1 Specialization restricts the evolutionary paths available to yeast sugar transporters

- 2 Johnathan G. Crandall¹, Xiaofan Zhou^{2,3}, Antonis Rokas³, Chris Todd Hittinger¹‡
- 3
- ⁴ ¹Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for
- 5 Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin
- 6 Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- 7 ²Guangdong Province Key Laboratory of Microbial Signals and Disease Control,
- 8 Integrative Microbiology Research Center, South China Agricultural University,
- 9 Guangzhou 510642, China
- ¹⁰ ³Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt
- 11 University, Nashville, TN 37235, USA
- 12 **‡**To whom correspondence should be addressed:
- 13 Chris Todd Hittinger
- 14 4129 Wisconsin Energy Institute
- 15 1552 University Ave
- 16 Madison, WI 53726
- 17 cthittinger@wisc.edu
- 18 ORCIDs:
- 19 https://orcid.org/0000-0002-9144-3135 (JGC)
- 20 https://orcid.org/0000-0002-2879-6317 (XZ)
- 21 https://orcid.org/0000-0002-7248-6551 (AR)

22 https://orcid.org/0000-0001-5088-7461 (CTH)

23 Keywords: maltose, maltotriose, lager yeast, gene conversion, gene duplication,

- 24 subfunctionalization, MFS, sugar transporter
- 25
- 26

ABSTRACT

27	Functional innovation at the protein level is a key source of evolutionary
28	novelties. The constraints on functional innovations are likely to be highly specific in
29	different proteins, which are shaped by their unique histories and the extent of global
30	epistasis that arises from their structures and biochemistries. These contextual nuances
31	in the sequence-function relationship have implications both for a basic understanding
32	of the evolutionary process and for engineering proteins with desirable properties.
33	Here, we have investigated the molecular basis of novel function in a model member of
34	an ancient, conserved, and biotechnologically relevant protein family. These Major
35	Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are
36	thought to be highly plastic and evolvable. By dissecting a recent evolutionary
37	innovation in an α -glucoside transporter from the yeast Saccharomyces eubayanus, we
38	show that the ability to transport a novel substrate requires high-order interactions
39	between many protein regions and numerous specific residues proximal to the
40	transport channel. To reconcile the functional diversity of this family with the
41	constrained evolution of this model protein, we generated new, state-of-the-art
42	genome annotations for 332 Saccharomycotina yeast species spanning approximately
43	400 million years of evolution. By integrating phylogenetic and phenotypic analyses

44	across these species, we show that the model yeast α -glucoside transporters likely
45	evolved from a multifunctional ancestor and became subfunctionalized. The
46	accumulation of additive and epistatic substitutions likely entrenched this subfunction,
47	which made the simultaneous acquisition of multiple interacting substitutions the only
48	reasonably accessible path to novelty.
49	
50	INTRODUCTION
51	Many key evolutionary innovations arise from changes to protein sequences that
52	alter their function (Cheng 1998; Zhang et al. 2002; Clark et al. 2003; Dorus et al. 2004;
53	Lunzer et al. 2005; Nielsen et al. 2005; Hoekstra et al. 2006; Christin et al. 2007;
54	Yokoyama et al. 2008; Voordeckers et al. 2012; Projecto-Garcia et al. 2013; Kaltenbach
55	et al. 2018; Jabłońska and Tawfik 2022). Occasionally, these changes stem from
56	dramatic mutational events, including the creation of highly novel coding sequences by
57	gene conversion or ectopic recombination resulting in chimeric proteins (Long and
58	Langley 1993; Nurminsky et al. 1998; Wang et al. 2000; Long et al. 2003; Patthy 2003;
59	Zhang et al. 2004; Ciccarelli et al. 2005; Arguello et al. 2006; Rogers et al. 2010; Rogers
60	and Hartl 2012; Leffler et al. 2017; Méheust et al. 2018; Baker and Hittinger 2019;
61	Brouwers, Gorter de Vries, et al. 2019; Smithers et al. 2019; Baker et al. 2022). While
62	gene conversion can theoretically accelerate the rate of evolution (or even enable
63	adaptation altogether) by bypassing deleterious intermediates, this effect is primarily
64	attributable to the presence of a rugged fitness landscape (Kauffman and Levin 1987;

65	HANSEN et al. 2000; Cui et al. 2002; Bittihn and Tsimring 2017). Such rugged landscapes
66	are manifestations of epistasis in the genotypic combinations underlying the phenotypic
67	map and are prevalent in some empirical systems (Wright 1931; Wright 1932; Maynard
68	Smith 1970; Weinreich et al. 2005; Weinreich et al. 2006; Gong et al. 2013; Weinreich et
69	al. 2013; De Visser and Krug 2014; Sarkisyan et al. 2016; Starr and Thornton 2016; Wu et
70	al. 2016; Pokusaeva et al. 2019; Yi and Dean 2019; Nishikawa et al. 2021; Park et al.
71	2022; Meger et al. 2024; Metzger et al. 2024). For other proteins, the fitness landscape
72	may be much smoother, meaning that stepwise mutations with additive effects can
73	underlie functional evolution (Lunzer et al. 2005; Bridgham et al. 2006; Weinreich et al.
74	2006; Poelwijk et al. 2007; Campbell et al. 2016; Kaltenbach et al. 2018; Srikant et al.
75	2020). In cases where novel protein function is linked to gene conversion events
76	between homologs, these observations therefore raise a fundamental question: are
77	such dramatic mutational events <u>required</u> to evolve new function, or are they
78	probabilistic shortcuts in the evolutionary process whose prevalence is a predictable
79	function of their combined effect size and relative mutation rate? Answering this
80	question has significant implications for understanding and predicting evolutionary
81	trajectories, as well as for designing and engineering novel proteins with desirable
82	functions.
83	Recently, several remarkably parallel cases of functional innovation have been
84	linked directly or speculatively to gene conversion events in an ecologically and

85 biotechnologically relevant protein family: maltose transporters in *Saccharomyces*

86	yeasts (Baker and Hittinger 2019; Brouwers, Gorter de Vries, et al. 2019; Hatanaka et al.
87	2022). This protein family consists of transporters similar to the Saccharomyces
88	cerevisiae Mal31 protein, which has high specificity and high affinity for the disaccharide
89	maltose, which contains two glucose moieties (Cheng and Michels 1991; Stambuk and
90	Araujo 2001; Salema-Oom et al. 2005; Alves et al. 2008; Brown et al. 2010). Mal31-like
91	proteins are encoded in nearly all genomes of Saccharomyces and some closely related
92	species, and they are frequently encoded by multiple paralogs within each genome.
93	Maltose uptake is also mediated by a second family of proteins, which are
94	related to S. cerevisiae Agt1. In contrast to the Mal31-like proteins, Agt1 is a generalist
95	α -glucoside transporter with a broad substrate range, but it has generally lower affinity
96	for those substrates (Han et al. 1995; Stambuk et al. 1999; Stambuk et al. 2000; Alves et
97	al. 2008; Trichez et al. 2019). Notably, Agt1 can transport the glucose trisaccharide
98	maltotriose, a molecule that is biochemically similar to maltose but contains a third
99	glucose moiety. Although sometimes referred to as Mal11, Agt1 is a functionally distinct
100	protein with \approx 57% amino acid sequence identity to the Mal31-like proteins. In contrast
101	to the Mal31-like proteins, Agt1-like proteins are rarer, both in presence and in paralog
102	number, in the genomes of Saccharomyces yeasts and close relatives (Duval et al. 2010;
103	Horák 2013).
104	The α -glucoside transporters (Agts) of <i>Saccharomyces</i> include the Agt1-like
105	("generalist") and Mal31-like ("high-specificity") proteins, as well as Mph2/3-like

proteins (Day et al. 2002), which also have high specificity, albeit for the α -glucoside

107	turanose (Brown et al. 2010). These Agts have been extensively studied due to their
108	important role in the production of beer. Maltose and maltotriose are the two most
109	abundant sugars in brewer's wort (Meussdorfer and Zarnkow 2009), and their transport
110	into the cell is the rate-limiting step in their fermentation (Zastrow et al. 2001; Horák
111	2013). The rarity of maltotriose transporters, such as Agt1, which almost always
112	manifests as an inability to ferment this carbon source, therefore presents a barrier to
113	the use of many non-domesticated yeasts in brewing applications.
114	This barrier is exemplified in Saccharomyces eubayanus, the wild, cold-tolerant
115	parent of industrial lager-brewing hybrids (Libkind et al. 2011), whose development for
116	commercial brewing is of great interest (Gibson et al. 2017; Hittinger et al. 2018;
117	Cubillos et al. 2019). As almost all strains of <i>S. eubayanus</i> lack generalist Agts capable of
118	transporting maltotriose (Brickwedde et al. 2018; Brouwers, Brickwedde, et al. 2019;
119	Bergin et al. 2022), multiple attempts have been made to evolve maltotriose
120	transporters de novo in S. eubayanus strains, using both mutagenesis (Brouwers, Gorter
121	de Vries, et al. 2019) and adaptive laboratory evolution (Baker and Hittinger 2019).
122	These experiments, performed independently in different backgrounds of S. eubayanus,
123	yielded results that were as remarkable in their similarity as they were unexpected. In
124	both cases, ectopic gene conversion between paralogous high-specificity (Mal31-like)
125	maltose transporters without any native maltotriose transport capacity (Brickwedde et
126	al. 2018; Baker and Hittinger 2019) resulted in chimeric proteins capable of transporting
127	maltotriose.

128	Lending weight to the notion that recombination may be a common mechanism
129	by which transporters in the high-specificity Agt family evolve new function, two newly
130	discovered S. cerevisiae transporters (Hatanaka et al. 2022), as well as the Mty1 protein
131	(Dietvorst et al. 2005; Salema-Oom et al. 2005), may possess signatures of more ancient
132	gene conversion events (Brouwers, Gorter de Vries, et al. 2019). All these proteins
133	transport maltotriose, but they cluster with Mal31-like proteins in phylogenetic analyses
134	(Baker and Hittinger 2019; Hatanaka et al. 2022). Nonetheless, it remains unclear
135	whether these dramatic mutational events are required for the evolution of novel
136	function in this family or whether they are simply enriched due to the dynamic nature of
137	the subtelomeric regions in which these genes reside (Mefford and Trask 2002; Fairhead
138	and Dujon 2006; Gordon et al. 2009; Brown et al. 2010; Yue et al. 2017; Peter et al.
139	2018; Liu et al. 2019; O'Donnell et al. 2023).
140	The yeast α -glucoside transporters are H ⁺ symporters belonging to the sugar
141	porter family (TCDB: 2.A.1.1) of the Major Facilitator Superfamily (MFS), a vast,
142	ubiquitous, and ancient group of transmembrane proteins present in all domains of life
143	(Marger and Saier 1993; Pao et al. 1998; Saier 2000; Wang et al. 2020; Saier et al. 2021).
144	Across great evolutionary distances, sugar porters share the highly characteristic MFS
145	fold consisting of twelve transmembrane helices (TMHs) surrounding a hydrophilic
146	central cavity that constitutes the transport channel (Abramson et al. 2003; Guan and
147	Kaback 2006; Sun et al. 2012; Deng et al. 2014; Quistgaard et al. 2016; Bosshart and
148	Fotiadis 2019; Kaback and Guan 2019; Paulsen et al. 2019; Drew et al. 2021). These

149	TMHs are organized into two pseudosymmetrical six-helix bundles (N- and C-terminal),
150	which are separated by a long intracellular linker (ICH domain). The transport channel is
151	surrounded by four helices from each bundle, and TMHs stack tightly against their intra-
152	bundle partners, with additional contacts between the N- and C-terminal domains at the
153	inter-bundle interface. In <i>S. cerevisiae</i> Agt1, the sugar substrate and/or proton are
154	thought to be bound primarily by charged residues projecting into this central cavity,
155	which are conserved across fungal Agts (Henderson and Poolman 2017; Trichez et al.
156	2019). More generally, substrate affinity and specificity in MFS sugar transporters are
157	mediated by extensive hydrogen bonding and occasionally by hydrophobic interactions
158	between the sugar and the protein, as well as steric constraints that limit substrate
159	accommodation; moreover, there is a growing appreciation for the fine-scale and
160	occasionally cryptic contributions to affinity by residues within Van der Waals distance
161	of the substrate (Kasahara et al. 1997; Kasahara and Kasahara 1998; Kasahara and
162	Kasahara 2000; Guan and Kaback 2006; Kasahara et al. 2006; Guan et al. 2007; Kasahara
163	et al. 2007; Kasahara et al. 2009; Kasahara and Kasahara 2010; Kasahara et al. 2011; Sun
164	et al. 2012; Deng et al. 2014; Farwick et al. 2014; Deng et al. 2015; Bosshart and Fotiadis
165	2019; Kaback and Guan 2019; Drew et al. 2021; Guan and Hariharan 2021).
166	Nonetheless, the extensive and exquisite biochemical study of MFS sugar
167	transporters has almost exclusively focused on the determinants of native substrate
168	binding and affinity in extant proteins, while questions about how such proteins could
169	evolve the capacity to transport a novel substrate de novo have been largely

170	unaddressed. Understanding evolution-informed design principles in this protein family
171	could enable the engineering of desirable properties in tractable proteins, with
172	significant implications for industrial processes, including the fermentation of cellulosic
173	and hemicellulosic biomass into next-generation biofuels and bioproducts (Ha et al.
174	2013; Farwick et al. 2014; Young et al. 2014; Turner et al. 2016; Hara et al. 2017; Oh et
175	al. 2017; Casa-Villegas et al. 2018; Kim et al. 2018; Nijland et al. 2018; Nijland and
176	Driessen 2020; Oh and Jin 2020; de Ruijter et al. 2020).
177	To this end, we aimed to dissect the molecular genetic basis of novel function in
178	the chimeric S. eubayanus maltotriose transporter MalT434. MALT434 arose from an
179	ectopic gene conversion event between genes encoding two paralogous maltose
180	transporters, MalT3 and MalT4, which resulted in the replacement of approximately 230
181	base pairs of the MALT4 gene with the homologous portion of MALT3 (Baker and
182	Hittinger 2019). Both MalT3 and MalT4 are members of the high-specificity maltose
183	transporter family and incapable of transporting maltotriose (Brickwedde et al. 2018;
184	Baker and Hittinger 2019), suggesting that intramolecular epistasis between their
185	protein regions underlies the emergent maltotriose transport by MalT434. The
186	translocated region of MALT3 encodes TMH 11 and portions of TMHs 10 and 12 (Fig.
187	1a), and it introduced 11 nonsynonymous mutations to the protein-coding sequence of
188	MALT4 (Fig. 1b). All three proteins are predicted to have virtually identical structures
189	across their entire folds (pairwise RMSD=0.955Å) and TMHs 10-12 (0.909Å, Fig. S1),
190	suggesting that novel substrate transport might stem from a specific combination of

191	substrate-interacting residues from distal protein regions in MalT434, rather than a
192	global change to protein structure. In the simplest model, as few as a single interacting
193	residue from each protein region could underlie the emergence of novel function, which
194	would make the evolution of new function in this family predictable and tunable; in the
195	most complex model, all 120 amino acid differences between the two parental
196	transporters could contribute, which would render the evolution of new function
197	incredibly difficult.
198	Here, we show that the basis of maltotriose transport is remarkably complex in
199	this model neofunctionalized transporter. Novel function is shaped by a combination of
200	additive and non-additive interactions between as many as seven regions in the MalT4
201	backbone and six substitutions across TMHs 10 and 11. At one critical site, very few
202	amino acids can support novel function, which further limits the evolutionary paths
203	available to the wild-type protein; at other sites, these requirements are less stringent.
204	We propose that, overall, novel substrate transport is enabled by widening the
205	transport channel while simultaneously creating a favorable electrostatic environment
206	for the bulkier trisaccharide molecule. Finally, we reconstruct the evolutionary history of
207	the high-specificity and generalist yeast Agts and their relationships to other sugar
208	porters; unexpectedly, we show that the specialist maltose transporters are likely
209	derived and subfunctionalized from a generalist ancestor. This specialization likely
210	involved a gradual refinement of the transport channel to specifically accommodate
211	maltose with higher affinity, which makes the reacquisition of ancestral generalist

