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ABSTRACT  26 

 Functional innovation at the protein level is a key source of evolutionary 27 

novelties. The constraints on functional innovations are likely to be highly specific in 28 

different proteins, which are shaped by their unique histories and the extent of global 29 

epistasis that arises from their structures and biochemistries. These contextual nuances 30 

in the sequence-function relationship have implications both for a basic understanding 31 

of the evolutionary process and for engineering proteins with desirable properties. 32 

Here, we have investigated the molecular basis of novel function in a model member of 33 

an ancient, conserved, and biotechnologically relevant protein family. These Major 34 

Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are 35 

thought to be highly plastic and evolvable. By dissecting a recent evolutionary 36 

innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, we 37 

show that the ability to transport a novel substrate requires high-order interactions 38 

between many protein regions and numerous specific residues proximal to the 39 

transport channel. To reconcile the functional diversity of this family with the 40 

constrained evolution of this model protein, we generated new, state-of-the-art 41 

genome annotations for 332 Saccharomycotina yeast species spanning approximately 42 

400 million years of evolution. By integrating phylogenetic and phenotypic analyses 43 
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across these species, we show that the model yeast α-glucoside transporters likely 44 

evolved from a multifunctional ancestor and became subfunctionalized. The 45 

accumulation of additive and epistatic substitutions likely entrenched this subfunction, 46 

which made the simultaneous acquisition of multiple interacting substitutions the only 47 

reasonably accessible path to novelty. 48 

 49 

INTRODUCTION 50 

 Many key evolutionary innovations arise from changes to protein sequences that 51 

alter their function (Cheng 1998; Zhang et al. 2002; Clark et al. 2003; Dorus et al. 2004; 52 

Lunzer et al. 2005; Nielsen et al. 2005; Hoekstra et al. 2006; Christin et al. 2007; 53 

Yokoyama et al. 2008; Voordeckers et al. 2012; Projecto-Garcia et al. 2013; Kaltenbach 54 

et al. 2018; Jabłońska and Tawfik 2022). Occasionally, these changes stem from 55 

dramatic mutational events, including the creation of highly novel coding sequences by 56 

gene conversion or ectopic recombination resulting in chimeric proteins (Long and 57 

Langley 1993; Nurminsky et al. 1998; Wang et al. 2000; Long et al. 2003; Patthy 2003; 58 

Zhang et al. 2004; Ciccarelli et al. 2005; Arguello et al. 2006; Rogers et al. 2010; Rogers 59 

and Hartl 2012; Leffler et al. 2017; Méheust et al. 2018; Baker and Hittinger 2019; 60 

Brouwers, Gorter de Vries, et al. 2019; Smithers et al. 2019; Baker et al. 2022). While 61 

gene conversion can theoretically accelerate the rate of evolution (or even enable 62 

adaptation altogether) by bypassing deleterious intermediates, this effect is primarily 63 

attributable to the presence of a rugged fitness landscape (Kauffman and Levin 1987; 64 
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HANSEN et al. 2000; Cui et al. 2002; Bittihn and Tsimring 2017). Such rugged landscapes 65 

are manifestations of epistasis in the genotypic combinations underlying the phenotypic 66 

map and are prevalent in some empirical systems (Wright 1931; Wright 1932; Maynard 67 

Smith 1970; Weinreich et al. 2005; Weinreich et al. 2006; Gong et al. 2013; Weinreich et 68 

al. 2013; De Visser and Krug 2014; Sarkisyan et al. 2016; Starr and Thornton 2016; Wu et 69 

al. 2016; Pokusaeva et al. 2019; Yi and Dean 2019; Nishikawa et al. 2021; Park et al. 70 

2022; Meger et al. 2024; Metzger et al. 2024). For other proteins, the fitness landscape 71 

may be much smoother, meaning that stepwise mutations with additive effects can 72 

underlie functional evolution (Lunzer et al. 2005; Bridgham et al. 2006; Weinreich et al. 73 

2006; Poelwijk et al. 2007; Campbell et al. 2016; Kaltenbach et al. 2018; Srikant et al. 74 

2020). In cases where novel protein function is linked to gene conversion events 75 

between homologs, these observations therefore raise a fundamental question: are 76 

such dramatic mutational events required to evolve new function, or are they 77 

probabilistic shortcuts in the evolutionary process whose prevalence is a predictable 78 

function of their combined effect size and relative mutation rate? Answering this 79 

question has significant implications for understanding and predicting evolutionary 80 

trajectories, as well as for designing and engineering novel proteins with desirable 81 

functions.  82 

 Recently, several remarkably parallel cases of functional innovation have been 83 

linked directly or speculatively to gene conversion events in an ecologically and 84 

biotechnologically relevant protein family: maltose transporters in Saccharomyces 85 
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yeasts (Baker and Hittinger 2019; Brouwers, Gorter de Vries, et al. 2019; Hatanaka et al. 86 

