AZ1 0.70 0.18 0.47
MCM5 0.69 0.28 0.62
CCNF 0.68 -0.01 0.51
NETO2 0.67 -0.09 0.50
CCNE1 0.65 0.29 0.70
PRIM1 0.58 0.15 0.65
DNAJC9 0.54 0.13 0.47

Table S9: List of 51 genes identified as being linked to increased mitosis. Analysis was
conducted using eight compounds that reported increased mitosis. Patch-level average gene
expression for patches containing mitosis compared to those identified with any of the five
other lesions.
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necrosis mean expression lesion correlation prediction

ATF3 3.37 1.40 0.65
TRIB3 3.23 1.47 0.62
MAFF 3.10 0.95 0.66
TNFRSF12A 3.09 1.30 0.79
ZFAND2A 2.87 0.97 0.75
IFRD1 2.11 0.98 0.60
MDM2 2.01 0.99 0.71
FGF21 2.01 0.93 0.46
MYC 1.88 0.77 0.77
CDKN1A 1.87 0.92 0.35
GADD45A 1.87 0.80 0.62
HSPB1 1.86 0.88 0.61
SRXN1 1.84 0.84 0.63
HSPA1A 1.78 0.52 0.41
SLC3A2 1.71 0.80 0.72
DDIT3 1.70 0.75 0.49
HMOX1 1.65 0.64 0.75
AEN 1.62 0.60 0.71
TMBIM1 1.62 0.61 0.73
LOC100911177 1.56 0.64 0.74
LOC100912041 1.53 0.56 0.63
FBXO30 1.37 0.57 0.68
PPP1R15A 1.36 0.46 0.74
CCDC86 1.28 0.46 0.56
JUN 1.25 0.62 0.65
HSPB8 1.24 0.45 0.75
FOSL1 1.21 0.02 0.59
AIMP2 1.20 0.53 0.80
SLC7A11 1.15 0.43 0.38
G6PD 1.13 0.56 0.41
TXNRD1 1.13 0.51 0.57
RIOK3 1.07 0.36 0.50
CXCL2 1.01 0.05 0.47
ALDH4A1 -1.02 -0.37 0.80
ACACA -1.03 -0.32 0.66
AQP9 -1.09 -0.44 0.47
RARB -1.10 -0.42 0.67
CAR14 -1.11 -0.38 0.78
FDFT1 -1.12 -0.18 0.40
BHMT2 -1.12 -0.34 0.80
IGFBP3 -1.12 -0.49 0.72
CADPS2 -1.13 -0.47 0.66
EBP -1.13 -0.39 0.74
HGD -1.16 -0.49 0.72
SUOX -1.18 -0.48 0.83
GK -1.21 -0.57 0.74
ARHGEF19 -1.22 -0.47 0.50
ALBFM1 -1.23 -0.57 0.73
VEPH1 -1.23 -0.27 0.63
ACKR4 -1.27 -0.38 0.83
ADAMTS7 -1.30 -0.63 0.65
CTH -1.31 -0.33 0.54
HMGCS1 -1.36 -0.38 0.32
PRLR -1.41 -0.29 0.33
HDHD3 -1.43 -0.58 0.38
HES6 -1.53 -0.55 0.64
ABCA8A -1.55 -0.72 0.86
ACSS2 -1.75 -0.45 0.66
COQ8A -1.86 -0.74 0.82
CXCL12 -2.04 -0.91 0.79
FADS1 -2.07 -0.64 0.63
XPNPEP2 -2.15 -0.93 0.72
ACACB -2.18 -0.65 0.58
CYP7A1 -2.36 -0.67 0.66
AVPR1A -2.52 -0.93 0.83
NREP -3.30 -1.45 0.80

Table S10: Caption next page.
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Table S10: List of 66 genes identified as being linked to necrosis. Analysis was conducted
using five compounds that reported necrosis. Patch-level average gene expression for patches
containing necrosis compared to those identified with any of the five other lesions.

cellular infiltration mean expression lesion correlation prediction

CXCL1 2.38 0.92 0.41
BCL2A1 1.67 0.71 0.48
S100A4 1.66 0.78 0.41
CXCL10 1.63 0.72 0.31
S100A8 1.49 0.56 0.50
CHI3L1 1.32 0.54 0.58
S100A9 1.23 0.38 0.36
IL1B 1.17 0.41 0.51
CAPG 1.11 0.54 0.55
TGFB1 1.06 0.35 0.59
PTPRC 0.91 0.35 0.37
ACKR3 0.88 0.35 0.46
FILIP1L 0.83 0.35 0.47
C5AR1 0.77 0.37 0.42
CD83 0.76 0.29 0.40
EVI2A 0.74 0.26 0.48
LCP1 0.73 0.29 0.55
ICAM1 0.72 0.33 0.56
CYBB 0.70 0.24 0.43
IL7 0.69 0.14 0.44
CASP1 0.67 0.28 0.49
PSMB9 0.64 0.30 0.41
GLIPR1 0.62 0.29 0.55
AP1S2 0.57 0.23 0.40
PLVAP 0.54 -0.04 0.31
SRGN 0.53 0.22 0.39
IFITM2 0.52 0.26 0.68

Table S11: List of 27 genes identified as being linked to cellular infiltration. Analysis was
conducted using five compounds that reported cellular infiltration. Patch-level average gene
expression for patches containing cellular infiltration compared to those identified with any of
the five other lesions.
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bile duct proliferation mean expression lesion correlation prediction