212	function difficult to achieve. While our results indicate that rational engineering for
213	novel substrate transport in this protein family is likely to be difficult, they also highlight
214	the abundance and diversity of transporters in biotechnologically relevant yeast species,
215	which could be readily mined for desirable functions that have been exquisitely refined
216	over billions of years of evolution, as well as perhaps recombined into new functions.
217	
218	RESULTS
219	High-order intramolecular interactions are required to evolve a novel function in
220	maltose transporters
221	We first investigated the scope and complexity of intramolecular interactions
222	shaping the emergence of novel function in MalT434. We coarsely defined functional
223	protein regions as the twelve transmembrane helices (TMHs), the intracellular (ICH)
224	domain, and the partially unstructured intracellular N- and C-terminal regions. We
225	iteratively constructed novel chimeric genes encoding transporters from MalT3 and
226	MalT4 components and tested their ability to support growth on maltotriose when
227	expressed from the native MALT4 locus (Fig 2). Unsurprisingly, the C-terminal portion of
228	MalT4 present in MalT434 was neither necessary (construct 1) nor sufficient (construct
229	17) for maltotriose transport; indeed, its replacement with the corresponding region of
230	MalT3 improved growth on maltotriose by 15.3% ($p = 5.3 \times 10^{-4}$, Mann-Whitney U test).
231	By contrast, replacement of TMHs 8 and 9 and the N-terminal half of TMH 10 with their
232	MalT3 counterparts (construct 2) reduced growth by 11.6% compared to MalT434 (p =

233	0.184), while still supporting robust growth. Dissection of the region N-terminal to TMH
234	8 revealed that the key interaction enabling maltotriose transport occurs between TMHs
235	10 and 11 of MalT3 and TMH 7 from MalT4. While necessary, this region alone was not
236	sufficient to enable maltotriose transport in every protein context. In addition to the
237	epistatic interaction between TMHs 7, 10, and 11, growth on maltotriose required the
238	presence of TMHs 1 and 2 from MalT4 in combination with the ICH domain from MalT3
239	(construct 7), or alternatively, one or more of TMH 5, TMH 6, and the ICH domain from
240	MalT4 (construct 15).
241	For chimeric constructs containing potentiating sequences at TMHs 5-7 and 10-
242	12, growth on maltotriose generally increased additively with the number of MalT4
243	regions incorporated (linear regression, $p < 2.2 \times 10^{-16}$). Nonetheless, we found significant
244	support (ANOVA, $p < 2.2 \times 10^{-16}$) for pairwise epistasis between the tested protein
245	regions, including in the sign of the effects of the ICH domain and the C-terminal region
246	(residues 541-613). For example, the addition of TMH 3 and TMH 4 from MalT4 in
247	conjunction with MalT4 TMH 7 only increased growth on maltotriose if TMH 5 and TMH
248	6 from MalT4 were also present; similarly, the addition of TMH 1, TMH 2, and the ICH
249	domain from MalT4 in conjunction with TMH 7 did not improve growth (construct 6 vs.
250	16, Fig. 2) unless in the presence of TMHs 3-6 from MalT4 (construct 2 vs. 13, 52%
251	increase, $p = 2.4 \times 10^{-4}$). Along the quantitative functional spectrum of MalT3/4 chimeric
252	proteins enabling growth on maltotriose, we therefore detected a complex combination
253	of additive and epistatic intramolecular interactions among at least six protein regions.

254

255 Numerous substitutions are required to evolve a novel function in maltose

256 transporters

257	We next dissected the contributions of the 11 substitutions in MalT434 relative
258	to MalT4 (Fig. 1b) by introducing subsets of these to the gene encoding the native
259	MalT4 protein (Fig. 3). We first tested the effect of a pair of suggestive substitutions,
260	S468F and N522D, which were both unique in their location in the 3D structure and
261	differed notably in side-chain chemistry. Nonetheless, this pair of mutations was
262	insufficient for novel function in MalT4, so we coarsely tested the effect of the sets of
263	mutations occurring before and after the end of TMH 11. Introduction of the five
264	substitutions from residues 522-540, which span an extracellular loop and the majority
265	of TMH 12, was insufficient to confer any growth on maltotriose. By contrast, the six
266	mutations affecting TMHs 10 and 11 were sufficient to confer growth on maltotriose,
267	and even improved it by 13.3% relative to MalT434 ($p = 5.6 \times 10^{-7}$, Mann-Whitney U test).
268	Within this contiguous patch of substitutions, however, the contribution of individual
269	amino acids to novel function was remarkably complex. Reversion of the six mutations
270	singly to their MalT4 identity revealed that each had a significant effect on maltotriose
271	growth, ranging from a 23.5% reduction (A504G, $p = 2x10^{-6}$) to its complete abrogation
272	(C505N, $p = 5.2 \times 10^{-11}$), with an average effect of 57.1%. We detected significant ($p < 10^{-11}$)
273	2.2x10 ⁻¹⁶) evidence of pairwise epistasis between substitutions, regardless of whether
274	we considered all 11 sites or only the 6 on TMHs 10 and 11. Epistatic effects were

275	notably non-uniform among tested combinations: for example, two single reversion
276	mutations (M503I and T508V) had similar effects of 49.1% ($p = 3.2 \times 10^{-7}$) and 44.1% ($p =$
277	9.1x10 ⁻¹³) when introduced in the six-substitution background that supported robust
278	growth on maltotriose. By contrast, when introduced in a four-mutation background
279	with reduced ability to support growth on maltotriose (M503 C505 T508 T512), the
280	effect of M503I remained large (42.6%, $p = 0.002$), while T508V effected only a small
281	further reduction (4.97%, $p = 0.8$). Overall, we found that establishing novel function in
282	MalT4 required a combination of three amino acid substitutions only accessible through
283	a minimum of four non-consecutive nucleotide substitutions to the wild-type gene:
284	N505C (2 nucleotide substitutions), I512T (1 substitution), and one of I503M (1
285	substitution) or V508T (2 substitutions).
286	
287	Granular mapping of epistasis between distal protein regions
288	Given the size of interacting protein regions and the complexity of their
289	contributions to novel function, we sought to identify the key difference in amino acid
290	sequence responsible for the large epistatic effect of transmembrane helix 7. The two
291	parental transporters differ at six sites along TMH 7 (Fig. S2a): two neighboring
292	substitutions (K357C and V358I, expressed relative to MalT4) occur at the intracellular
293	C-terminal end, while two (A371I, V375T) are located approximately halfway along the
294	helix and likely to be embedded in the plasma membrane. Two (A378T, S379Q) project

into or neighbor the transport channel, differ in size and/or polarity, and are in close

296	three-dimensional proximity to mutated residues on TMH 11 in MalT434 (Fig. 4a, Fig.
297	S2b). We reasoned that one or both of A378T and S379Q might have a large effect on
298	the interaction between TMH 7 and the translocated region of MalT3 present in
299	functional chimeric transporters. To test these hypotheses, we mutated each of these
300	residues to their MalT3 identity, singly and in combination, in a gene encoding the
301	MalT4 transporter harboring the six mutations on TMHs 10 and 11 that conferred
302	maximal maltotriose transport (Fig. 4b). While the A378T mutation did not affect growth
303	on maltotriose, S379Q abolished it completely. The large epistatic interaction between
304	TMH 7 and TMH 11 can thus be attributed to a single amino acid.
305	
306	Novel transporter function is constrained by specific biochemical requirements and
500	nover transporter randion is constrained by specific biodicinical requirements and
307	context dependence
307 308	context dependence The mutational event that generated MaIT434, as well as our experiments
307 308 308 309	context dependence The mutational event that generated MalT434, as well as our experiments dissecting it, only sampled variation between two binary states: the specific amino acid
307308309310	context dependence The mutational event that generated MalT434, as well as our experiments dissecting it, only sampled variation between two binary states: the specific amino acid residues of the parental proteins at each homologous site. In native contexts, however,
 307 308 309 310 311 	context dependence The mutational event that generated MalT434, as well as our experiments dissecting it, only sampled variation between two binary states: the specific amino acid residues of the parental proteins at each homologous site. In native contexts, however, many more amino acid substitutions are accessible in mutational space through single-
 307 308 309 310 311 312 	context dependence The mutational event that generated MalT434, as well as our experiments dissecting it, only sampled variation between two binary states: the specific amino acid residues of the parental proteins at each homologous site. In native contexts, however, many more amino acid substitutions are accessible in mutational space through single- or multi-nucleotide mutations; for example, seven amino acid substitutions require only
 307 308 309 310 311 312 313 	context dependence The mutational event that generated MalT434, as well as our experiments dissecting it, only sampled variation between two binary states: the specific amino acid residues of the parental proteins at each homologous site. In native contexts, however, many more amino acid substitutions are accessible in mutational space through single- or multi-nucleotide mutations; for example, seven amino acid substitutions require only a single nucleotide change from an asparagine codon, which is the wild-type amino acid
 307 308 309 310 311 312 313 314 	context dependence The mutational event that generated MalT434, as well as our experiments dissecting it, only sampled variation between two binary states: the specific amino acid residues of the parental proteins at each homologous site. In native contexts, however, many more amino acid substitutions are accessible in mutational space through single- or multi-nucleotide mutations; for example, seven amino acid substitutions require only a single nucleotide change from an asparagine codon, which is the wild-type amino acid at the crucial 505 site. While we found complex interactions between many sites to
 307 308 309 310 311 312 313 314 315 	context dependence The mutational event that generated MalT434, as well as our experiments dissecting it, only sampled variation between two binary states: the specific amino acid residues of the parental proteins at each homologous site. In native contexts, however, many more amino acid substitutions are accessible in mutational space through single- or multi-nucleotide mutations; for example, seven amino acid substitutions require only a single nucleotide change from an asparagine codon, which is the wild-type amino acid at the crucial 505 site. While we found complex interactions between many sites to contribute to novel function in MalT4, the evolution of maltotriose transport would be

317 biochemically similar amino acids at key sites could enable a degree of novel function

- 318 because it would increase the mutational target size and pool of mutations conferring a
- 319 fitness benefit (Miyazaki and Arnold 1999; Podgornaia and Laub 2015).
- 320 We thus sought to clarify the biochemical requirements for maltotriose transport
- in a specific potentiated context: a MalT4 transporter harboring S379, F468, M503,
- A504, T508, and T512. In this state, amino acid identity at position 505 is crucial with the
- 323 wild-type asparagine incapable of supporting growth on maltotriose and the
- 324 recombinant cysteine supporting robust growth (Fig. 3). We successfully mutated this
- 325 residue to 17 of the 20 possible amino acids, measured their ability to support growth
- 326 on maltotriose, and used regression analyses to estimate the effect of side chain
- 327 physicochemical properties on measured function (Fig. 5). Remarkably, only three
- 328 substitutions supported any degree of statistically significant growth above baseline:
- 329 serine, glycine, and cysteine. Side chain aromaticity, volume, composition, and
- 330 hydropathy were all significant (*p* << 0.01) predictors of function, as was overall
- 331 similarity to the wild-type residue asparagine. Even so, the strengths of these
- 332 associations were almost entirely driven by the C505 variant: when these data were
- 333 omitted, the global explanatory power was reduced dramatically (adjusted R²: 0.2263
- vs. 0.8664; F-statistic: 9.533 vs. 242). Although some physicochemical properties
- 335 remained statistically significant predictors of function, the strengths of these
- associations were generally weak (maximum |Kendall's T|: 0.212).

337	Qualitatively, the fine-scale stringency of physicochemical requirements at
338	position 505 was also noteworthy. Glycine, serine, and cysteine are three of the smallest
339	amino acids, but amino acids with similar side chain volumes did not support growth on
340	maltotriose. Serine and cysteine have side chains of similar size and structure capable of
341	forming hydrogen bonds, but they differ in their polarity and hydrophobicity;
342	nonetheless, residues similar to cysteine in both of these metrics did not support novel
343	function. Indeed, C505's ability to support novel function appeared to be the result of
344	the specific combination of cysteine's physicochemical properties (Fig. S3), albeit not
345	due to its unique capacity to form disulfide bridges (Drew et al. 2021). Remarkably, this
346	effect was dependent on positional context within the transporter: while substituting
347	cysteine to serine at 505 reduced growth by 71.2% ($p = 8.8 \times 10^{-5}$), making the orthogonal
348	serine to cysteine substitution at another key site, S379 (Fig. 4) reduced growth by
349	17.7% ($p = 1.9 \times 10^{-6}$) while still supporting robust growth (Fig. S4). Thus, while serine was
350	largely unable to recapitulate the effect of cysteine at 505, the similarity between the
351	two was sufficient to satisfy the requirements for novel function at position 379. The
352	same was not true of two other hydrogen bond-competent residues, glutamic acid and
353	glutamine, whose introduction at position 379 abolished growth (Fig. S4). This result
354	suggests that, while serine and cysteine are interchangeable at this site, interactions
355	between physical and chemical side chain properties still play a role. Finally, we found
356	further evidence for these fine-scale requirements at position 512, where mutation of
357	the permissive threonine to valine reduced growth by 34.5% ($p = 7.4 \times 10^{-9}$), while still

358	supporting significantly improved growth over the wild-type MalT4 residue isoleucine
359	(78.1% increase, $p = 1.2 \times 10^{-6}$). In summary, we find that the strengths, stringencies, and
360	bases of physicochemical requirements all vary between sites that are critical for
361	establishing novel function in MalT434. These results suggest that the serendipitous
362	acquisition of a set of epistatically sufficient residues is highly improbable by point
363	mutations alone (Lynch 2005).
364	
365	High-specificity transporters are evolutionarily derived
366	The sum of our molecular analyses suggested that the acquisition of novel
367	substrate transport by the high-specificity maltose transporter MalT4 is highly
368	improbably and accessible only through the simultaneous acquisition of numerous
369	interacting substitutions. This observation is consistent with previous failed attempts to
370	establish a maltotriose transporter by introducing as many as 14 rational mutations to S.
371	cerevisiae Mal61 (Hatanaka et al. 2022), a prototypical high-specificity maltose
372	transporter closely related to MalT4. However, the presence of closely related generalist
373	α -glucoside transporters, as typified by <i>S. cerevisiae</i> Agt1, suggests that this ability
374	evolved at least once among yeast α -glucoside transporters. We sought to clarify the
375	timing and mode of this historical evolutionary innovation by examining the
376	phylogenetic relationships between the generalist and specialist α -glucoside
377	transporters within Saccharomycotina yeasts, which have previously been assessed on

only a few taxa (Brown et al. 2010; Cousseau et al. 2013; Baker and Hittinger 2019; de

379 Ruijter et al. 2020; Hatanaka et al. 2022; Donzella et al. 2023).

380	We first generated high-quality protein-coding gene annotations for published
381	genomes from 332 yeast species from the model subphylum Saccharomycotina, which
382	spans more than 400 million years of evolution (XX. Shen et al. 2018). To formally test
383	the expected monophyly of the α -glucoside transporters within the broader sugar
384	porter family, we retrieved homologs of S. cerevisiae sugar porters from these predicted
385	proteomes and constructed a comprehensive phylogeny of these 8,403 ecologically and
386	biotechnologically relevant MFS proteins. This phylogeny split into several major clades,
387	many of which contained at least one functionally characterized protein from S.
388	cerevisiae or another species (Fig. S5). Both the high-specificity (Mal31- and Mph2/3-
389	like) and generalist (Agt1-like) α -glucoside transporters clustered in a monophyletic
390	group ("Agt clade") that excluded other sugar porter families. All proteins in the Agt
391	clade from the newly circumscribed order Saccharomycetales (Groenewald et al. 2023)
392	grouped together with strong support (Fig. 6a). The monophyly of the
393	Saccharomycetales Agts was interrupted in two cases: 1) a single protein from Ogataea
394	naganishii sister to the Lachancea Agt1-like proteins; 2) and, more notably, a well-
395	supported clade of Agts from Brettanomyces anomalus and Brettanomyces bruxellensis.
396	The Brettanomyces species are documented recipients of numerous horizontal gene
397	transfer events, including for genes involved in the metabolism of sucrose, an Agt1
398	substrate (Stambuk et al. 2000; Woolfit et al. 2007; Roach and Borneman 2020).