2022). This protein family consists of transporters similar to the Saccharomyces 87 

cerevisiae Mal31 protein, which has high specificity and high affinity for the disaccharide 88 

maltose, which contains two glucose moieties (Cheng and Michels 1991; Stambuk and 89 

Araujo 2001; Salema-Oom et al. 2005; Alves et al. 2008; Brown et al. 2010). Mal31-like 90 

proteins are encoded in nearly all genomes of Saccharomyces and some closely related 91 

species, and they are frequently encoded by multiple paralogs within each genome.  92 

Maltose uptake is also mediated by a second family of proteins, which are 93 

related to S. cerevisiae Agt1. In contrast to the Mal31-like proteins, Agt1 is a generalist 94 

α-glucoside transporter with a broad substrate range, but it has generally lower affinity 95 

for those substrates (Han et al. 1995; Stambuk et al. 1999; Stambuk et al. 2000; Alves et 96 

al. 2008; Trichez et al. 2019). Notably, Agt1 can transport the glucose trisaccharide 97 

maltotriose, a molecule that is biochemically similar to maltose but contains a third 98 

glucose moiety. Although sometimes referred to as Mal11, Agt1 is a functionally distinct 99 

protein with ≈57% amino acid sequence identity to the Mal31-like proteins. In contrast 100 

to the Mal31-like proteins, Agt1-like proteins are rarer, both in presence and in paralog 101 

number, in the genomes of Saccharomyces yeasts and close relatives (Duval et al. 2010; 102 

Horák 2013).  103 

 The α-glucoside transporters (Agts) of Saccharomyces include the Agt1-like 104 

(“generalist”) and Mal31-like (“high-specificity”) proteins, as well as Mph2/3-like 105 

proteins (Day et al. 2002), which also have high specificity, albeit for the α-glucoside 106 
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turanose (Brown et al. 2010). These Agts have been extensively studied due to their 107 

important role in the production of beer. Maltose and maltotriose are the two most 108 

abundant sugars in brewer’s wort (Meussdorfer and Zarnkow 2009), and their transport 109 

into the cell is the rate-limiting step in their fermentation (Zastrow et al. 2001; Horák 110 

2013). The rarity of maltotriose transporters, such as Agt1, which almost always 111 

manifests as an inability to ferment this carbon source, therefore presents a barrier to 112 

the use of many non-domesticated yeasts in brewing applications.  113 

This barrier is exemplified in Saccharomyces eubayanus, the wild, cold-tolerant 114 

parent of industrial lager-brewing hybrids (Libkind et al. 2011), whose development for 115 

commercial brewing is of great interest (Gibson et al. 2017; Hittinger et al. 2018; 116 

Cubillos et al. 2019). As almost all strains of S. eubayanus lack generalist Agts capable of 117 

transporting maltotriose (Brickwedde et al. 2018; Brouwers, Brickwedde, et al. 2019; 118 

Bergin et al. 2022), multiple attempts have been made to evolve maltotriose 119 

transporters de novo in S. eubayanus strains, using both mutagenesis (Brouwers, Gorter 120 

de Vries, et al. 2019) and adaptive laboratory evolution (Baker and Hittinger 2019). 121 

These experiments, performed independently in different backgrounds of S. eubayanus, 122 

yielded results that were as remarkable in their similarity as they were unexpected. In 123 

both cases, ectopic gene conversion between paralogous high-specificity (Mal31-like) 124 

maltose transporters without any native maltotriose transport capacity (Brickwedde et 125 

al. 2018; Baker and Hittinger 2019) resulted in chimeric proteins capable of transporting 126 

maltotriose.  127 
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Lending weight to the notion that recombination may be a common mechanism 128 

by which transporters in the high-specificity Agt family evolve new function, two newly 129 

discovered S. cerevisiae transporters (Hatanaka et al. 2022), as well as the Mty1 protein 130 

(Dietvorst et al. 2005; Salema-Oom et al. 2005), may possess signatures of more ancient 131 

gene conversion events (Brouwers, Gorter de Vries, et al. 2019). All these proteins 132 

transport maltotriose, but they cluster with Mal31-like proteins in phylogenetic analyses 133 

(Baker and Hittinger 2019; Hatanaka et al. 2022). Nonetheless, it remains unclear 134 

whether these dramatic mutational events are required for the evolution of novel 135 

function in this family or whether they are simply enriched due to the dynamic nature of 136 

the subtelomeric regions in which these genes reside (Mefford and Trask 2002; Fairhead 137 

and Dujon 2006; Gordon et al. 2009; Brown et al. 2010; Yue et al. 2017; Peter et al. 138 

2018; Liu et al. 2019; O’Donnell et al. 2023).  139 

  The yeast α-glucoside transporters are H+ symporters belonging to the sugar 140 

porter family (TCDB: 2.A.1.1) of the Major Facilitator Superfamily (MFS), a vast, 141 

ubiquitous, and ancient group of transmembrane proteins present in all domains of life 142 