SERPINA7 3.14 1.08 0.58
BEX4 2.20 1.01 0.78
CDH13 2.12 0.75 0.34
LGALS2 2.01 0.69 0.52
CLDN7 1.60 0.66 0.68
ANXA5 1.57 0.65 0.75
STING1 1.52 0.60 0.60
RGS5 1.50 0.58 0.53
UAP1L1 1.47 0.71 0.63
CD24 1.45 0.49 0.70
TAGLN 1.34 0.38 0.78
AJUBA 1.21 0.58 0.63
IGF2R 1.17 0.53 0.76
ASAH1 1.17 0.47 0.67
LBH 1.16 0.40 0.77
FHL2 1.05 0.27 0.77
UNC5CL 1.01 0.49 0.38
EDEM1 -1.06 -0.52 0.84
AGXT -1.37 -0.69 0.70
DPT -1.38 -0.60 0.89
C8G -1.69 -0.80 0.85
ASPG -1.79 -0.78 0.65
GPT -2.25 -1.04 0.61
SERPINA4 -2.32 -1.18 0.88

Table S12: List of 24 genes identified as being linked to bile duct proliferation. Analysis
was conducted using two compounds that reported bile duct proliferation. Patch-level average
gene expression for patches containing bile duct proliferation compared to those identified with
any of the five other lesions.

fatty change mean expression lesion correlation prediction

ACOT1 1.93 0.47 0.59
GSTP1 1.48 0.58 0.40
CIDEA 1.04 0.38 0.30
ACOT2 0.83 0.13 0.31
TMED3 0.75 0.35 0.53
CYP1A1 0.75 -0.06 0.63
HID1 0.71 0.18 0.54
FKBP11 0.65 0.25 0.72
IRAK1 0.63 0.26 0.46
MANBA 0.56 0.17 0.65
ACP3 -0.52 -0.21 0.35
EPSTI1 -0.58 -0.15 0.42
C5 -0.61 -0.22 0.30
SLC6A6 -1.01 -0.48 0.48

Table S13: List of 14 genes identified as being linked to fatty change. Analysis was con-
ducted using four compounds that reported fatty change. Patch-level average gene expression
for patches containing fatty change compared to those identified with any of the five other le-
sions.

.
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hypertrophy mean expression lesion correlation prediction

GSTA3 3.90 1.52 0.72
ALDH1A1 3.56 1.43 0.76
CYP1A1 3.23 0.25 0.43
ALDH1A7 3.19 1.31 0.43
ACSM2 1.44 0.33 0.35
RGD1559459 1.33 0.44 0.77
ADGRG2 1.32 0.45 0.59
VNN1 1.24 0.28 0.51
ME1 1.18 -0.26 0.43
EPHX1 1.04 0.31 0.46
POR 0.91 0.11 0.54
GCLM 0.71 0.00 0.53
GCLC 0.62 0.05 0.46
GSTA4 0.60 -0.06 0.72
TFRC 0.58 0.04 0.46
ADH4 0.51 -0.29 0.45
MCRIP2 0.51 0.08 0.68
GSTM2 0.50 -0.16 0.64
NAPSA -0.54 0.45 0.31
PLVAP -0.85 0.23 0.37
SLC34A2 -1.08 -0.25 0.37
SLC6A6 -1.28 -0.38 0.44
LOX -2.97 -1.32 0.56

Table S14: List of 23 genes identified as being linked to hypertrophy. Analysis was con-
ducted using eleven compounds that reported hypertrophy. Patch-level average gene expression
for patches containing hypertrophy compared to those identified with any of the 5 other lesions.
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Hyper-parameter Value

Layers 24
Heads 16
Patch size 16
FFN layer MLP
Head activation GELU
Embedding dimension 1024
Stochastic dropout rate 0.1

Global crop scale 0.48, 1.0
Global crop number & size 2, 224
Local crop scale 0.16, 0.48
Local crop number & size 8, 96
Max masking ratio 0.5
Min masking ratio 0.1
Gradient clipping max norm 3.0
Normalize last layer ✓
Shared head ✗

AdamW β (0.9, 0.999)
Batch size 3072
Freeze last layer iterations 1250
Warmup iterations 12500
Warmup teacher temperature iterations 37500
High-resolution finetuning iterations 12500
Max Iterations 125000
Learning rate schedule Cosine
Learning rate (start) 0
Learning rate (post warmup) 2e-3
Learning rate (final) 1e-6
Teacher temperature (start) 0.04
Teacher temperature (final) 0.4
Teacher momentum (start) 0.992
Teacher momentum (final) 1.000
Weight decay (start) 0.04
Weight decay (end) 0.4
Automatic mixed precision fp16

Table S15: iBOT hyperparameters used SSL pretraining. 4 × 80GB NVIDIA A100 GPUs
were used for training. Batch size refers to the total batch size across GPUs.
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Hyperparameter Value

Batch size 1
Weight decay 1e-5
AdamW β (0.9, 0.999)
Peak learning rate 1e-4
Learning rate schedule Cosine
Epochs 20

Table S16: Hyperparameters used in GEESE classification. A single 24GB NVIDIA
GeForce RTX 3090 GPU was used for each MIL model using weakly-supervised learning and
slide-level labels.
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