399	Notably, B. bruxellensis is commonly associated with brewing environments, where its
400	propensity to vigorously consume diverse sugars and independent evolution of aerobic
401	fermentation make it a frequent contaminant and occasional desired contributor
402	(Rozpedowska et al. 2011; Serra Colomer et al. 2019; Colomer et al. 2020).
403	Surprisingly, the clade containing high-specificity Saccharomyces maltose
404	transporters only included taxa from closely related species in the genera
405	Saccharomyces and Lachancea, as well as one protein each from Zygotorulaspora
406	florentina and Zygosaccharomyces kombuchaensis (Fig. 6b). Among the high-specificity
407	Agts, the Mph2/3 clade was further restricted to Saccharomyces kudriavzevii,
408	Saccharomyces mikatae, Saccharomyces paradoxus, and S. cerevisiae (Fig. 6b), which is
409	consistent with an origin in the common ancestor of these species following their split
410	from Saccharomyces arboricola and a recent segmental duplication in S. cerevisiae
411	(Saccharomyces jurei is absent in this dataset). The sister clade to the high-specificity
412	proteins contained generalist Agts from Saccharomyces, Torulaspora, and
413	Zygotorulaspora species, with deeper branches to Kluyveromyces and Lachancea
414	homologs (Fig. 6b). We thus conclude that the high-specificity transporters typified by S.
415	cerevisiae Mal31, including S. eubayanus MalT4 and MalT3, form a clade restricted to
416	Saccharomycetales.

Generalist-like transporters are quantitatively correlated with growth on α -glucosides

419	Our phylogenetic analyses suggested that the high-specificity Agts are
420	evolutionarily and functionally derived from a generalist ancestor. In this model, the
421	vast array of uncharacterized Agt-clade proteins encoded by diverse yeast species
422	should include generalist transporters or transporters that became subfunctionalized
423	following duplication of a generalist ancestor, and their presence should support growth
424	on substrates of the generalist Agts. We collected quantitative growth measurements
425	for 287 of the 332 species in our phylogenetic dataset on three sugars that are
426	substrates of the generalist transporter S. cerevisiae Agt1 but not of the high-specificity
427	transporters: maltotriose, trehalose, and methyl- α -glucoside (Han et al. 1995; Stambuk
428	et al. 1999; Stambuk and Araujo 2001; Alves et al. 2008; Brown et al. 2010). We found
429	many species across the Saccharomycotina to be capable of vigorous growth on these
430	sugars as a sole carbon source (Fig. 7a). Growth on all three α -glucosides was nearly
431	ubiquitous among Serinales, a speciose order with a high incidence of carbon niche-
432	breadth generalists (Opulente et al. 2024). Most notably, growth on maltotriose was
433	widespread across the yeast subphylum, in contrast to the documented rarity of this
434	trait in the model genus Saccharomyces (Duval et al. 2010; Gallone et al. 2018; Langdon
435	et al. 2020; Hutzler et al. 2021; Gyurchev et al. 2022; Peris et al. 2023). This metabolic
436	deficiency was concomitant with the paucity of generalist-like Agt proteins encoded in
437	Saccharomycetales genomes, which was similarly not representative of other yeast
438	orders (Fig. 7b; $p = 1.9 \times 10^{-13}$). Indeed, patterns of α -glucoside growth qualitatively
439	tracked the presence of genes encoding Agt proteins, with both subject to clear

440	evolutionary shifts including losses (e.g. Saccharomycodales, Sporopachydermiales, and
441	Trigonopsidales; Saturnispora, Zygosaccharomyces, Eremothecium, Kazachstania,
442	Nakaseomyces, Naumovozyma, and Tetrapisispora spp.) and amplifications
443	(Debayromyces, Metschnikowia, and Kuraishia spp.; subclades of Phaffomycetales,
444	Dipodascales, Pichiales, and Lipomycetales). We used phylogenetically corrected least
445	squares regressions (PGLS) to statistically test the strength of the correlation between
446	Agt count and growth on each of the three tested Agt1 substrates (Fig. 7c). We detected
447	significant positive correlations between Agt count and growth on each of the three α -
448	glucosides ($p \leq 0.007$). Thus, the generalist-like Agts detected in most Saccharomycotina
449	genomes are likely to be true generalist transporters or recently subfunctionalized
450	derivatives.
451	
451 452	DISCUSSION
451 452 453	DISCUSSION In the present work, we sought to understand how novel function could evolve
451 452 453 454	$\label{eq:DISCUSSION} DISCUSSION$ In the present work, we sought to understand how novel function could evolve in a model yeast α -glucoside transporter. To this end, we dissected the molecular basis
451 452 453 454 455	DISCUSSION In the present work, we sought to understand how novel function could evolve in a model yeast α-glucoside transporter. To this end, we dissected the molecular basis of maltotriose transport in MalT434, which represents one of the most evolutionarily
451 452 453 454 455 456	DISCUSSION In the present work, we sought to understand how novel function could evolve in a model yeast α-glucoside transporter. To this end, we dissected the molecular basis of maltotriose transport in MalT434, which represents one of the most evolutionarily recent functional innovations in this family. We found that, in this chimeric protein,
 451 452 453 454 455 456 457 	DISCUSSION In the present work, we sought to understand how novel function could evolve in a model yeast α-glucoside transporter. To this end, we dissected the molecular basis of maltotriose transport in MalT434, which represents one of the most evolutionarily recent functional innovations in this family. We found that, in this chimeric protein, novel function is an emergent property of extensive additive and non-additive
451 452 453 454 455 456 457 458	DISCUSSION In the present work, we sought to understand how novel function could evolve in a model yeast α-glucoside transporter. To this end, we dissected the molecular basis of maltotriose transport in MalT434, which represents one of the most evolutionarily recent functional innovations in this family. We found that, in this chimeric protein, novel function is an emergent property of extensive additive and non-additive interactions between multiple protein regions and multiple residues on TMHs 7, 10, and
451 452 453 454 455 456 457 458 459	DISCUSSION In the present work, we sought to understand how novel function could evolve in a model yeast α-glucoside transporter. To this end, we dissected the molecular basis of maltotriose transport in MalT434, which represents one of the most evolutionarily recent functional innovations in this family. We found that, in this chimeric protein, novel function is an emergent property of extensive additive and non-additive interactions between multiple protein regions and multiple residues on TMHs 7, 10, and 11 (Figs. 2-4). We observed that even conservative amino acid changes, as well as
451 452 453 454 455 456 457 458 459 460	DISCUSSION In the present work, we sought to understand how novel function could evolve in a model yeast α-glucoside transporter. To this end, we dissected the molecular basis of maltotriose transport in MalT434, which represents one of the most evolutionarily recent functional innovations in this family. We found that, in this chimeric protein, novel function is an emergent property of extensive additive and non-additive interactions between multiple protein regions and multiple residues on TMHs 7, 10, and 11 (Figs. 2-4). We observed that even conservative amino acid changes, as well as residues not predicted to interact with the substrate, had significant and unexpected

461	effects on maltotriose transport (Fig. 3, Fig. 5). We also found evidence that the
462	stringency of side chain physicochemical requirements likely differs substantially
463	between crucial residues (Fig. 5, Fig. S4). Taken together, these results demonstrate that
464	the evolution of novel function in a high-specificity Agt is highly constrained, which is
465	consistent with recent observations (Hatanaka et al. 2022). In this model, the evolution
466	of novel function in this family by gene conversion may indeed be the only remotely
467	probable way that all the necessary interacting residues can readily be assembled in a
468	single molecule, even if paralogs are free to sample neutral or deleterious mutational
469	steps.
470	The gene conversion events leading to novel function in high-specificity yeast
471	Agts share striking parallelism at both the sequence and structural scales. For example,
472	the portions of Mty1 inferred to derive from different parental proteins encompass
473	many of the same regions that we identified as having crucial interactions in MalT434
474	(Fig. S7a). Even more strikingly, the homologous residues at five of the seven sites that
475	affect maltotriose transport in MalT434 are conserved in Mty1 (Fig. S7b). At the other
476	two sites, Mty1 possesses amino acids that support reduced, but significant, growth in
477	MalT434 (C505S and T512I). While many of the same sites likely contribute to novel
478	function in both of these recombinant transporters, specific amino acids at key sites are
479	still likely context-dependent, which makes functional evolution both more difficult to
480	predict and to engineer in this family.

481	Compounding this difficulty is the cryptic nature of sites that we empirically
482	determined to influence maltotriose transport but which are unlikely to interact with
483	the substrate (Fig. 1). These substitutions may effect subtle changes to the overall
484	conformation of the transporter, especially where they have the potential to interact
485	with other protein regions that are proximal in tertiary space (e.g. F468). Moreover,
486	there is a growing appreciation that, in yeast monosaccharide sugar porters, the fine-
487	scale environment around the substrate binding site plays a surprisingly large role in
488	sugar recognition and specificity, both by shaping an accommodating binding pocket
489	and through interactions between substrate-interacting and non-interacting residues
490	within van der Waals distance (Kasahara et al. 2009; Drew et al. 2021).
491	In MalT434, more concrete hypotheses can be made about the molecular
492	contributions of other sites important for novel substrate transport. Molecular docking
493	analyses place the maltotriose ligand in close proximity to the key sites on TMH 7 and
494	TMH 11 (Fig. S8), with several of the sugar hydroxyl groups capable of engaging in a
495	hydrogen-bonding network with the side chains of polar amino acid residues at those
496	sites. Of the substitutions in MalT434 that face the transport channel, all three have
497	polar and hydrogen bond-competent side chains of small-to-medium size; in wild-type
498	MalT4, the residues at these sites have bulkier and/or hydrophobic side chains.
499	Similarly, at the crucial 379 site on TMH 7, the permissive serine has a much smaller side
500	chain than the prohibitive glutamine. Either of the prohibitive residues at 379 and the
501	other crucial site 505 might introduce steric clashes with the terminal glucopyranose

502	moiety of maltotriose (Fig. S8c), even though they themselves are likely capable of
503	hydrogen-bonding with the substrate. Notably, the residue at position 379 may be
504	involved in coupling substrate binding to gating during the transition to the occluded
505	state (Drew et al. 2021), a key determinant of substrate recognition that involves more
506	tightly embedding the sugar molecule in its binding site within the transport channel. In
507	wild-type MalT4, position 379 has the smaller serine residue, while sites along TMH 11
508	have bulkier amino acids; in wild-type MalT3, position 379 has the larger glutamine
509	residue, but TMH 11 has smaller, hydrophilic residues. Thus, in each native maltose
510	transporter, the steric constraint of the transport channel may be finely tuned at co-
511	evolving sites along TMH 7 and TMH 11 to accommodate maltose with higher affinity
512	and specificity, which occur at the expense of steric exclusion of other substrates, such
513	as maltotriose (Fig. S8e). This model is consistent with the crucial role of amino acid side
514	chain length in shaping substrate specificity in some monosaccharide sugar porters
515	(Kasahara et al. 2011; Drew et al. 2021), notwithstanding that we also detected a
516	complex interaction between size and biochemical properties at the key 505 site.
517	The difficulty of functional innovation in the high-specificity Agts begs the
518	question of how the related generalist Agts are capable of transporting not only maltose
519	and maltotriose, but a diverse range of substrates. If the generalist transporters had
520	evolved from a more specific ancestor, as has been suggested (Pougach et al. 2014),
521	their extant substrate range would imply multiple bouts of highly constrained functional
522	evolution. To determine when and how this broad substrate specificity may have

523	evolved in the generalist Agts, we reconstructed the yeast sugar porter phylogeny from
524	332 newly annotated, representative Saccharomycotina genomes encompassing more
525	than 400 million years of evolution (Fig. S5). This analysis showed that, somewhat
526	unexpectedly, the high-specificity Agts are a derived clade within the generalist-like Agts
527	(Fig. 6a). The copy number of these putative generalist Agts encoded by yeast genomes
528	is strongly predictive of growth on Agt1-exclusive substrates (Fig. 7), which further
529	supports the conclusion that these proteins are likely bona fide generalists. The
530	evolution of maltotriose transport by high-specificity Agts is thus better regarded as a
531	reacquisition of ancestral function than the de novo evolution of a truly novel function
532	within this protein family.
533	It remains subject to debate whether the general trend of protein evolution is
534	directional: from less to more intrinsically specific (Bridgham et al. 2006; Tawfik 2010;
535	Copley 2012; Steindel et al. 2016; Wheeler et al. 2016; Wheeler and Harms 2021).
536	Multiple lines of evidence now suggest that this mode is dominant in genes involved in
537	α -glucoside metabolism in yeasts. In addition to the α -glucoside transporters, both the
538	α -glucosidases of S. cerevisiae and the transcriptional activators that regulate the
539	structural metabolic genes likely evolved from promiscuous ancestral proteins that
540	optimized subfunctions following duplication events, rendering them specific for
541	different α -glucosides (Brown et al. 2010; Voordeckers et al. 2012; Pougach et al. 2014).
542	The extent of intramolecular epistasis apparent in the high-specificity Agts, which may
543	arise both from intra-protein and protein-substrate interactions, may provide an

544	explanation for the inherent difficulty of re-evolving maltotriose transport in these
545	proteins. Functional entrenchment by historical contingency and epistasis is well
546	documented, and the irreversibility of evolutionary trajectories at the molecular level
547	may be a widespread phenomenon (Ortlund et al. 2007; Bridgham et al. 2009; Soylemez
548	and Kondrashov 2012; Harms and Thornton 2014; Bank et al. 2015; Podgornaia and
549	Laub 2015; Shah et al. 2015; Starr and Thornton 2016; Starr et al. 2017; Starr et al. 2018;
550	Ben-David et al. 2020; Xie et al. 2021; Park et al. 2022). Although not directly tested
551	here, there may be inherent tradeoffs between specificity and substrate affinity in yeast
552	Agts (Stambuk and Araujo 2001; Salema-Oom et al. 2005; Hatanaka et al. 2022), which
553	would suggest that walking back through the accumulated mutations that led to higher
554	specificity in the Mal31-like transporters would be likely to incur an immediate
555	functional tradeoff and therefore fitness cost. The recurrent gene conversion events
556	that enable maltotriose transport among members of this family may, therefore,
557	represent the only meaningfully accessible route to bypass these deleterious
558	intermediates, but the high degree of context-dependence for mutational effects makes
559	the prediction or engineering of this novel function difficult (Hatanaka et al. 2022).
560	Might the evolution of yeast sugar porters more broadly be organized along an
561	axis of increasing specialization and specificity? This family encompasses functionally
562	diverse transporters with varying specificities for different mono- and di-saccharides and
563	sugar alcohols; notably, functionally similar proteins are not monophyletic across the
564	family (Donzella et al. 2023). Our phylogenetic analysis of these proteins places the Agts,

565 which may retain some glucose transport capacity (Wieczorke et al. 1999), as a deeply 566 branching sister clade to most of the broader family (Fig. S5). These results imply 567 multiple bouts of functional specialization from a highly promiscuous ancestor, in some 568 cases starting from partially subfunctionalized ancestral proteins, with the Agts perhaps 569 remaining the most representative of the ancestral multifunctionality. While the extant 570 diversity of yeast sugar porters has generally been regarded as an example of functional 571 diversification (i.e. highly plastic gains of novel substrate affinity; (Brown et al. 2010; 572 Hatanaka et al. 2022; Donzella et al. 2023)), the evolution of this important gene family 573 may have followed a very different mode. In the former model, functional diversification 574 by neofunctionalization follows duplication of ancestral transporter genes, whereas our 575 analyses suggest that duplications in this gene family may be primarily followed by 576 subfunctionalizing escapes from adaptive conflict (Hughes 1994; Hittinger and Carroll 577 2007; Des Marais and Rausher 2008), wherein transporters can gain increased specificity 578 and affinity for a narrow substrate range at the expense of other ancestral ligands. 579 These two models have distinct implications for the myriad biotechnological 580 applications predicated upon sugar consumption by yeasts, which might be targets for 581 improvement by protein engineering. If extant transporters are indeed highly plastic and 582 evolvable, shifting or expanding their substrate range should be relatively simple. If, on 583 the other hand, they have undergone entrenched specialization, they may be inherently 584 less evolvable (Bridgham et al. 2009; Starr et al. 2018; Wheeler and Harms 2021). 585 Results here and elsewhere (Hatanaka et al. 2022) support the latter corollary. However,

586	this model also implies that reconstructed ancestral proteins, or even generalist extant
587	proteins from this clade, might both possess desirable properties and be inherently
588	highly amenable to engineering, mutagenesis, or directed evolution approaches.
589	
590	METHODS
591	Strains and cultivation conditions
592	S. eubayanus strains, plasmids, and oligonucleotides used in this work are listed
593	in Tables S1 and S2. Yeasts were propagated on YPD medium (1% yeast extract, 2%
594	peptone, 2% glucose) supplemented with 400mg/L G418 and/or 50mg/L Nourseothricin
595	(CloNAT) as appropriate and cryopreserved in 15% glycerol at -80° for long-term
596	storage.
597	Transformation of <i>S. eubayanus</i> was performed by the PEG/LiAc/carrier DNA
598	method (Gietz and Schiestl 2007) with minor modifications (Baker and Hittinger 2019).
599	CRISPR-mediated gene deletions and insertions were achieved by co-transformation of
600	pXIPHOS vectors (Kuang et al. 2018) and repair templates for homologous
601	recombination. Repair templates were purified PCR products consisting of single linear
602	fragments, multiple linear fragments for in vivo assembly, or recombinant amplicons
603	generated by overlap extension PCR, depending on the application. All repair templates
604	were amplified using Phusion polymerase (New England Biolabs) per the manufacturer's
605	instructions and purified using QiaQuick or MinElute spin columns (Qiagen).