(Marger and Saier 1993; Pao et al. 1998; Saier 2000; Wang et al. 2020; Saier et al. 2021). 143 

Across great evolutionary distances, sugar porters share the highly characteristic MFS 144 

fold consisting of twelve transmembrane helices (TMHs) surrounding a hydrophilic 145 

central cavity that constitutes the transport channel (Abramson et al. 2003; Guan and 146 

Kaback 2006; Sun et al. 2012; Deng et al. 2014; Quistgaard et al. 2016; Bosshart and 147 

Fotiadis 2019; Kaback and Guan 2019; Paulsen et al. 2019; Drew et al. 2021). These 148 
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TMHs are organized into two pseudosymmetrical six-helix bundles (N- and C-terminal), 149 

which are separated by a long intracellular linker (ICH domain). The transport channel is 150 

surrounded by four helices from each bundle, and TMHs stack tightly against their intra-151 

bundle partners, with additional contacts between the N- and C-terminal domains at the 152 

inter-bundle interface. In S. cerevisiae Agt1, the sugar substrate and/or proton are 153 

thought to be bound primarily by charged residues projecting into this central cavity, 154 

which are conserved across fungal Agts (Henderson and Poolman 2017; Trichez et al. 155 

2019). More generally, substrate affinity and specificity in MFS sugar transporters are 156 

mediated by extensive hydrogen bonding and occasionally by hydrophobic interactions 157 

between the sugar and the protein, as well as steric constraints that limit substrate 158 

accommodation; moreover, there is a growing appreciation for the fine-scale and 159 

occasionally cryptic contributions to affinity by residues within Van der Waals distance 160 

of the substrate (Kasahara et al. 1997; Kasahara and Kasahara 1998; Kasahara and 161 

Kasahara 2000; Guan and Kaback 2006; Kasahara et al. 2006; Guan et al. 2007; Kasahara 162 

et al. 2007; Kasahara et al. 2009; Kasahara and Kasahara 2010; Kasahara et al. 2011; Sun 163 

et al. 2012; Deng et al. 2014; Farwick et al. 2014; Deng et al. 2015; Bosshart and Fotiadis 164 

2019; Kaback and Guan 2019; Drew et al. 2021; Guan and Hariharan 2021).  165 

Nonetheless, the extensive and exquisite biochemical study of MFS sugar 166 

transporters has almost exclusively focused on the determinants of native substrate 167 

binding and affinity in extant proteins, while questions about how such proteins could 168 

evolve the capacity to transport a novel substrate de novo have been largely 169 
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unaddressed. Understanding evolution-informed design principles in this protein family 170 

could enable the engineering of desirable properties in tractable proteins, with 171 

significant implications for industrial processes, including the fermentation of cellulosic 172 

and hemicellulosic biomass into next-generation biofuels and bioproducts (Ha et al. 173 

2013; Farwick et al. 2014; Young et al. 2014; Turner et al. 2016; Hara et al. 2017; Oh et 174 

al. 2017; Casa-Villegas et al. 2018; Kim et al. 2018; Nijland et al. 2018; Nijland and 175 

Driessen 2020; Oh and Jin 2020; de Ruijter et al. 2020). 176 

 To this end, we aimed to dissect the molecular genetic basis of novel function in 177 

the chimeric S. eubayanus maltotriose transporter MalT434. MALT434 arose from an 178 

ectopic gene conversion event between genes encoding two paralogous maltose 179 

transporters, MalT3 and MalT4, which resulted in the replacement of approximately 230 180 

base pairs of the MALT4 gene with the homologous portion of MALT3 (Baker and 181 

Hittinger 2019). Both MalT3 and MalT4 are members of the high-specificity maltose 182 

transporter family and incapable of transporting maltotriose (Brickwedde et al. 2018; 183 

Baker and Hittinger 2019), suggesting that intramolecular epistasis between their 184 

protein regions underlies the emergent maltotriose transport by MalT434. The 185 

translocated region of MALT3 encodes TMH 11 and portions of TMHs 10 and 12 (Fig. 186 

1a), and it introduced 11 nonsynonymous mutations to the protein-coding sequence of 187 

MALT4 (Fig. 1b). All three proteins are predicted to have virtually identical structures 188 

across their entire folds (pairwise RMSD=0.955Å) and TMHs 10-12 (0.909Å, Fig. S1), 189 

suggesting that novel substrate transport might stem from a specific combination of 190 
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substrate-interacting residues from distal protein regions in MalT434, rather than a 191 

global change to protein structure. In the simplest model, as few as a single interacting 192 

residue from each protein region could underlie the emergence of novel function, which 193 

would make the evolution of new function in this family predictable and tunable; in the 194 

most complex model, all 120 amino acid differences between the two parental 195 

transporters could contribute, which would render the evolution of new function 196 

incredibly difficult.  197 

 Here, we show that the basis of maltotriose transport is remarkably complex in 198 

this model neofunctionalized transporter. Novel function is shaped by a combination of 199 

additive and non-additive interactions between as many as seven regions in the MalT4 200 

backbone and six substitutions across TMHs 10 and 11. At one critical site, very few 201 

amino acids can support novel function, which further limits the evolutionary paths 202 

available to the wild-type protein; at other sites, these requirements are less stringent. 203 

We propose that, overall, novel substrate transport is enabled by widening the 204 

transport channel while simultaneously creating a favorable electrostatic environment 205 

for the bulkier trisaccharide molecule. Finally, we reconstruct the evolutionary history of 206 

the high-specificity and generalist yeast Agts and their relationships to other sugar 207 

porters; unexpectedly, we show that the specialist maltose transporters are likely 208 

derived and subfunctionalized from a generalist ancestor. This specialization likely 209 

involved a gradual refinement of the transport channel to specifically accommodate 210 

maltose with higher affinity, which makes the reacquisition of ancestral generalist 211 
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function difficult to achieve. While our results indicate that rational engineering for 212 

novel substrate transport in this protein family is likely to be difficult, they also highlight 213 

the abundance and diversity of transporters in biotechnologically relevant yeast species, 214 

which could be readily mined for desirable functions that have been exquisitely refined 215 

over billions of years of evolution, as well as perhaps recombined into new functions. 216 

 217 

RESULTS 218 

High-order intramolecular interactions are required to evolve a novel function in 219 

maltose transporters 220 

 We first investigated the scope and complexity of intramolecular interactions 221 

shaping the emergence of novel function in MalT434. We coarsely defined functional 222 

protein regions as the twelve transmembrane helices (TMHs), the intracellular (ICH) 223 

domain, and the partially unstructured intracellular N- and C-terminal regions. We 224 

iteratively constructed novel chimeric genes encoding transporters from MalT3 and 225 

MalT4 components and tested their ability to support growth on maltotriose when 226 

expressed from the native MALT4 locus (Fig 2). Unsurprisingly, the C-terminal portion of 227 

MalT4 present in MalT434 was neither necessary (construct 1) nor sufficient (construct 228 

17) for maltotriose transport; indeed, its replacement with the corresponding region of 229 

MalT3 improved growth on maltotriose by 15.3% (p = 5.3x10-4, Mann-Whitney U test). 230 

By contrast, replacement of TMHs 8 and 9 and the N-terminal half of TMH 10 with their 231 

MalT3 counterparts (construct 2) reduced growth by 11.6% compared to MalT434 (p = 232 
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0.184), while still supporting robust growth. Dissection of the region N-terminal to TMH 233 

8 revealed that the key interaction enabling maltotriose transport occurs between TMHs 234 

10 and 11 of MalT3 and TMH 7 from MalT4. While necessary, this region alone was not 235 

sufficient to enable maltotriose transport in every protein context. In addition to the 236 

epistatic interaction between TMHs 7, 10, and 11, growth on maltotriose required the 237 

presence of TMHs 1 and 2 from MalT4 in combination with the ICH domain from MalT3 238 

(construct 7), or alternatively, one or more of TMH 5, TMH 6, and the ICH domain from 239 

MalT4 (construct 15).  240 

For chimeric constructs containing potentiating sequences at TMHs 5-7 and 10-241 

12, growth on maltotriose generally increased additively with the number of MalT4 242 

regions incorporated (linear regression, p < 2.2x10-16). Nonetheless, we found significant 243 

support (ANOVA, p < 2.2x10-16) for pairwise epistasis between the tested protein 244 

regions, including in the sign of the effects of the ICH domain and the C-terminal region 245 

(residues 541-613). For example, the addition of TMH 3 and TMH 4 from MalT4 in 246 

conjunction with MalT4 TMH 7 only increased growth on maltotriose if TMH 5 and TMH 247 

6 from MalT4 were also present; similarly, the addition of TMH 1, TMH 2, and the ICH 248 

domain from MalT4 in conjunction with TMH 7 did not improve growth (construct 6 vs. 249 

16, Fig. 2) unless in the presence of TMHs 3-6 from MalT4 (construct 2 vs. 13, 52% 250 

increase, p = 2.4x10-4). Along the quantitative functional spectrum of MalT3/4 chimeric 251 

proteins enabling growth on maltotriose, we therefore detected a complex combination 252 

of additive and epistatic intramolecular interactions among at least six protein regions.  253 
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 254 

Numerous substitutions are required to evolve a novel function in maltose 255 

transporters 256 

 We next dissected the contributions of the 11 substitutions in MalT434 relative 257 

to MalT4 (Fig. 1b) by introducing subsets of these to the gene encoding the native 258 

MalT4 protein (Fig. 3). We first tested the effect of a pair of suggestive substitutions, 259 