606	We assessed transporter function via expression from the native MALT4 locus in
607	yHJC207, a haploid derivative of the wild strain yHKS210 that was constructed as
608	previously described (Crandall et al. 2023). Because the MALT2 and MALT4 loci are
609	recent duplicates and almost identical at the nucleotide level, transporter variants were
610	inserted into both loci out of necessity. Both MALT2 and MALT4 were simultaneously
611	deleted using CRISPR-Cas9 and replaced with kanMX. Novel transporter variants, as well
612	as MALT434 and S. eubayanus AGT1 positive controls, were subsequently inserted into
613	both loci by co-transformation with a pXIPHOS vector expressing Cas9 and a gRNA
614	targeting <i>kanMX</i> (Lee et al. 2021). Transformants were cured of plasmids, and the
615	inserted alleles were sequenced.
616	
010	
617	Quantitative growth measurements of <i>S. eubayanus</i> strains
617 618	Quantitative growth measurements of <i>S. eubayanus</i> strains Strains were streaked to single colonies on YPD plates, arrayed in 96-well plates
617 618 619	Quantitative growth measurements of <i>S. eubayanus</i> strains Strains were streaked to single colonies on YPD plates, arrayed in 96-well plates in a randomized layout, and precultured in YPD at room temperature for 72 hours with
616617618619620	Quantitative growth measurements of <i>S. eubayanus</i> strains Strains were streaked to single colonies on YPD plates, arrayed in 96-well plates in a randomized layout, and precultured in YPD at room temperature for 72 hours with gentle shaking. Precultures were serially diluted in minimal medium (0.5% ammonium
 616 617 618 619 620 621 	Quantitative growth measurements of <i>S. eubayanus</i> strains Strains were streaked to single colonies on YPD plates, arrayed in 96-well plates in a randomized layout, and precultured in YPD at room temperature for 72 hours with gentle shaking. Precultures were serially diluted in minimal medium (0.5% ammonium sulfate, 0.017% Yeast Nitrogen Base) and inoculated into minimal medium containing
 616 617 618 619 620 621 622 	Quantitative growth measurements of S. eubayanus strains Strains were streaked to single colonies on YPD plates, arrayed in 96-well plates in a randomized layout, and precultured in YPD at room temperature for 72 hours with gentle shaking. Precultures were serially diluted in minimal medium (0.5% ammonium sulfate, 0.017% Yeast Nitrogen Base) and inoculated into minimal medium containing 2% sugars in 96-well plates at a final dilution of 10 ⁻⁴ . OD ₆₀₀ was measured every hour for
 616 617 618 619 620 621 622 623 	Quantitative growth measurements of S. eubayanus strainsStrains were streaked to single colonies on YPD plates, arrayed in 96-well platesin a randomized layout, and precultured in YPD at room temperature for 72 hours withgentle shaking. Precultures were serially diluted in minimal medium (0.5% ammoniumsulfate, 0.017% Yeast Nitrogen Base) and inoculated into minimal medium containing2% sugars in 96-well plates at a final dilution of 10 ⁻⁴ . OD ₆₀₀ was measured every hour for7 days using a SPECTROstar Omega plate reader (BMG Labtech) equipped with a
 617 618 619 620 621 622 623 624 	Quantitative growth measurements of S. eubayanus strains Strains were streaked to single colonies on YPD plates, arrayed in 96-well plates in a randomized layout, and precultured in YPD at room temperature for 72 hours with gentle shaking. Precultures were serially diluted in minimal medium (0.5% ammonium sulfate, 0.017% Yeast Nitrogen Base) and inoculated into minimal medium containing 2% sugars in 96-well plates at a final dilution of 10 ⁻⁴ . OD ₆₀₀ was measured every hour for 7 days using a SPECTROstar Omega plate reader (BMG Labtech) equipped with a microplate stacker. Raw growth data was summarized using GCAT (Bukhman et al.
 616 617 618 619 620 621 622 623 624 625 	Quantitative growth measurements of S. eubayanus strains Strains were streaked to single colonies on YPD plates, arrayed in 96-well plates in a randomized layout, and precultured in YPD at room temperature for 72 hours with gentle shaking. Precultures were serially diluted in minimal medium (0.5% ammonium sulfate, 0.017% Yeast Nitrogen Base) and inoculated into minimal medium containing 2% sugars in 96-well plates at a final dilution of 10 ⁻⁴ . OD ₆₀₀ was measured every hour for 7 days using a SPECTROstar Omega plate reader (BMG Labtech) equipped with a microplate stacker. Raw growth data was summarized using GCAT (Bukhman et al. 2015). Area under the curve (AUC) measurements for growth on maltotriose,

627	response variable in linear models with protein identity (MalT3 or MalT4) at each
628	domain or at key amino acid sites as categorical predictor variables. The effects of
629	protein identity at some single regions and for many pairwise interactions could not be
630	estimated due to singularities. We tested for evidence of epistasis by statistically
631	comparing additive models and those with interaction terms (Li and Fay 2019). The
632	amino acid properties compiled to test associations with transporter function included
633	chemical composition, polarity, and volume (Grantham 1974), aromaticity (Xia and Li
634	1998), hydropathy (JANIN 1979; Kyte and Doolittle 1982; Hopp and Woods 1983;
635	Eisenberg et al. 1984; Rose et al. 1985; Cornette et al. 1987; Engelman et al. 2003), and
636	BLOSUM similarity (Henikoff and Henikoff 1992). Some matrices were compiled from
637	Braun (Braun 2018). For dimensionality reduction, BLOSUM similarity was omitted.
638	
639	Quantitative growth measurements of Saccharomycotina yeasts
640	Growth on α -glucosides was measured for the strains whose genome
641	annotations were analyzed, which were primarily the type strains for their respective
642	species. Strain information, including taxonomic order (Groenewald et al. 2023), major
643	clade (XX. Shen et al. 2018), and updated annotation mapping, can be found in Table
644	S3. Cryopreserved strains were inoculated directly to YPD in 96-well plates and

- 645 incubated for 7 days at room temperature. Some slow-growing species failed to revive
- 646 during this time frame and were removed from further analysis, and we did not
- 647 phenotype opportunistic pathogens, ultimately resulting in data for 287 species.

648	Precultures were inoculated to minimal medium with 1% sugar or no added carbon
649	source using a pinning tool, incubated for 7 days at room temperature, and re-
650	inoculated to new plates containing the same medium. OD_{600} of the second round of
651	growth was measured every hour using a SPECTROstar Omega plate reader (BMG
652	Labtech) equipped with a microplate stacker. The growth experiments were performed
653	four times independently. Raw growth data was summarized using Growthcurver
654	(Sprouffske and Wagner 2016). Wells with poor model fits were discarded, and each
655	curve was manually inspected to identify species with unreliable growth curves
656	(Opulente et al. 2024). Growth on each carbon source was normalized to the average
657	growth of the same species in medium with no added carbon to control for background
658	growth. Caper (cran.r-project.org/web/packages/caper/index.html) was used to fit
659	phylogenetically corrected regressions (PGLS) to growth data and square-root
660	transformed Agt number, using the rooted ML species phylogeny (X.X. Shen et al. 2018).
661	
662	Structure prediction and analyses
663	Structural models for MalT434 were generated using four different software:
664	AlphaFold2 (Jumper et al. 2021), Phyre2 (Kelley et al. 2015), I-TASSER (Yang et al. 2015),
665	and SWISS-MODEL (A. Waterhouse et al. 2018). All gave extremely similar results across
666	the structured region (mean and SD pairwise RMSD: 1.61±0.51Å), and AlphaFold2

667 models for all proteins of interest were generated and used for further analysis. Docking

of maltotriose was performed using SwissDock (Grosdidier et al. 2011). Structure

- 669 models and docking results were visualized in PyMol v2.5 (Schrödinger, LLC).
- 670

671 Genome annotation

- To improve the quality of existing gene models, publicly available genome
- 673 assemblies of 332 Saccharomycotina yeast species (X.-X. Shen et al. 2018) were re-
- annotated de novo. For consistency, we retained the assembly and species names,
- although some species have since been renamed; consult MycoBank
- 676 (www.mycobank.org) for the most up-to-date taxonomic information. Repetitive
- 677 sequences were softmasked with RepeatMasker v4.1.2, and protein-coding genes were
- 678 annotated using ab inito predictors AUGUSTUS v3.4.0 (Stanke et al. 2008) and
- 679 GeneMark-EP+ v4.6.1 (Brůna et al. 2020) in BRAKER (Brůna et al. 2021), with
- 680 Saccharomycetes proteins in OrthoDB v10 (Kriventseva et al. 2019) as homology
- 681 evidence and using the --fungus mode. Where applicable, the longest transcript of each
- 682 gene was retained. BUSCO v5.7.0 (Manni et al. 2021) was used to assess the
- 683 completeness of the new and preexisting genome annotations using single-copy yeast
- orthologs in OrthoDB v10 (R.M. Waterhouse et al. 2018).
- This approach was chosen so as to generate a useful community resource in two
- 686 ways: first, to enable direct comparisons with a larger, partially overlapping dataset of
- 687 yeast genomes published recently (Opulente et al. 2024), which were annotated using
- 688 identical methods; and second, to facilitate future studies by significantly improving the

689	quality of annotations for the widely-used 332-genomes dataset. Median annotation
690	completeness was increased from 94.6% to 98.8%, while the median percentage of
691	missing BUSCO genes decreased to 0.9% from 4.6% (both $p < 2.2 \times 10^{-16}$, two-sided t-
692	tests; Fig. S10). Table S4 documents BUSCO analyses of existing and updated
693	annotations for all genomes. The full updated annotations in protein and nucleotide
694	FASTA, GFF3, and GTF formats will be available on figshare (confidential link will be
695	updated to a public link prior to publication).

696

697 **Phylogenetic analyses**

698 The amino acid translations of the newly predicted protein-coding genes were 699 queried by BLASTp+ v2.9 (Camacho et al. 2009) using characterized Saccharomyces 700 cerevisiae sugar transporters (Mal31, Agt1, Gal2, Hxt1-5, Hxt7) retrieved from SGD 701 (Wong et al. 2023). BLAST subjects less than 400 or greater than 1000 amino acids in 702 length were discarded to remove partial or fused annotations, based on distributions of 703 sugar porter length in TCDB (Saier et al. 2006; Saier et al. 2021). Remaining proteins 704 were annotated with their most similar S. cerevisiae homolog using a reciprocal BLASTp 705 search against all translated ORFs in S. cerevisiae, which were retrieved from SGD. 706 Protein sequences were aligned using the E-INS-i strategy of MAFFT v7.222 (Katoh et al. 707 2002; Katoh et al. 2005; Katoh and Standley 2013), and the alignment was trimmed with 708 trimAL v1.4.22 (Capella-Gutiérrez et al. 2009) using the --gappyout parameter. The 709 phylogeny was inferred using IQ-TREE v2.2.2.7 (Minh et al. 2020) with 1000 bootstraps

710	(Hoang et al. 2018) and automatic substitution model selection (Kalyaanamoorthy et al.
711	2017). Due to the significant homology between MFS proteins, this dataset contained a
712	small proportion of non-sugar porter MFS proteins, primarily belonging to the
713	drug:proton antiporter family. These were retained in the alignment and tree inference
714	to test the assumption of sugar porter monophyly. As expected, the sugar porters and
715	non-sugar porter MFS proteins formed well-supported reciprocally monophyletic clades.
716	The α -glucoside transporter phylogeny was refined by re-aligning the proteins from that
717	clade and inferring the phylogeny as before, albeit with 10 independent runs of IQ-TREE
718	with 10000 bootstrap replicates each and secondary branch support assessment by SH-
719	aLRT tests. Trees were visualized and annotated in iTOL (Letunic and Bork 2021).
720	
721	COMPETING INTERESTS
722	The Wisconsin Alumni Research Foundation has filed a patent application on the
723	technologies described herein with J.G.C. and C.T.H. as inventors. Strains are available
724	for non-commercial, academic use under a material transfer agreement. A.R. is a
725	scientific consultant for LifeMine Therapeutics, Inc.
726	
727	ACKNOWLEDGMENTS
728	We are grateful to John F. Wolters for feedback on analyses and extensive
729	curation of databases, Dana A. Opulente for advice on phenotyping, Kaitlin J. Fisher for

730	sharing yeast strain copies that enabled high-throughput phenotyping, Xing-Xing Shen
731	for advice on running IQ-TREE, and the Hittinger and Sato Labs for helpful discussion.
732	
733	AUTHOR CONTRIBUTIONS
734	J.G.C. and C.T.H. conceived and designed the study. X.Z. performed and assessed
735	genome annotations with input from A.R. J.G.C. performed all experiments and analyses
736	and wrote the manuscript with input from all authors. J.G.C., A.R., and C.T.H. secured
737	funding.
738	
739	FUNDING
740	This material is based upon work supported by the National Institute of Food
741	and Agriculture, United States Department of Agriculture, Hatch projects 1020204 and
742	7005101; the National Science Foundation under Grant Nos. DEB-2110403 and DEB-
743	2110404, and in part by the DOE Great Lakes Bioenergy Research Center (DOE BER
744	Office of Science DE–SC0018409). Research in the Hittinger Lab is supported an H. I.
745	Romnes Faculty Fellowship, supported by the Office of the Vice Chancellor for Research
746	and Graduate Education with funding from the Wisconsin Alumni Research Foundation.
747	Research in the Rokas Lab is also supported by the National Institutes of Health/National
748	Institute of Allergy and Infectious Diseases (R01 AI153356) and the Burroughs Wellcome
749	Fund. J.G.C. was supported by a Predoctoral Training Grant in Genetics funded by the
750	National Institutes of Health under Grant No. T32GM007133 and by the National

751	Science Foundation Graduate Research Fellowship Program under Grant No. DGE-
752	1747503. Any opinions, findings, and conclusions or recommendations expressed in this
753	material are those of the authors and do not necessarily reflect the views of the
754	National Science Foundation. The funders had no role in study design, data collection
755	and analysis, decision to publish, or preparation of the manuscript.
756	
757	DATA AVAILABILITY
757 758	DATA AVAILABILITY New genome annotations for Saccharomycotina species are available on figshare
757 758 759	DATA AVAILABILITY New genome annotations for Saccharomycotina species are available on figshare (confidential link will be updated to a public link prior to publication). This confidential
757 758 759 760	DATA AVAILABILITY New genome annotations for Saccharomycotina species are available on figshare (confidential link will be updated to a public link prior to publication). This confidential link is provided for review purposes and will be updated to a public link prior to
757 758 759 760 761	DATA AVAILABILITY New genome annotations for Saccharomycotina species are available on figshare (confidential link will be updated to a public link prior to publication). This confidential link is provided for review purposes and will be updated to a public link prior to publication. Other data underlying this article are available in the article and in its online

- 771 label marks the position of the three substitutions on a helical face that bounds the
- transport channel. (b) Schematic of mutations. The 11 substitutions between MalT4 and
- 773 MalT434 are drawn as side chains along the cartoon secondary structure of the protein,
- with loops that connect transmembrane helices truncated for clarity. Polar hydrogens
- are shown. Asterisks mark the amino acids that face the transport channel.