S468F and N522D, which were both unique in their location in the 3D structure and 260 

differed notably in side-chain chemistry. Nonetheless, this pair of mutations was 261 

insufficient for novel function in MalT4, so we coarsely tested the effect of the sets of 262 

mutations occurring before and after the end of TMH 11. Introduction of the five 263 

substitutions from residues 522-540, which span an extracellular loop and the majority 264 

of TMH 12, was insufficient to confer any growth on maltotriose. By contrast, the six 265 

mutations affecting TMHs 10 and 11 were sufficient to confer growth on maltotriose, 266 

and even improved it by 13.3% relative to MalT434 (p = 5.6x10-7, Mann-Whitney U test). 267 

Within this contiguous patch of substitutions, however, the contribution of individual 268 

amino acids to novel function was remarkably complex. Reversion of the six mutations 269 

singly to their MalT4 identity revealed that each had a significant effect on maltotriose 270 

growth, ranging from a 23.5% reduction (A504G, p = 2x10-6) to its complete abrogation 271 

(C505N, p = 5.2x10-11), with an average effect of 57.1%. We detected significant (p < 272 

2.2x10-16) evidence of pairwise epistasis between substitutions, regardless of whether 273 

we considered all 11 sites or only the 6 on TMHs 10 and 11. Epistatic effects were 274 
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notably non-uniform among tested combinations: for example, two single reversion 275 

mutations (M503I and T508V) had similar effects of 49.1% (p = 3.2x10-7) and 44.1% (p = 276 

9.1x10-13) when introduced in the six-substitution background that supported robust 277 

growth on maltotriose. By contrast, when introduced in a four-mutation background 278 

with reduced ability to support growth on maltotriose (M503 C505 T508 T512), the 279 

effect of M503I remained large (42.6%, p = 0.002), while T508V effected only a small 280 

further reduction (4.97%, p = 0.8). Overall, we found that establishing novel function in 281 

MalT4 required a combination of three amino acid substitutions only accessible through 282 

a minimum of four non-consecutive nucleotide substitutions to the wild-type gene: 283 

N505C (2 nucleotide substitutions), I512T (1 substitution), and one of I503M (1 284 

substitution) or V508T (2 substitutions).  285 

 286 

Granular mapping of epistasis between distal protein regions 287 

Given the size of interacting protein regions and the complexity of their 288 

contributions to novel function, we sought to identify the key difference in amino acid 289 

sequence responsible for the large epistatic effect of transmembrane helix 7. The two 290 

parental transporters differ at six sites along TMH 7 (Fig. S2a): two neighboring 291 

substitutions (K357C and V358I, expressed relative to MalT4) occur at the intracellular 292 

C-terminal end, while two (A371I, V375T) are located approximately halfway along the 293 

helix and likely to be embedded in the plasma membrane. Two (A378T, S379Q) project 294 

into or neighbor the transport channel, differ in size and/or polarity, and are in close 295 
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three-dimensional proximity to mutated residues on TMH 11 in MalT434 (Fig. 4a, Fig. 296 

S2b). We reasoned that one or both of A378T and S379Q might have a large effect on 297 

the interaction between TMH 7 and the translocated region of MalT3 present in 298 

functional chimeric transporters. To test these hypotheses, we mutated each of these 299 

residues to their MalT3 identity, singly and in combination, in a gene encoding the 300 

MalT4 transporter harboring the six mutations on TMHs 10 and 11 that conferred 301 

maximal maltotriose transport (Fig. 4b). While the A378T mutation did not affect growth 302 

on maltotriose, S379Q abolished it completely. The large epistatic interaction between 303 

TMH 7 and TMH 11 can thus be attributed to a single amino acid.  304 

 305 

Novel transporter function is constrained by specific biochemical requirements and 306 

context dependence 307 

 The mutational event that generated MalT434, as well as our experiments 308 

dissecting it, only sampled variation between two binary states: the specific amino acid 309 

residues of the parental proteins at each homologous site. In native contexts, however, 310 

many more amino acid substitutions are accessible in mutational space through single- 311 

or multi-nucleotide mutations; for example, seven amino acid substitutions require only 312 

a single nucleotide change from an asparagine codon, which is the wild-type amino acid 313 

at the crucial 505 site. While we found complex interactions between many sites to 314 

contribute to novel function in MalT4, the evolution of maltotriose transport would be 315 

far less constrained and more accessible through sequential point mutations if 316 
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biochemically similar amino acids at key sites could enable a degree of novel function 317 

because it would increase the mutational target size and pool of mutations conferring a 318 

fitness benefit (Miyazaki and Arnold 1999; Podgornaia and Laub 2015).  319 

We thus sought to clarify the biochemical requirements for maltotriose transport 320 

in a specific potentiated context: a MalT4 transporter harboring S379, F468, M503, 321 

A504, T508, and T512. In this state, amino acid identity at position 505 is crucial with the 322 

wild-type asparagine incapable of supporting growth on maltotriose and the 323 

recombinant cysteine supporting robust growth (Fig. 3). We successfully mutated this 324 

residue to 17 of the 20 possible amino acids, measured their ability to support growth 325 

on maltotriose, and used regression analyses to estimate the effect of side chain 326 

physicochemical properties on measured function (Fig. 5). Remarkably, only three 327 

substitutions supported any degree of statistically significant growth above baseline: 328 

serine, glycine, and cysteine. Side chain aromaticity, volume, composition, and 329 

hydropathy were all significant (p << 0.01) predictors of function, as was overall 330 

similarity to the wild-type residue asparagine. Even so, the strengths of these 331 

associations were almost entirely driven by the C505 variant: when these data were 332 

omitted, the global explanatory power was reduced dramatically (adjusted R2: 0.2263 333 

vs. 0.8664; F-statistic: 9.533 vs. 242). Although some physicochemical properties 334 

remained statistically significant predictors of function, the strengths of these 335 

associations were generally weak (maximum |Kendall’s Τ|: 0.212).  336 
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Qualitatively, the fine-scale stringency of physicochemical requirements at 337 

position 505 was also noteworthy. Glycine, serine, and cysteine are three of the smallest 338 

amino acids, but amino acids with similar side chain volumes did not support growth on 339 

maltotriose. Serine and cysteine have side chains of similar size and structure capable of 340 

forming hydrogen bonds, but they differ in their polarity and hydrophobicity; 341 

nonetheless, residues similar to cysteine in both of these metrics did not support novel 342 

function. Indeed, C505’s ability to support novel function appeared to be the result of 343 

the specific combination of cysteine’s physicochemical properties (Fig. S3), albeit not 344 

due to its unique capacity to form disulfide bridges (Drew et al. 2021). Remarkably, this 345 

effect was dependent on positional context within the transporter: while substituting 346 

cysteine to serine at 505 reduced growth by 71.2% (p = 8.8x10-5), making the orthogonal 347 

serine to cysteine substitution at another key site, S379 (Fig. 4) reduced growth by 348 

17.7% (p = 1.9x10-6) while still supporting robust growth (Fig. S4). Thus, while serine was 349 

largely unable to recapitulate the effect of cysteine at 505, the similarity between the 350 

two was sufficient to satisfy the requirements for novel function at position 379. The 351 

same was not true of two other hydrogen bond-competent residues, glutamic acid and 352 

glutamine, whose introduction at position 379 abolished growth (Fig. S4). This result 353 

suggests that, while serine and cysteine are interchangeable at this site, interactions 354 

between physical and chemical side chain properties still play a role. Finally, we found 355 

further evidence for these fine-scale requirements at position 512, where mutation of 356 

the permissive threonine to valine reduced growth by 34.5% (p = 7.4x10-9), while still 357 
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supporting significantly improved growth over the wild-type MalT4 residue isoleucine 358 

(78.1% increase, p = 1.2x10-6). In summary, we find that the strengths, stringencies, and 359 

bases of physicochemical requirements all vary between sites that are critical for 360 

establishing novel function in MalT434. These results suggest that the serendipitous 361 

acquisition of a set of epistatically sufficient residues is highly improbable by point 362 

mutations alone (Lynch 2005).  363 

 364 

High-specificity transporters are evolutionarily derived 365 

 The sum of our molecular analyses suggested that the acquisition of novel 366 

substrate transport by the high-specificity maltose transporter MalT4 is highly 367 

improbably and accessible only through the simultaneous acquisition of numerous 368 

interacting substitutions. This observation is consistent with previous failed attempts to 369 

establish a maltotriose transporter by introducing as many as 14 rational mutations to S. 370 

cerevisiae Mal61 (Hatanaka et al. 2022), a prototypical high-specificity maltose 371 

transporter closely related to MalT4. However, the presence of closely related generalist 372 

α-glucoside transporters, as typified by S. cerevisiae Agt1, suggests that this ability 373 

evolved at least once among yeast α-glucoside transporters. We sought to clarify the 374 

timing and mode of this historical evolutionary innovation by examining the 375 

phylogenetic relationships between the generalist and specialist α-glucoside 376 

transporters within Saccharomycotina yeasts, which have previously been assessed on 377 
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only a few taxa (Brown et al. 2010; Cousseau et al. 2013; Baker and Hittinger 2019; de 378 