776

777 Figure 2. High-order intramolecular interactions are required to evolve a novel function 778 in chimeric α -glucoside transporters. Points and bars show mean +/- SEM of normalized 779 growth on maltotriose (AUC, area under the curve) of strains expressing chimeric 780 transporters or wild-type MalT4 (top row). Filled circles denote growth significantly 781 greater than the negative control (p < 0.01, Mann-Whitney U test with Benjamini-782 Hochberg correction). The architecture of each tested transporter is depicted as a 783 cartoon on the y-axis, where rounded rectangles represent each of the twelve 784 transmembrane helices and circles represent the intracellular ICH domain that links the 785 N- and C-terminal six-helix bundles; regions are colored by parental protein identity. In 786 almost every case, the N- and C-terminal intracellular regions have the same parental

- 787 protein identity as the neighboring transmembrane helix and are omitted for clarity; the
- 788 two exceptions are depicted. Inverted arrows indicate the location and identity of
- 789 protein regions underlying the largest detected intramolecular interaction.

791 Figure 3. Numerous substitutions are required to evolve a novel function in a maltose 792 transporter. Points and bars show mean +/- SEM of normalized growth on maltotriose 793 (AUC, area under the curve) of strains expressing MalT4 variants. The genotype of each 794 protein at the 11 sites that differ between MaIT4 (top row) and MaIT434 (second from 795 top row) is depicted on the Y-axis. Filled circles denote growth significantly greater than 796 the negative control (p < 0.01, Mann-Whitney U test with Benjamini-Hochberg 797 correction). The bar chart shows rescaled BLOSUM similarity between the MalT4 and MalT3 residue at that site, with a higher bar indicating a more conservative substitution. 798

- 799 Horizontal dotted lines in the protein haplotype grid separate related groups of
- 800 genotypes. The vertical dotted line demarcates the substitutions that are sufficient (left)
- 801 to impart novel function to MalT4 and those that are insufficient (right).

802

803 Figure 4. A single amino acid underlies a large epistatic effect. (a) Structural model of 804 MalT434 with helices colored as in Fig. 1. Side chains are drawn for amino acids on 805 transmembrane helices 7, 11, and 12 that are polymorphic between MalT3 and MalT4, 806 and those that are proximal to or project into the transport channel are labeled. (b) 807 Points and bars show mean +/- SEM of normalized growth on maltotriose (AUC, area 808 under the curve) of strains expressing transporter variants. Filled circles denote growth 809 significantly greater than the negative control (p < 0.01, Mann-Whitney U test with 810 Benjamini-Hochberg correction). For each transporter, the parental protein identity at

- 811 transmembrane helix 11 (filled rectangular ovals) and residues 378 and 379 in
- 812 transmembrane helix 7 is depicted.

Figure 5. Physicochemical requirements constrain the evolution of novel function. (a)
Points and bars show mean +/- SEM of normalized growth on maltotriose (AUC, area
under the curve) of strains expressing MalT4 variants. The x-axis shows the amino acid

identity at position 505; all variants share F468, M503, A504, T508, and T512. Filled

- size circles denote growth significantly greater than the negative control (*p*<0.01, Mann-
- 819 Whitney *U* test with Benjamini-Hochberg correction). (b) Correlations between growth
- and properties of the amino acid variant at position 505. Growth is plotted as in (a)
- against physicochemical property or overall similarity to the wild-type residue at
- position 505, asparagine. Lines and shaded ranges show regressions and 95% confidence
- intervals for significant (p < 0.05) regressions for all data (black) or after removing
- 824 observations for C505 (gray). Dotted lines show regressions that are not statistically
- 825 significant. Inset text shows Kendall's T; $***p < 10^{-6}$, $**p < 10^{-4}$, *p < 0.05.

826

Figure 6. The high-specificity maltose transporters are evolutionarily derived and
restricted to a subset of Saccharomycetales. (a) Consensus phylogeny of the α-glucoside
transporter clade from 332 budding yeast genomes. Agt1-like and Mal31-like proteins
from all Saccharomycetales are colored, as is the *Saccharomyces*-specific Mph2/3 clade.
Bootstrap support is shown for two splits leading to the Saccharomycetales. (b) Rooted
consensus tree of the clade containing Saccharomycetales α-glucoside transporters.
Branches are colored as in (a) with the inclusion of a well-supported clade of

- 834 Brettanomyces Agt1-like proteins that nests within the Saccharomycetales; the
- 835 Saccharomyces-specific Mph2/3 clade is indicated. Circles denote branches with >90%
- 836 bootstrap support. Colored bars outside the tree show genus-level taxonomic
- 837 assignment, and the inset circular tree shows the Saccharomycotina species phylogeny
- 838 (X.-X. Shen et al. 2018) with those genera colored; Zygo/torulaspora represents
- 839 Zygosaccharomyces, Zygotorulaspora, and Torulaspora. The rooted maximum-likelihood
- tree can be found in Fig. S6. Newick-formatted trees are available in Data S2 and S3.

841

Fig. 7. Species with Agt proteins grow on Agt1-specific substrates. (a) Time-calibrated
phylogeny of 332 Saccharomycotina species (X.-X. Shen et al. 2018) with branches
colored (key in panel c) by taxonomic order (Groenewald et al. 2023). Heatmaps around
the tree show growth (normalized area under the curve) on α-glucosides: methyl-α-

846	glucoside	(inner ring),	trehalose	(middle ring)	, and maltotriose	(outer ring). Grav	v boxes
	0	······································					

- 847 denote no growth above background; white boxes represent unsampled species. The
- bar chart shows the number of proteins in the α -glucoside transporter clade for each
- genome. (b) Generalist Agt content of Saccharomycetales genomes is not
- 850 representative. Density plots show distributions of the number of Agt-clade proteins per
- 851 genome for Saccharomycetales species (blue density) and species from all other orders
- 852 (gray). (c) Scatterplots of Agt-clade transporter count versus growth on each α-
- 853 glucoside. Each species is represented by a point, colored by taxonomic order. Lines and
- shaded regions are loess-smoothed regressions of the untransformed data; inset *p*-
- values are from phylogenetically corrected regressions (PGLS).

857 SUPPLEMENTAL MATERIALS

- 858 **Table S1.** *S. eubayanus* strains and plasmids used in this study.
- 859 **Table S2.** Oligonucleotides used in this study.
- 860 **Table S3.** Strain information for the 332 Saccharomycotina species. Column A ("Species
- name") corresponds to Column C ("Species name") of Table S1 from X.-X. Shen et al.
- 862 2018.
- 863 **Table S4.** Benchmark Universal Single-Copy Orthologs (BUSCO) statistics for existing and
- 864 updated genome annotations of species in this study.
- 865 Data S1. Maximum likelihood phylogenetic trees of sugar porters and outgroup MFS
- 866 proteins from Saccharomycotina genomes in Newick format.
- 867 **Data S2.** Consensus phylogenetic tree of Agt clade proteins in Newick format. Branch
- 868 supports are from SH-aLRT test and ultrafast bootstrapping, respectively.
- 869 **Data S3.** Maximum likelihood phylogenetic tree of Agt clade proteins in Newick format.
- 870 Branch supports are from SH-aLRT test and ultrafast bootstrapping, respectively.

871

873

REFERENCES

874	Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. 2003. Structure and
875	mechanism of the lactose permease of Escherichia coli. Science (1979) [Internet]
876	301:610–615. Available from:
877	https://www.science.org/doi/10.1126/science.1088196
878	Alves SL, Herberts RA, Hollatz C, Trichez D, Miletti LC, de Araujo PS, Stambuk BU.
879	2008. Molecular Analysis of Maltotriose Active Transport and Fermentation by
880	Saccharomyces cerevisiae Reveals a Determinant Role for the AGT1 Permease.
881	Appl Environ Microbiol [Internet] 74:1494–1501. Available from:
882	https://journals.asm.org/doi/10.1128/AEM.02570-07
883	Arguello JR, Chen Y, Yang S, Wang W, Long M. 2006. Origination of an X-Linked
884	Testes Chimeric Gene by Illegitimate Recombination in Drosophila. PLoS Genet
885	[Internet] 2:e77. Available from:
886	https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020077
887	Baker EP, Hittinger CT. 2019. Evolution of a novel chimeric maltotriose transporter in
888	Saccharomyces eubayanus from parent proteins unable to perform this
889	function.Zhang J, editor. PLoS Genet [Internet] 15:e1007786. Available from:
890	https://dx.plos.org/10.1371/journal.pgen.1007786
891	Baker EP, Sayegh R, Kohler KM, Borman W, Goodfellow CK, Brush ER, Barber MF.
892	2022. Evolution of host-microbe cell adherence by receptor domain shuffling. Elife
893	[Internet] 11. Available from: https://elifesciences.org/articles/73330
894	Bank C, Hietpas RT, Jensen JD, Bolon DNA. 2015. A Systematic Survey of an
895	Intragenic Epistatic Landscape. Mol Biol Evol [Internet] 32:229–238. Available
896	from: https://dx.doi.org/10.1093/molbev/msu301
897	Ben-David M, Soskine M, Dubovetskyi A, Cherukuri K-P, Dym O, Sussman JL, Liao Q,
898	Szeler K, Kamerlin SCL, Tawfik DS. 2020. Enzyme Evolution: An Epistatic
899	Ratchet versus a Smooth Reversible Transition.Barlow M, editor. Mol Biol Evol
900	[Internet] 37:1133–1147. Available from:
901	https://academic.oup.com/mbe/article/37/4/1133/5686393
902	Bergin SA, Allen S, Hession C, Cinnéide EÓ, Ryan A, Byrne KP, Cróinín TÓ, Wolfe
903	KH, Butler G, Morrissey J. 2022. Identification of European isolates of the lager
904	yeast parent Saccharomyces eubayanus. FEMS Yeast Res [Internet] 22:1–9.
905	Available from: https://academic.oup.com/femsyr/article/22/1/foac053/6874782
906	Bittihn P, Tsimring LS. 2017. Gene Conversion Facilitates Adaptive Evolution on
907	Rugged Fitness Landscapes. <i>Genetics</i> [Internet] 207:1577–1589. Available from:
908	https://academic.oup.com/genetics/article/207/4/1577/5930769
909	Bosshart PD, Fotiadis D. 2019. Secondary Active Transporters. In: Subcellular
910	Biochemistry. Vol. 92. p. 275–299. Available from:
911	http://link.springer.com/10.1007/978-3-030-18768-2_9
912	Braun EL. 2018. An evolutionary model motivated by physicochemical properties of
913	amino acids reveals variation among proteins. <i>Bioinformatics</i> 34:i350–i356.
914	Brickwedde A, Brouwers N, Broek M van den, Gallego Murillo JS, Fraiture JL, Pronk
915	JT, Daran JMG. 2018. Structural, physiological and regulatory analysis of maltose

916	transporter genes in Saccharomyces eubayanus CBS 12357T. Front Microbiol 9:1-
917	18.
918	Bridgham JT, Carroll SM, Thornton JW. 2006. Evolution of hormone-receptor
919	complexity by molecular exploitation. Science (1979) [Internet] 312:97–101.
920	Available from: https://www.science.org/doi/10.1126/science.1123348
921	Bridgham JT, Ortlund EA, Thornton JW. 2009. An epistatic ratchet constrains the
922	direction of glucocorticoid receptor evolution. <i>Nature</i> [Internet] 461:515–519.
923	Available from: https://www.nature.com/articles/nature08249
924	Brouwers N, Brickwedde A, Gorter de Vries AR, van den Broek M, Weening SM, van
925	den Eijnden L, Diderich JA, Bai FY, Pronk JT, Daran JMG. 2019. Himalayan
926	saccharomyces eubayanus genome sequences reveal genetic markers explaining
927	heterotic maltotriose consumption by saccharomyces pastorianus hybrids. Appl
928	Environ Microbiol [Internet] 85. Available from:
929	https://journals.asm.org/doi/10.1128/AEM.01516-19
930	Brouwers N, Gorter de Vries AR, van den Broek M, Weening SM, Elink Schuurman TD,
931	Kuijpers NGA, Pronk JT, Daran J-MG. 2019. In vivo recombination of
932	Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter
933	that enables maltotriose fermentation.Zhang J, editor. PLoS Genet [Internet]
934	15:e1007853. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30946741
935	Brown CA, Murray AW, Verstrepen KJ. 2010. Rapid Expansion and Functional
936	Divergence of Subtelomeric Gene Families in Yeasts. Current Biology [Internet]
937	20:895–903. Available from: http://dx.doi.org/10.1016/j.cub.2010.04.027
938	Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. 2021. BRAKER2: automatic
939	eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by
940	a protein database. NAR Genom Bioinform [Internet] 3:1–11. Available from:
941	https://dx.doi.org/10.1093/nargab/lqaa108
942	Brůna T, Lomsadze A, Borodovsky M. 2020. GeneMark-EP+: eukaryotic gene prediction
943	with self-training in the space of genes and proteins. NAR Genom Bioinform
944	[Internet] 2. Available from:
945	https://academic.oup.com/nargab/article/doi/10.1093/nargab/lqaa026/5836691
946	Bukhman Y V., DiPiazza NW, Piotrowski J, Shao J, Halstead AGW, Bui MD, Xie E,
947	Sato TK. 2015. Modeling Microbial Growth Curves with GCAT. Bioenergy Res
948	8:1022–1030.
949	Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.
950	2009. BLAST+: Architecture and applications. BMC Bioinformatics 10:1–9.
951	Campbell E, Kaltenbach M, Correy GJ, Carr PD, Porebski BT, Livingstone EK, Afriat-
952	Jurnou L, Buckle AM, Weik M, Hollfelder F, et al. 2016. The role of protein
953	dynamics in the evolution of new enzyme function. Nature Chemical Biology 2016
954	12:11 [Internet] 12:944–950. Available from:
955	https://www.nature.com/articles/nchembio.2175
956	Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated
957	alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972-
958	1973.

959	Casa-Villegas M, Polaina J, Marín-Navarro J. 2018. Cellobiose fermentation by
960	Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar
961	hydrolysis. Process Biochemistry [Internet] 75:59–67. Available from:
962	https://doi.org/10.1016/j.procbio.2018.09.005
963	Cheng CHC. 1998. Evolution of the diverse antifreeze proteins. <i>Curr Opin Genet Dev</i>
964	8:715–720.
965	Cheng Q, Michels CA. 1991. MAL11 and MAL61 encode the inducible high-affinity
966	maltose transporter of Saccharomyces cerevisiae. J Bacteriol [Internet] 173:1817–
967	1820. Available from: https://iournals.asm.org/doi/10.1128/ib.173.5.1817-
968	1820.1991
969	Christin P-A, Salamin N, Savolainen V, Duvall MR, Besnard G, 2007, C4 Photosynthesis
970	Evolved in Grasses via Parallel Adaptive Genetic Changes. <i>Current Biology</i>
971	[Internet] 17:1241–1247. Available from:
972	https://linkinghub.elsevier.com/retrieve/pii/S0960982207015734
973	Ciccarelli FD, von Mering C, Suvama M, Harrington ED, Izaurralde E, Bork P, 2005.
974	Complex genomic rearrangements lead to novel primate gene function. <i>Genome Res</i>
975	[Internet] 15:343–351. Available from:
976	https://genome.cshlp.org/content/15/3/343.full
977	Clark AG. Glanowski S. Nielsen R. Thomas PD. Keiariwal A. Todd MA. Tanenbaum
978	DM. Civello D. Lu F. Murphy B. et al. 2003. Inferring Nonneutral Evolution from
979	Human-Chimp-Mouse Orthologous Gene Trios, <i>Science (1979)</i> [Internet]
980	302:1960–1963. Available from:
981	https://www.science.org/doi/10.1126/science.1088821
982	Colomer MS. Chailvan A. Fennessy RT. Olsson KF. Johnsen L. Solodovnikova N.
983	Forster J. 2020. Assessing Population Diversity of Brettanomyces Yeast Species and
984	Identification of Strains for Brewing Applications. <i>Front Microbiol</i> [Internet]
985	11:495404. Available from: www.frontiersin.org
986	Copley SD. 2012. Toward a systems biology perspective on enzyme evolution. <i>Journal</i>
987	of Biological Chemistry [Internet] 287:3–10. Available from:
988	http://www.jbc.org/article/S0021925820534856/fulltext
989	Cornette JL, Cease KB, Margalit H, Spouge JL, Berzofsky JA, DeLisi C. 1987.
990	Hydrophobicity scales and computational techniques for detecting amphipathic
991	structures in proteins. J Mol Biol 195:659–685.
992	Cousseau FEM, Alves SL, Trichez D, Stambuk BU. 2013. Characterization of
993	maltotriose transporters from the Saccharomyces eubayanus subgenome of the
994	hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70.
995	Lett Appl Microbiol [Internet] 56:21–29. Available from:
996	https://onlinelibrary.wiley.com/doi/full/10.1111/lam.12011
997	Crandall JG, Fisher KJ, Sato TK, Hittinger CT. 2023. Ploidy evolution in a wild yeast is
998	linked to an interaction between cell type and metabolism. <i>PLoS Biol</i> [Internet]
999	21:e3001909. Available from:
1000	https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001909
1001	Cubillos FA, Gibson B, Grijalva-Vallejos N, Krogerus K, Nikulin J. 2019.
1002	Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers.

1003	Yeast [Internet] 36:383–398. Available from:
1004	https://onlinelibrary.wiley.com/doi/10.1002/yea.3380
1005	Cui Y, Wong WH, Bornberg-Bauer E, Chan HS. 2002. Recombinatoric exploration of
1006	novel folded structures: A heteropolymer-based model of protein evolutionary
1007	landscapes. Proc Natl Acad Sci USA [Internet] 99:809–814. Available from:
1008	https://www.pnas.org/doi/abs/10.1073/pnas.022240299
1009	Day RE, Higgins VJ, Rogers PJ, Dawes IW. 2002. Characterization of the putative
1010	maltose transporters encoded by YDL247w and YJR160c. Yeast [Internet] 19:1015-
1011	1027. Available from: https://onlinelibrary.wiley.com/doi/10.1002/yea.894
1012	Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, Ren W, Hirata K, Yamamoto M, Fan S,
1013	et al. 2015. Molecular basis of ligand recognition and transport by glucose
1014	transporters. <i>Nature</i> [Internet] 526:391–396. Available from:
1015	https://www.nature.com/articles/nature14655
1016	Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N. 2014. Crystal structure of the human
1017	glucose transporter GLUT1. <i>Nature</i> [Internet] 510:121–125. Available from:
1018	https://www.nature.com/articles/nature13306
1019	Dietvorst J, Londesborough J, Steensma HY. 2005. Maltotriose utilization in lager yeast
1020	strains: MTTI encodes a maltotriose transporter. Yeast 22:775–788.
1021	Donzella L, Sousa MJ, Morrissey JP. 2023. Evolution and functional diversification of
1022	yeast sugar transporters. <i>Essays Biochem</i> [Internet] 67:811–827. Available from:
1023	/essaysbiochem/article/67/5/811/232779/Evolution-and-functional-diversification-
1024	of-yeast
1025	Dorus S, Vallender EJ, Evans PD, Anderson JR, Gilbert SL, Mahowald M, Wyckoff GJ,
1026	Malcom CM, Lahn BT. 2004. Accelerated evolution of nervous system genes in the
1027	origin of Homo sapiens. Cell [Internet] 119:1027–1040. Available from:
1028	http://www.cell.com/article/S0092867404011432/fulltext
1029	Drew D, North RA, Nagarathinam K, Tanabe M. 2021. Structures and General Transport
1030	Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev [Internet]
1031	121:5289–5335. Available from:
1032	https://pubs.acs.org/doi/full/10.1021/acs.chemrev.0c00983
1033	Duval EH, Alves SL, Dunn B, Sherlock G, Stambuk BU. 2010. Microarray karyotyping
1034	of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization
1035	profiles reveals copy number variation in genes involved in maltose and maltotriose
1036	utilization. J Appl Microbiol 109:248–259.
1037	Eisenberg D, Schwarz E, Komaromy M, Wall R. 1984. Analysis of membrane and
1038	surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125-
1039	142.
1040	Engelman DM, Steitz TA, Goldman A. 2003. IDENTIFYING NONPOLAR
1041	TRANSBILAYER HELICES IN AMINO ACID SEQUENCES OF MEMBRANE
1042	PROTEINS. https://doi.org/10.1146/annurev.bb.15.060186.001541 15:321-353.
1043	Fairhead C, Dujon B. 2006. Structure of Kluyveromyces lactis subtelomeres: duplications
1044	and gene content. FEMS Yeast Res [Internet] 6:428-441. Available from:
1045	https://dx.doi.org/10.1111/j.1567-1364.2006.00033.x

1046Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. 2014. Engineering of yeast hexose1047transporters to transport <scp>d</scp> -xylose without inhibition by <scp>d</scp> -1048glucose. Proceedings of the National Academy of Sciences [Internet] 111:5159–

- 1049 5164. Available from: https://pnas.org/doi/full/10.1073/pnas.1323464111
- Gallone B, Mertens S, Gordon JL, Maere S, Verstrepen KJ, Steensels J. 2018. Origins,
 evolution, domestication and diversity of Saccharomyces beer yeasts. *Curr Opin Biotechnol* [Internet] 49:148–155. Available from:
- 1053 http://dx.doi.org/10.1016/j.copbio.2017.08.005
- Gibson B, Geertman J-MA, Hittinger CT, Krogerus K, Libkind D, Louis EJ, Magalhães
 F, Sampaio JP. 2017. New yeasts—new brews: modern approaches to brewing yeast
 design and development. *FEMS Yeast Res* [Internet] 17:1–13. Available from:
 https://academic.oup.com/femsyr/article-lookup/doi/10.1093/femsyr/fox038
- Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS
 carrier DNA/PEG method. *Nat Protoc* 2:31–34.
- Gong LI, Suchard MA, Bloom JD. 2013. Stability-mediated epistasis constrains the
 evolution of an influenza protein. *Elife* 2013.
- Gordon JL, Byrne KP, Wolfe KH. 2009. Additions, Losses, and Rearrangements on the
 Evolutionary Route from a Reconstructed Ancestor to the Modern Saccharomyces
 cerevisiae Genome. *PLoS Genet* [Internet] 5:e1000485. Available from:
 https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000485
- Grantham R. 1974. Amino Acid Difference Formula to Help Explain Protein Evolution.
 Science (1979) 185:862–864.
- Groenewald M, Hittinger CT, Bensch K, Opulente DA, Shen XX, Li Y, Liu C, LaBella
 AL, Zhou X, Limtong S, et al. 2023. A genome-informed higher rank classification
 of the biotechnologically important fungal subphylum Saccharomycotina. *Stud Mycol* 105:1–22.
- Grosdidier A, Zoete V, Michielin O. 2011. SwissDock, a protein-small molecule docking
 web service based on EADock DSS. *Nucleic Acids Res* 39:W270–W277.
- Guan L, Hariharan P. 2021. X-ray crystallography reveals molecular recognition
 mechanism for sugar binding in a melibiose transporter MelB. *Commun Biol*[Internet] 4:931. Available from: https://www.nature.com/articles/s42003-02102462-x
- 1078 Guan L, Kaback HR. 2006. LESSONS FROM LACTOSE PERMEASE. Annu Rev
 1079 Biophys Biomol Struct [Internet] 35:67–91. Available from:
- 1080 https://www.annualreviews.org/doi/abs/10.1146/annurev.biophys.35.040405.102005
- 1081Guan L, Mirza O, Verner G, Iwata S, Kaback HR. 2007. Structural determination of1082wild-type lactose permease. Proceedings of the National Academy of Sciences1082II. (a) 104 15204 15209. A cill black
- 1083 [Internet] 104:15294–15298. Available from:
- 1084 https://www.pnas.org/content/104/39/15294
- 1085 Gyurchev NY, Coral-Medina Á, Weening SM, Almayouf S, Kuijpers NGA, Nevoigt E,
 1086 Louis EJ. 2022. Beyond Saccharomyces pastorianus for modern lager brews:
 1087 Evaluring non correction Saccharomyces hybrids with heterotic meltotriose
- 1087 Exploring non-cerevisiae Saccharomyces hybrids with heterotic maltotriose
- 1088 consumption and novel aroma profile. *Front Microbiol* 13:1025132.

1089	Ha S-J, Kim H, Lin Y, Jang M-U, Galazka JM, Kim T-J, Cate JHD, Jin Y-S. 2013. Single
1090	Amino Acid Substitutions in HXT2.4 from Scheffersomyces stipitis Lead to
1091	Improved Cellobiose Fermentation by Engineered Saccharomyces cerevisiae. Appl
1092	Environ Microbiol [Internet] 79:1500–1507. Available from:
1093	http://dx.doi.org/10.1128
1094	Han E-K, Cotty F, Sottas C, Jiang H, Michels CA. 1995. Characterization of AGT1
1095	encoding a general alpha-glucoside transporter from Saccharomyces. Mol Microbiol
1096	[Internet] 17:1093–1107. Available from:
1097	https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.1995.mmi_17061093.x
1098	HANSEN TF, CARTER AJR, CHIU C-H. 2000. Gene Conversion may aid Adaptive
1099	Peak Shifts. J Theor Biol [Internet] 207:495–511. Available from:
1100	https://linkinghub.elsevier.com/retrieve/pii/S0022519300921891
1101	Hara KY, Kobayashi J, Yamada R, Sasaki D, Kuriya Y, Hirono-Hara Y, Ishii J, Araki M,
1102	Kondo A. 2017. Transporter engineering in biomass utilization by yeast. FEMS
1103	Yeast Res [Internet] 17:61. Available from:
1104	https://dx.doi.org/10.1093/femsyr/fox061
1105	Harms MJ, Thornton JW. 2014. Historical contingency and its biophysical basis in
1106	glucocorticoid receptor evolution. <i>Nature</i> [Internet] 512:203–207. Available from:
1107	https://www.nature.com/articles/nature13410
1108	Hatanaka H, Toyonaga H, Ishida Y, Mizohata E, Ono E. 2022. Functional diversity and
1109	plasticity in the sugar preferences of Saccharomyces MALT transporters in
1110	domesticated yeasts. FEMS Yeast Res [Internet] 22:1-10. Available from:
1111	https://dx.doi.org/10.1093/femsyr/foac055
1112	Henderson R, Poolman B. 2017. Proton-solute coupling mechanism of the maltose
1113	transporter from Saccharomyces cerevisiae. Sci Rep [Internet] 7:14375. Available
1114	from: https://www.nature.com/articles/s41598-017-14438-1
1115	Henikoff S, Henikoff JG. 1992. Amino acid substitution matrices from protein blocks.
1116	Proc Natl Acad Sci U S A 89:10915–10919.
1117	Hittinger CT, Carroll SB. 2007. Gene duplication and the adaptive evolution of a classic
1118	genetic switch. Nature [Internet] 449:677–681. Available from:
1119	https://www.nature.com/articles/nature06151
1120	Hittinger CT, Steele JL, Ryder DS. 2018. Diverse yeasts for diverse fermented beverages
1121	and foods. Curr Opin Biotechnol [Internet] 49:199–206. Available from:
1122	http://dx.doi.org/10.1016/j.copbio.2017.10.004
1123	Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2:
1124	Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 35:518–522.
1125	Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP. 2006. A single amino
1126	acid mutation contributes to adaptive beach mouse color pattern. Science (1979)
1127	[Internet] 313:101–104. Available from:
1128	https://www.science.org/doi/10.1126/science.1126121
1129	Hopp TP, Woods KR. 1983. A computer program for predicting protein antigenic
1120	

determinants. *Mol Immunol* 20:483–489.

1131 1132	Horák J. 2013. Regulations of sugar transporters: insights from yeast. <i>Curr Genet</i> [Internet] 59:1–31. Available from: http://link.springer.com/10.1007/s00294-013-
1133	0388-8
1134	Hughes AL. 1994. The evolution of functionally novel proteins after gene duplication.
1135	Proc R Soc Lond B Biol Sci [Internet] 256:119–124. Available from:
1136	https://royalsocietypublishing.org/doi/10.1098/rspb.1994.0058
1137	Hutzler M, Michel M, Kunz O, Kuusisto T, Magalhães F, Krogerus K, Gibson B. 2021.
1138	Unique Brewing-Relevant Properties of a Strain of Saccharomyces jurei Isolated
1139	From Ash (Fraxinus excelsior). Front Microbiol [Internet] 12. Available from:
1140	https://www.frontiersin.org/articles/10.3389/fmicb.2021.645271/full
1141	Jabłońska J, Tawfik DS. 2022. Innovation and tinkering in the evolution of oxidases.
1142	Protein Science [Internet] 31:e4310. Available from:
1143	https://onlinelibrary.wiley.com/doi/full/10.1002/pro.4310
1144	JANIN J. 1979. Surface and inside volumes in globular proteins. <i>Nature</i> 277:491–492.
1145	Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool
1146	K, Bates R, Žídek A, Potapenko A, et al. 2021. Highly accurate protein structure
1147	prediction with AlphaFold. Nature 2021 596:7873 596:583–589.
1148	Kaback HR, Guan L. 2019. It takes two to tango: The dance of the permease. Journal of
1149	General Physiology [Internet] 151:878–886. Available from:
1150	https://doi.org/10.1085/jgp.201912377
1151	Kaltenbach M, Burke JR, Dindo M, Pabis A, Munsberg FS, Rabin A, Kamerlin SCL,
1152	Noel JP, Tawfik DS. 2018. Evolution of chalcone isomerase from a noncatalytic
1153	ancestor. Nat Chem Biol [Internet] 14:548–555. Available from:
1154	http://dx.doi.org/10.1038/s41589-018-0042-3
1155	Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017.
1156	ModelFinder: fast model selection for accurate phylogenetic estimates. Nature
1157	Methods 2017 14:6 14:587–589.
1158	Kasahara M, Shimoda E, Maeda M. 1997. Amino Acid Residues Responsible for
1159	Galactose Recognition in Yeast Gal2 Transporter. Journal of Biological Chemistry
1160	[Internet] 272:16721–16724. Available from:
1161	https://linkinghub.elsevier.com/retrieve/pii/S0021925818392810
1162	Kasahara T, Ishiguro M, Kasahara M. 2006. Eight Amino Acid Residues in
1163	Transmembrane Segments of Yeast Glucose Transporter Hxt2 Are Required for
1164	High Affinity Transport. <i>Journal of Biological Chemistry</i> 281:18532–18538.
1165	Kasahara T, Kasahara M. 1998. Tryptophan 388 in Putative Transmembrane Segment 10
1166	of the Rat Glucose Transporter Glut1 Is Essential for Glucose Transport. Journal of
1167	Biological Chemistry 273:29113–29117.
1168	Kasahara T, Kasahara M. 2000. Three Aromatic Amino Acid Residues Critical for
1169	Galactose Transport in Yeast Gal2 Transporter. Journal of Biological Chemistry
1170	275:4422–4428.
1171	Kasahara T, Kasahara M. 2010. Identification of a Key Residue Determining Substrate
1172	Affinity in the Yeast Glucose Transporter Hxt7. Journal of Biological Chemistry
1173	[Internet] 285:26263–26268. Available from:
1174	https://linkinghub.elsevier.com/retrieve/pii/S0021925820595902