Ruijter et al. 2020; Hatanaka et al. 2022; Donzella et al. 2023).  379 

 We first generated high-quality protein-coding gene annotations for published 380 

genomes from 332 yeast species from the model subphylum Saccharomycotina, which 381 

spans more than 400 million years of evolution (X.-X. Shen et al. 2018). To formally test 382 

the expected monophyly of the α-glucoside transporters within the broader sugar 383 

porter family, we retrieved homologs of S. cerevisiae sugar porters from these predicted 384 

proteomes and constructed a comprehensive phylogeny of these 8,403 ecologically and 385 

biotechnologically relevant MFS proteins. This phylogeny split into several major clades, 386 

many of which contained at least one functionally characterized protein from S. 387 

cerevisiae or another species (Fig. S5). Both the high-specificity (Mal31- and Mph2/3-388 

like) and generalist (Agt1-like) α-glucoside transporters clustered in a monophyletic 389 

group (“Agt clade”) that excluded other sugar porter families. All proteins in the Agt 390 

clade from the newly circumscribed order Saccharomycetales (Groenewald et al. 2023) 391 

grouped together with strong support (Fig. 6a). The monophyly of the 392 

Saccharomycetales Agts was interrupted in two cases: 1) a single protein from Ogataea 393 

naganishii sister to the Lachancea Agt1-like proteins; 2) and, more notably, a well-394 

supported clade of Agts from Brettanomyces anomalus and Brettanomyces bruxellensis. 395 

The Brettanomyces species are documented recipients of numerous horizontal gene 396 

transfer events, including for genes involved in the metabolism of sucrose, an Agt1 397 

substrate (Stambuk et al. 2000; Woolfit et al. 2007; Roach and Borneman 2020). 398 
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Notably, B. bruxellensis is commonly associated with brewing environments, where its 399 

propensity to vigorously consume diverse sugars and independent evolution of aerobic 400 

fermentation make it a frequent contaminant and occasional desired contributor 401 

(Rozpedowska et al. 2011; Serra Colomer et al. 2019; Colomer et al. 2020).  402 

Surprisingly, the clade containing high-specificity Saccharomyces maltose 403 

transporters only included taxa from closely related species in the genera 404 

Saccharomyces and Lachancea, as well as one protein each from Zygotorulaspora 405 

florentina and Zygosaccharomyces kombuchaensis (Fig. 6b). Among the high-specificity 406 

Agts, the Mph2/3 clade was further restricted to Saccharomyces kudriavzevii, 407 

Saccharomyces mikatae, Saccharomyces paradoxus, and S. cerevisiae (Fig. 6b), which is 408 

consistent with an origin in the common ancestor of these species following their split 409 

from Saccharomyces arboricola and a recent segmental duplication in S. cerevisiae 410 

(Saccharomyces jurei is absent in this dataset). The sister clade to the high-specificity 411 

proteins contained generalist Agts from Saccharomyces, Torulaspora, and 412 

Zygotorulaspora species, with deeper branches to Kluyveromyces and Lachancea 413 

homologs (Fig. 6b). We thus conclude that the high-specificity transporters typified by S. 414 

cerevisiae Mal31, including S. eubayanus MalT4 and MalT3, form a clade restricted to 415 

Saccharomycetales.  416 

 417 

Generalist-like transporters are quantitatively correlated with growth on α-glucosides 418 
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 Our phylogenetic analyses suggested that the high-specificity Agts are 419 

evolutionarily and functionally derived from a generalist ancestor. In this model, the 420 

vast array of uncharacterized Agt-clade proteins encoded by diverse yeast species 421 

should include generalist transporters or transporters that became subfunctionalized 422 

following duplication of a generalist ancestor, and their presence should support growth 423 

on substrates of the generalist Agts. We collected quantitative growth measurements 424 

for 287 of the 332 species in our phylogenetic dataset on three sugars that are 425 

substrates of the generalist transporter S. cerevisiae Agt1 but not of the high-specificity 426 

transporters: maltotriose, trehalose, and methyl-α-glucoside (Han et al. 1995; Stambuk 427 

et al. 1999; Stambuk and Araujo 2001; Alves et al. 2008; Brown et al. 2010). We found 428 

many species across the Saccharomycotina to be capable of vigorous growth on these 429 

sugars as a sole carbon source (Fig. 7a). Growth on all three α-glucosides was nearly 430 

ubiquitous among Serinales, a speciose order with a high incidence of carbon niche-431 

breadth generalists (Opulente et al. 2024). Most notably, growth on maltotriose was 432 

widespread across the yeast subphylum, in contrast to the documented rarity of this 433 

trait in the model genus Saccharomyces (Duval et al. 2010; Gallone et al. 2018; Langdon 434 

et al. 2020; Hutzler et al. 2021; Gyurchev et al. 2022; Peris et al. 2023). This metabolic 435 

deficiency was concomitant with the paucity of generalist-like Agt proteins encoded in 436 

Saccharomycetales genomes, which was similarly not representative of other yeast 437 

orders (Fig. 7b; p = 1.9x10-13). Indeed, patterns of α-glucoside growth qualitatively 438 

tracked the presence of genes encoding Agt proteins, with both subject to clear 439 
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evolutionary shifts including losses (e.g. Saccharomycodales, Sporopachydermiales, and 440 