1175 1176 1177	Kasahara T, Maeda M, Boles E, Kasahara M. 2009. Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1. <i>Biochimica et Biophysica Acta (BBA) - Biomembranes</i> 1788:1051–1055.
1178	Kasahara T, Maeda M, Ishiguro M, Kasahara M. 2007. Identification by Comprehensive
1179	Chimeric Analysis of a Key Residue Responsible for High Affinity Glucose
1180	Transport by Yeast HXT2. Journal of Biological Chemistry 282:13146–13150.
1181	Kasahara T, Shimogawara K, Kasahara M. 2011. Crucial Effects of Amino Acid Side
1182	Chain Length in Transmembrane Segment 5 on Substrate Affinity in Yeast Glucose
1183	Transporter Hxt7. Biochemistry [Internet] 50:8674–8681. Available from:
1184	https://pubs.acs.org/doi/10.1021/bi200958s
1185	Katoh K, Kuma KI, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy
1186	of multiple sequence alignment. Nucleic Acids Res 33:511–518.
1187	Katoh K, Misawa K, Kuma KI, Miyata T. 2002. MAFFT: a novel method for rapid
1188	multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res
1189	30:3059–3066.
1190	Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version
1191	7: Improvements in Performance and Usability. Mol Biol Evol 30:772–780.
1192	Kauffman S, Levin S. 1987. Towards a general theory of adaptive walks on rugged
1193	landscapes. J Theor Biol [Internet] 128:11–45. Available from:
1194	https://linkinghub.elsevier.com/retrieve/pii/S0022519387800292
1195	Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web
1196	portal for protein modeling, prediction and analysis. <i>Nat Protoc</i> 10:845–858.
1197	Kim H, Oh EJ, Lane ST, Lee WH, Cate JHD, Jin YS. 2018. Enhanced cellobiose
1198	fermentation by engineered Saccharomyces cerevisiae expressing a mutant
1199	cellodextrin facilitator and cellobiose phosphorylase. <i>J Biotechnol</i> 275:53–59.
1200	Kriventseva E V., Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, Zdobnov
1201	EM. 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist,
1202	bacterial and viral genomes for evolutionary and functional annotations of orthologs.
1203	Nucleic Acids Res [Internet] 4/:D80/–D811. Available from:
1204	https://dx.doi.org/10.1093/nar/gky1053
1205	Kuang MC, Kominek J, Alexander WG, Cheng J-F, Wrobel RL, Hittinger CT. 2018.
1206	Repeated Cis-Regulatory Tuning of a Metabolic Bottleneck Gene during
1207	Evolution. wittkopp P, editor. <i>Mol Biol Evol</i> [Internet] 55:1968–1981. Available
1208	Irom: https://academic.oup.com/mbe/article/55/8/1968/5000152
1209	Kyte J, Doonttie KF. 1982. A simple method for displaying the hydropathic character of
1210	a protein. J Mol Blot 157:105–152. Langdon OK Daris D. Eizaguirra II. Opulanta DA. Pub K.V. Sulvester K. Jarzuna M.
1211	Podríguoz ME Lonos CA, Liblind D, et al. 2020. Postalogial migration shaped the
1212	genomic diversity and global distribution of the wild encestor of lager browing
1213	by brids. PLoS Ganat [Internet] 16:e1008680. Available from:
1214	https://dx.plos.org/10.1371/journal.pgen.1008680
1215	Lee SB Tremaine M Place M Lin I Pier A Krause DI Xie D Zhang V Landick P
1210	Gasch AP et al 2021 Crahtree/Warburg-like aerobic xylose fermentation by
1217	engineered Saccharomyces cerevisiae Matah Fna 68.110–130
1210	engineered bacenaromyces cerevisiae. <i>Metab Eng</i> 00.117–150.

1219	Leffler EM, Band G, Busby GBJ, Kivinen K, Le QS, Clarke GM, Bojang KA, Conway
1220	DJ, Jallow M, Sisay-Joof F, et al. 2017. Resistance to malaria through structural
1221	variation of red blood cell invasion receptors. Science (1979) [Internet] 356:1140-
1222	1152. Available from: https://www.science.org/doi/10.1126/science.aam6393
1223	Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for
1224	phylogenetic tree display and annotation. <i>Nucleic Acids Res</i> 49:W293–W296.
1225	Li XC, Fay JC. 2019. Multiple changes underlie allelic divergence of CUP2 between
1226	Saccharomyces species. G3: Genes, Genomes, Genetics 9:3595-3600.
1227	Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P,
1228	Sampaio JP. 2011. Microbe domestication and the identification of the wild genetic
1229	stock of lager-brewing yeast. Proceedings of the National Academy of Sciences
1230	[Internet] 108:14539–14544. Available from:
1231	https://pnas.org/doi/full/10.1073/pnas.1105430108
1232	Liu H, Maclean CJ, Zhang J. 2019. Evolution of the Yeast Recombination Landscape.
1233	Mol Biol Evol [Internet] 36:412–422. Available from:
1234	https://dx.doi.org/10.1093/molbev/msy233
1235	Long M, Betrán E, Thornton K, Wang W. 2003. The origin of new genes: glimpses from
1236	the young and old. Nature Reviews Genetics 2003 4:11 [Internet] 4:865–875.
1237	Available from: https://www.nature.com/articles/nrg1204
1238	Long M, Langley CH. 1993. Natural Selection and the Origin of jingwei, a Chimeric
1239	Processed Functional Gene in Drosophila. Science (1979) [Internet] 260:91–95.
1240	Available from: https://www.science.org/doi/10.1126/science.7682012
1241	Lunzer M, Miller SP, Felsheim R, Dean AM. 2005. Evolution: The biochemical
1242	architecture of an ancient adaptive landscape. Science (1979) [Internet] 310:499-
1243	501. Available from: https://www.science.org/doi/10.1126/science.1115649
1244	Lynch M. 2005. Simple evolutionary pathways to complex proteins. Protein Science
1245	[Internet] 14:2217–2225. Available from:
1246	https://onlinelibrary.wiley.com/doi/10.1110/ps.041171805
1247	Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO Update:
1248	Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic
1249	Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol
1250	[Internet] 38:4647–4654. Available from:
1251	https://dx.doi.org/10.1093/molbev/msab199
1252	Des Marais DL, Rausher MD. 2008. Escape from adaptive conflict after duplication in an
1253	anthocyanin pathway gene. <i>Nature</i> 454:762–765.
1254	Marger MD, Saier MH. 1993. A major superfamily of transmembrane facilitators that
1255	catalyse uniport, symport and antiport. <i>Trends Biochem Sci</i> [Internet] 18:13–20.
1256	Available from: https://linkinghub.elsevier.com/retrieve/pii/096800049390081W
1257	Maynard Smith J. 1970. Natural Selection and the Concept of a Protein Space. <i>Nature</i>
1258	225:563–564.
1259	Mefford HC, Trask BJ. 2002. The complex structure and dynamic evolution of human
1260	subtelomeres. <i>Nature Reviews Genetics 2002 3:2</i> [Internet] 3:91–102. Available
1261	from: https://www.nature.com/articles/nrg727

1262	Meger AT, Spence MA, Sandhu M, Matthews D, Chen J, Jackson CJ, Raman S. 2024.
1263	Rugged fitness landscapes minimize promiscuity in the evolution of transcriptional
1264	repressors. <i>Cell Syst</i> [Internet] 15:374-387.e6. Available from:
1265	https://linkinghub.elsevier.com/retrieve/pii/S2405471224000620
1266	Méheust R, Bhattacharya D, Pathmanathan JS, McInerney JO, Lopez P, Bapteste E.
1267	2018. Formation of chimeric genes with essential functions at the origin of
1268	eukaryotes. BMC Biol [Internet] 16:30. Available from:
1269	https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0500-0
1270	Metzger BP, Park Y, Starr TN, Thornton JW. 2024. Epistasis facilitates functional
1271	evolution in an ancient transcription factor. <i>Elife</i> [Internet] 12. Available from:
1272	https://elifesciences.org/articles/88737
1273	Meussdorfer F, Zarnkow M. 2009. Starchy Raw Materials. In: Esslinger HM, editor.
1274	Handbook of Brewing: Process, Technology, Markets. Weinheim : Wiley-VCH. p.
1275	43–83.
1276	Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A,
1277	Lanfear R, Teeling E. 2020. IQ-TREE 2: New Models and Efficient Methods for
1278	Phylogenetic Inference in the Genomic Era. Mol Biol Evol 37:1530-1534.
1279	Miyazaki K, Arnold FH. 1999. Exploring nonnatural evolutionary pathways by saturation
1280	mutagenesis: Rapid improvement of protein function. J Mol Evol [Internet] 49:716-
1281	720. Available from: https://link.springer.com/article/10.1007/PL00006593
1282	Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon
1283	A, Tanenbaum DM, Civello D, White TJ, et al. 2005. A Scan for Positively Selected
1284	Genes in the Genomes of Humans and Chimpanzees. PLoS Biol [Internet] 3:e170.
1285	Available from:
1286	https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030170
1287	Nijland JG, Driessen AJM. 2020. Engineering of Pentose Transport in Saccharomyces
1288	cerevisiae for Biotechnological Applications. Front Bioeng Biotechnol [Internet]
1289	7:464. Available from:
1290	https://www.frontiersin.org/article/10.3389/fbioe.2019.00464/full
1291	Nijland JG, Shin HY, de Waal PP, Klaassen P, Driessen AJM. 2018. Increased xylose
1292	affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces
1293	cerevisiae. J Appl Microbiol [Internet] 124:503–510. Available from:
1294	http://www.ncbi.nlm.nih.gov/pubmed/29240974
1295	Nishikawa KK, Hoppe N, Smith R, Bingman C, Raman S. 2021. Epistasis shapes the
1296	fitness landscape of an allosteric specificity switch. <i>Nat Commun</i> [Internet] 12:5562.
1297	Available from: https://www.nature.com/articles/s41467-021-25826-7
1298	Nurminsky DI, Nurminskaya M V., De Aguiar D, Hartl DL. 1998. Selective sweep of a
1299	newly evolved sperm-specific gene in Drosophila. <i>Nature 1998 396:6711</i> [Internet]
1300	396:572–575. Available from: https://www.nature.com/articles/25126
1301	O'Donnell S, Yue J-X, Saada OA, Agier N, Caradec C, Cokelaer T, De Chiara M,
1302	Delmas S, Dutreux F, Fournier T, et al. 2023. Telomere-to-telomere assemblies of
1303	142 strains characterize the genome structural landscape in Saccharomyces
1304	cerevisiae. <i>Nat Genet</i> [Internet] 55:1390–1399. Available from:
1305	https://www.nature.com/articles/s41588-023-01459-y

- 1306 Oh EJ, Jin YS. 2020. Engineering of Saccharomyces cerevisiae for efficient fermentation1307 of cellulose. *FEMS Yeast Res* 20.
- Oh EJ, Kwak S, Kim H, Jin Y-S. 2017. Transporter engineering for cellobiose
 fermentation under lower pH conditions by engineered Saccharomyces cerevisiae.
 Bioresour Technol [Internet] 245:1469–1475. Available from:
- 1311 https://linkinghub.elsevier.com/retrieve/pii/S0960852417308064
- Opulente DA, LaBella AL, Harrison M-C, Wolters JF, Liu C, Li Yonglin, Kominek J,
 Steenwyk JL, Stoneman HR, VanDenAvond J, et al. 2024. Genomic factors shape
 carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts.
- 1315 *Science (1979)* [Internet] 384. Available from:
- 1316 https://www.science.org/doi/10.1126/science.adj4503
- Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW. 2007. Crystal Structure of an
 Ancient Protein: Evolution by Conformational Epistasis. *Science (1979)* [Internet]
 317:1544–1548. Available from:
- 1320 https://www.science.org/doi/10.1126/science.1142819
- Pao SS, Paulsen IT, Saier MH. 1998. Major Facilitator Superfamily. *Microbiology and Molecular Biology Reviews* [Internet] 62:1–34. Available from:
 https://journals.asm.org/doi/10.1128/MMBR.62.1.1-34.1998
- Park Y, Metzger BPH, Thornton JW. 2022. Epistatic drift causes gradual decay of
 predictability in protein evolution. *Science (1979)* [Internet] 376:823–830. Available
 from: https://www.science.org/doi/10.1126/science.abn6895
- Patthy L. 2003. Modular assembly of genes and the evolution of new functions. *Genetica*[Internet] 118:217–231. Available from:
- 1329 https://link.springer.com/article/10.1023/A:1024182432483
- Paulsen PA, Custódio TF, Pedersen BP. 2019. Crystal structure of the plant symporter
 STP10 illuminates sugar uptake mechanism in monosaccharide transporter
 superfamily. *Nat Commun* [Internet] 10. Available from:
 http://dx.doi.org/10.1038/s41467-018-08176-9
- Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA,
 Hulfachor AB, Opulente DA, Hall DJ, et al. 2023. Macroevolutionary diversity of
 traits and genomes in the model yeast genus Saccharomyces. *Nat Commun* [Internet]
 14:690. Available from: https://www.nature.com/articles/s41467-023-36139-2
- Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, Sigwalt A, Barre
 B, Freel K, Llored A, et al. 2018. Genome evolution across 1,011 Saccharomyces
 cerevisiae isolates. *Nature* [Internet] 556:339–344. Available from:
 https://www.nature.com/articles/s41586-018-0030-5
- Podgornaia AI, Laub MT. 2015. Pervasive degeneracy and epistasis in a protein-protein
 interface. *Science (1979)* [Internet] 347:673–677. Available from:
 https://www.science.org/doi/10.1126/science.1257360
- Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ. 2007. Empirical fitness landscapes
 reveal accessible evolutionary paths. *Nature 2006 445:7126* [Internet] 445:383–386.
 Available from: https://www.nature.com/articles/nature05451
- Pokusaeva VO, Usmanova DR, Putintseva E V., Espinar L, Sarkisyan KS, Mishin AS,
 Bogatyreva NS, Ivankov DN, Akopyan A V., Avvakumov SY, et al. 2019. An

1350 experimental assay of the interactions of amino acids from orthologous sequences 1351 shaping a complex fitness landscape. *PLoS Genet* [Internet] 15:e1008079. Available 1352 from: 1353 https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008079 1354 Pougach K, Voet A, Kondrashov FA, Voordeckers K, Christiaens JF, Baying B, Benes V, 1355 Sakai R, Aerts J, Zhu B, et al. 2014. Duplication of a promiscuous transcription 1356 factor drives the emergence of a new regulatory network. *Nat Commun* [Internet] 1357 5:1–11. Available from: http://dx.doi.org/10.1038/ncomms5868 Projecto-Garcia J, Natarajan C, Moriyama H, Weber RE, Fago A, Cheviron ZA, Dudley 1358 1359 R, McGuire JA, Witt CC, Storz JF. 2013. Repeated elevational transitions in 1360 hemoglobin function during the evolution of Andean hummingbirds. Proc Natl Acad *Sci U S A* [Internet] 110:20669–20674. Available from: 1361 1362 https://www.pnas.org/doi/abs/10.1073/pnas.1315456110 Ouistgaard EM, Löw C, Guettou F, Nordlund P. 2016. Understanding transport by the 1363 1364 major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol 1365 [Internet] 17:123–132. Available from: 1366 https://www.nature.com/articles/nrm.2015.25 1367 Roach MJ, Borneman AR. 2020. New genome assemblies reveal patterns of 1368 domestication and adaptation across Brettanomyces (Dekkera) species. BMC 1369 *Genomics* [Internet] 21:1–14. Available from: 1370 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-6595-z 1371 Rogers RL, Bedford T, Lyons AM, Hartl DL. 2010. Adaptive impact of the chimeric 1372 gene Quetzalcoatl in Drosophila melanogaster. Proceedings of the National 1373 Academy of Sciences [Internet] 107:10943–10948. Available from: 1374 https://www.pnas.org/content/107/24/10943 1375 Rogers RL, Hartl DL. 2012. Chimeric Genes as a Source of Rapid Evolution in 1376 Drosophila melanogaster. Mol Biol Evol [Internet] 29:517-529. Available from: 1377 https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msr184 1378 Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH. 1985. Hydrophobicity of 1379 Amino Acid Residues in Globular Proteins. Science (1979) 229:834-838. 1380 Rozpedowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, 1381 Compagno C, Piškur J. 2011. Parallel evolution of the make-accumulate-consume 1382 strategy in Saccharomyces and Dekkera yeasts. Nature Communications 2011 2:1 1383 [Internet] 2:1–7. Available from: https://www.nature.com/articles/ncomms1305 1384 de Ruijter JC, Igarashi K, Penttilä M. 2020. The Lipomyces starkeyi gene Ls120451 1385 encodes a cellobiose transporter that enables cellobiose fermentation in 1386 Saccharomyces cerevisiae. FEMS Yeast Res [Internet] 20. Available from: 1387 https://academic.oup.com/femsyr/article/20/3/foaa019/5822765 1388 Saier MH. 2000. Families of transmembrane sugar transport proteins. Mol Microbiol 1389 [Internet] 35:699–710. Available from: 1390 https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.2000.01759.x 1391 Saier MH, Reddy VS, Moreno-Hagelsieb G, Hendargo KJ, Zhang Y, Iddamsetty V, Lam 1392 KJK, Tian N, Russum S, Wang J, et al. 2021. The Transporter Classification

1393	Database (TCDB): 2021 update. Nucleic Acids Res [Internet] 49:D461–D467.
1394	Available from: https://dx.doi.org/10.1093/nar/gkaa1004
1395	Saier MH, Tran C V., Barabote RD. 2006. TCDB: the Transporter Classification
1396	Database for membrane transport protein analyses and information. <i>Nucleic Acids</i>
1397	Res [Internet] 34:D181–D186. Available from:
1398	https://dx.doi.org/10.1093/nar/gkj001
1399	Salema-Oom M, Valadão Pinto V, Gonçalves P, Spencer-Martins I. 2005. Maltotriose
1400	Utilization by Industrial Saccharomyces Strains: Characterization of a New Member
1401	of the α-Glucoside Transporter Family. Appl Environ Microbiol [Internet] 71:5044–
1402	5049. Available from: https://journals.asm.org/doi/10.1128/AEM.71.9.5044-
1403	5049.2005
1404	Sarkisyan KS, Bolotin DA, Meer M V., Usmanova DR, Mishin AS, Sharonov G V.,
1405	Ivankov DN, Bozhanova NG, Baranov MS, Soylemez O, et al. 2016. Local fitness
1406	landscape of the green fluorescent protein. Nature 2015 533:7603 [Internet]
1407	533:397–401. Available from: https://www.nature.com/articles/nature17995
1408	Serra Colomer M, Funch B, Forster J. 2019. The raise of Brettanomyces yeast species for
1409	beer production. Curr Opin Biotechnol 56:30–35.
1410	Shah P, McCandlish DM, Plotkin JB. 2015. Contingency and entrenchment in protein
1411	evolution under purifying selection. Proc Natl Acad Sci USA [Internet]
1412	112:E3226–E3235. Available from:
1413	https://www.pnas.org/doi/abs/10.1073/pnas.1412933112
1414	Shen X-X, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh K V., Haase MAB,
1415	Wisecaver JH, Wang M, Doering DT, et al. 2018. Tempo and Mode of Genome
1416	Evolution in the Budding Yeast Subphylum. <i>Cell</i> [Internet] 175:1533-1545.e20.
1417	Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867418313321
1418	Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh K V., Haase MAB,
1419	Wisecaver JH, Wang M, Doering DT, et al. 2018. Tempo and Mode of Genome
1420	Evolution in the Budding Yeast Subphylum. <i>Cell</i> 175:1533-1545.e20.
1421	Smithers B, Oates M, Gough J. 2019. 'Why genes in pieces?'—revisited. Nucleic Acids
1422	<i>Res</i> [Internet] 47:4970–4973. Available from:
1423	https://academic.oup.com/nar/article/47/10/4970/5475075
1424	Soylemez O, Kondrashov FA. 2012. Estimating the Rate of Irreversibility in Protein
1425	Evolution. <i>Genome Biol Evol</i> [Internet] 4:1213–1222. Available from:
1426	https://dx.doi.org/10.1093/gbe/evs096
1427	Sprouffske K, Wagner A. 2016. Growthcurver: an R package for obtaining interpretable
1428	metrics from microbial growth curves. BMC Bioinformatics 17:172.
1429	Srikant S, Gaudet R, Murray AW. 2020. Selecting for Altered Substrate Specificity
1430	Reveals the Evolutionary Flexibility of ATP-Binding Cassette Transporters. Current
1431	<i>Biology</i> 30:1689-1702.e6.
1432	Stambuk BU, Araujo PS. 2001. Kinetics of active alpha-glucoside transport in
1433	Saccharomyces cerevisiae. <i>FEMS Yeast Res</i> [Internet] 1:73–78. Available from:
1434	https://academic.oup.com/temsyr/article-lookup/doi/10.1111/j.156/-
1435	1364.2001.tb00015.x

- 1436 Stambuk BU, Batista AS, De Araujo PS. 2000. Kinetics of active sucrose transport in 1437 Saccharomyces cerevisiae. J Biosci Bioeng [Internet] 89:212–214. Available from: 1438 https://linkinghub.elsevier.com/retrieve/pii/S1389172300887423 1439 Stambuk BU, Silva MA, Panek AD, Araujo PS. 1999. Active \hat{I} -glucoside transport in 1440 Saccharomyces cerevisiae. FEMS Microbiol Lett [Internet] 170:105–110. Available 1441 from: https://academic.oup.com/femsle/article-lookup/doi/10.1111/j.1574-1442 6968.1999.tb13361.x 1443 Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically 1444 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics* 1445 [Internet] 24:637–644. Available from: https://dx.doi.org/10.1093/bioinformatics/btn013 1446 1447 Starr TN, Flynn JM, Mishra P, Bolon DNA, Thornton JW. 2018. Pervasive contingency 1448 and entrenchment in a billion years of Hsp90 evolution. Proceedings of the National 1449 Academy of Sciences [Internet] 115:4453–4458. Available from: 1450 https://www.pnas.org/content/115/17/4453 1451 Starr TN, Picton LK, Thornton JW. 2017. Alternative evolutionary histories in the 1452 sequence space of an ancient protein. *Nature* [Internet] 549:409–413. Available 1453 from: https://www.nature.com/articles/nature23902 1454 Starr TN, Thornton JW. 2016. Epistasis in protein evolution. *Protein Science* [Internet] 1455 25:1204–1218. Available from: 1456 https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2897 1457 Steindel PA, Chen EH, Wirth JD, Theobald DL. 2016. Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases. Protein 1458 1459 Science [Internet] 25:1319–1331. Available from: 1460 https://onlinelibrary.wiley.com/doi/full/10.1002/pro.2904 1461 Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N. 2012. Crystal structure of a 1462 bacterial homologue of glucose transporters GLUT1-4. Nature [Internet] 490:361-1463 366. Available from: https://www.nature.com/articles/nature11524 1464 Tawfik OK and DS. 2010. Enzyme Promiscuity: A Mechanistic and Evolutionary 1465 Perspective. Annu Rev Biochem [Internet] 79:471–505. Available from: 1466 https://www.annualreviews.org/doi/10.1146/annurev-biochem-030409-143718 1467 Trichez D, Knychala MM, Figueiredo CM, Alves SL, da Silva MA, Miletti LC, de 1468 Araujo PS, Stambuk BU. 2019. Key amino acid residues of the AGT1 permease 1469 required for maltotriose consumption and fermentation by Saccharomyces 1470 cerevisiae. J Appl Microbiol [Internet] 126:580-594. Available from: 1471 https://academic.oup.com/jambio/article/126/2/580/6715112 1472 Turner TL, Kim H, Kong II, Liu J-J, Zhang G-C, Jin Y-S. 2016. Engineering and 1473 Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. In: 1474 Advances in Biochemical Engineering/Biotechnology. Vol. 162. Springer, Cham. p. 1475 175–215. Available from: https://link.springer.com/chapter/10.1007/10 2016 22 1476 De Visser JAGM, Krug J. 2014. Empirical fitness landscapes and the predictability of 1477 evolution. Nature Reviews Genetics 2014 15:7 [Internet] 15:480-490. Available 1478 from: https://www.nature.com/articles/nrg3744
 - 67

1479	Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A, Maere S, Verstrepen
1480	KJ. 2012. Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular
1481	Mechanisms Underlying Evolutionary Innovation through Gene Duplication. <i>PLoS</i>
1482	Biol 10.
1483	Wang SC, Davejan P, Hendargo KJ, Javadi-Razaz I, Chou A, Yee DC, Ghazi F, Lam
1484	KJK, Conn AM, Madrigal A, et al. 2020. Expansion of the Major Facilitator
1485	Superfamily (MFS) to include novel transporters as well as transmembrane-acting
1486	enzymes. Biochimica et Biophysica Acta (BBA) - Biomembranes [Internet]
1487	1862:183277. Available from:
1488	https://linkinghub.elsevier.com/retrieve/pii/S0005273620301085
1489	Wang W, Zhang J, Alvarez C, Llopart A, Long M. 2000. The Origin of the Jingwei Gene
1490	and the Complex Modular Structure of Its Parental Gene, Yellow Emperor, in
1491	Drosophila melanogaster. Mol Biol Evol [Internet] 17:1294–1301. Available from:
1492	http://academic.oup.com/mbe/article/17/9/1294/994535
1493	Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de
1494	Beer TAP, Rempfer C, Bordoli L, et al. 2018. SWISS-MODEL: homology
1495	modelling of protein structures and complexes. <i>Nucleic Acids Res</i> 46:W296–W303.
1496	Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G,
1497	Kriventseva E V., Zdobnov EM. 2018. BUSCO Applications from Quality
1498	Assessments to Gene Prediction and Phylogenomics. Mol Biol Evol [Internet]
1499	35:543–548. Available from: https://dx.doi.org/10.1093/molbev/msx319
1500	Weinreich DM, Delaney NF, DePristo MA, Hartl DL. 2006. Darwinian Evolution Can
1501	Follow Only Very Few Mutational Paths to Fitter Proteins. Science (1979) [Internet]
1502	312:111–114. Available from:
1503	https://www.science.org/doi/10.1126/science.1123539
1504	Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. 2013. Should evolutionary
1505	geneticists worry about higher-order epistasis? Curr Opin Genet Dev 23:700-707.
1506	Weinreich DM, Watson RA, Chao L. 2005. PERSPECTIVE: SIGN EPISTASIS AND
1507	GENETIC COSTRAINT ON EVOLUTIONARY TRAJECTORIES. Evolution (N
1508	Y) [Internet] 59:1165–1174. Available from: https://dx.doi.org/10.1111/j.0014-
1509	3820.2005.tb01768.x
1510	Wheeler LC, Harms MJ. 2021. Were Ancestral Proteins Less Specific? Malik H, editor.
1511	Mol Biol Evol [Internet] 38:2227–2239. Available from:
1512	https://dx.doi.org/10.1093/molbev/msab019
1513	Wheeler LC, Lim SA, Marqusee S, Harms MJ. 2016. The thermostability and specificity
1514	of ancient proteins. Curr Opin Struct Biol 38:37–43.
1515	Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E. 1999.
1516	Concurrent knock-out of at least 20 transporter genes is required to block uptake of
1517	hexoses in Saccharomyces cerevisiae. FEBS Lett [Internet] 464:123–128. Available
1518	from: https://onlinelibrary.wiley.com/doi/full/10.1016/S0014-
1519	5793%2899%2901698-1
1520	Wong ED, Miyasato SR, Aleksander S, Karra K, Nash RS, Skrzypek MS, Weng S, Engel
1521	SR, Cherry JM. 2023. Saccharomyces genome database update: server architecture,

1522	pan-genome nomenclature, and external resources. <i>Genetics</i> [Internet] 224:191.
1523	Available from: https://dx.doi.org/10.1093/genetics/iyac191
1524	Woolfit M, Rozpędowska E, Piškur J, Wolfe KH. 2007. Genome survey sequencing of
1525	the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis. Eukaryot Cell
1526	[Internet] 6:721–733. Available from:
1527	https://journals.asm.org/doi/10.1128/ec.00338-06
1528	Wright S. 1931. EVOLUTION IN MENDELIAN POPULATIONS. Genetics [Internet]
1529	16:97–159. Available from: https://dx.doi.org/10.1093/genetics/16.2.97
1530	Wright S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in
1531	evolution. Proceedings of the 6th International Congress of Genetics 1:356–366.
1532	Wu NC, Dai L, Olson CA, Lloyd-Smith JO, Sun R. 2016. Adaptation in protein fitness
1533	landscapes is facilitated by indirect paths. <i>Elife</i> 5.
1534	Xia X, Li WH. 1998. What amino acid properties affect protein evolution? J Mol Evol
1535	47:557–564.
1536	Xie VC, Pu J, Metzger BPH, Thornton JW, Dickinson BC. 2021. Contingency and
1537	chance erase necessity in the experimental evolution of ancestral proteins. <i>Elife</i>
1538	[Internet] 10:1-87. Available from: https://elifesciences.org/articles/67336
1539	Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein
1540	structure and function prediction. <i>Nat Methods</i> 12:7–8.
1541	Yi X, Dean AM. 2019. Adaptive Landscapes in the Age of Synthetic Biology. Mol Biol
1542	<i>Evol</i> [Internet] 36:890–907. Available from:
1543	https://dx.doi.org/10.1093/molbev/msz004
1544	Yokoyama S, Tada T, Zhang H, Britt L. 2008. Elucidation of phenotypic adaptations:
1545	Molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci U
1546	<i>SA</i> [Internet] 105:13480–13485. Available from:
1547	https://www.pnas.org/doi/abs/10.1073/pnas.0802426105
1548	Young EM, Tong A, Bui H, Spofford C, Alper HS. 2014. Rewiring yeast sugar
1549	transporter preference through modifying a conserved protein motif. Proceedings of
1550	the National Academy of Sciences [Internet] 111:131–136. Available from:
1551	www.pnas.org/cgi/doi/10.1073/pnas.1311970111
1552	Yue J-X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P,
1553	Warringer J, Lagomarsino MC, et al. 2017. Contrasting evolutionary genome
1554	dynamics between domesticated and wild yeasts. <i>Nat Genet</i> [Internet] 49:913–924.
1555	Available from: https://www.nature.com/articles/ng.3847
1556	Zastrow CR, Hollatz C, de Araujo PS, Stambuk BU. 2001. Maltotriose fermentation by
1557	Saccharomyces cerevisiae. J Ind Microbiol Biotechnol [Internet] 27:34–38.
1558	Available from: https://academic.oup.com/jimb/article/27/1/34-38/5990354
1559	Zhang J, Dean AM, Brunet F, Long M. 2004. Evolving protein functional diversity in
1560	new genes of Drosophila. Proceedings of the National Academy of Sciences
1561	[Internet] 101:16246–16250. Available from:
1562	https://pnas.org/doi/full/10.1073/pnas.0407066101
1563	Zhang J, Zhang Y ping, Rosenberg HF. 2002. Adaptive evolution of a duplicated
1564	pancreatic ribonuclease gene in a leaf-eating monkey. Nature Genetics 2002 30:4
1565	[Internet] 30:411–415. Available from: https://www.nature.com/articles/ng852