Trigonopsidales; Saturnispora, Zygosaccharomyces, Eremothecium, Kazachstania, 441 

Nakaseomyces, Naumovozyma, and Tetrapisispora spp.) and amplifications 442 

(Debayromyces, Metschnikowia, and Kuraishia spp.; subclades of Phaffomycetales, 443 

Dipodascales, Pichiales, and Lipomycetales). We used phylogenetically corrected least 444 

squares regressions (PGLS) to statistically test the strength of the correlation between 445 

Agt count and growth on each of the three tested Agt1 substrates (Fig. 7c). We detected 446 

significant positive correlations between Agt count and growth on each of the three α-447 

glucosides (p ≤ 0.007). Thus, the generalist-like Agts detected in most Saccharomycotina 448 

genomes are likely to be true generalist transporters or recently subfunctionalized 449 

derivatives.  450 

 451 

DISCUSSION 452 

 In the present work, we sought to understand how novel function could evolve 453 

in a model yeast α-glucoside transporter. To this end, we dissected the molecular basis 454 

of maltotriose transport in MalT434, which represents one of the most evolutionarily 455 

recent functional innovations in this family. We found that, in this chimeric protein, 456 

novel function is an emergent property of extensive additive and non-additive 457 

interactions between multiple protein regions and multiple residues on TMHs 7, 10, and 458 

11 (Figs. 2-4). We observed that even conservative amino acid changes, as well as 459 

residues not predicted to interact with the substrate, had significant and unexpected 460 
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effects on maltotriose transport (Fig. 3, Fig. 5). We also found evidence that the 461 

stringency of side chain physicochemical requirements likely differs substantially 462 

between crucial residues (Fig. 5, Fig. S4). Taken together, these results demonstrate that 463 

the evolution of novel function in a high-specificity Agt is highly constrained, which is 464 

consistent with recent observations (Hatanaka et al. 2022). In this model, the evolution 465 

of novel function in this family by gene conversion may indeed be the only remotely 466 

probable way that all the necessary interacting residues can readily be assembled in a 467 

single molecule, even if paralogs are free to sample neutral or deleterious mutational 468 

steps.  469 

The gene conversion events leading to novel function in high-specificity yeast 470 

Agts share striking parallelism at both the sequence and structural scales. For example, 471 

the portions of Mty1 inferred to derive from different parental proteins encompass 472 

many of the same regions that we identified as having crucial interactions in MalT434 473 

(Fig. S7a). Even more strikingly, the homologous residues at five of the seven sites that 474 

affect maltotriose transport in MalT434 are conserved in Mty1 (Fig. S7b). At the other 475 

two sites, Mty1 possesses amino acids that support reduced, but significant, growth in 476 

MalT434 (C505S and T512I). While many of the same sites likely contribute to novel 477 

function in both of these recombinant transporters, specific amino acids at key sites are 478 

still likely context-dependent, which makes functional evolution both more difficult to 479 

predict and to engineer in this family.       480 
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 Compounding this difficulty is the cryptic nature of sites that we empirically 481 

determined to influence maltotriose transport but which are unlikely to interact with 482 

the substrate (Fig. 1). These substitutions may effect subtle changes to the overall 483 

conformation of the transporter, especially where they have the potential to interact 484 

with other protein regions that are proximal in tertiary space (e.g. F468). Moreover, 485 

there is a growing appreciation that, in yeast monosaccharide sugar porters, the fine-486 

scale environment around the substrate binding site plays a surprisingly large role in 487 

sugar recognition and specificity, both by shaping an accommodating binding pocket 488 

and through interactions between substrate-interacting and non-interacting residues 489 

within van der Waals distance (Kasahara et al. 2009; Drew et al. 2021).   490 

In MalT434, more concrete hypotheses can be made about the molecular 491 

contributions of other sites important for novel substrate transport. Molecular docking 492 

analyses place the maltotriose ligand in close proximity to the key sites on TMH 7 and 493 

TMH 11 (Fig. S8), with several of the sugar hydroxyl groups capable of engaging in a 494 

hydrogen-bonding network with the side chains of polar amino acid residues at those 495 

sites. Of the substitutions in MalT434 that face the transport channel, all three have 496 

polar and hydrogen bond-competent side chains of small-to-medium size; in wild-type 497 

MalT4, the residues at these sites have bulkier and/or hydrophobic side chains. 498 

Similarly, at the crucial 379 site on TMH 7, the permissive serine has a much smaller side 499 

chain than the prohibitive glutamine. Either of the prohibitive residues at 379 and the 500 

other crucial site 505 might introduce steric clashes with the terminal glucopyranose 501 
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moiety of maltotriose (Fig. S8c), even though they themselves are likely capable of 502 

hydrogen-bonding with the substrate. Notably, the residue at position 379 may be 503 

involved in coupling substrate binding to gating during the transition to the occluded 504 

state (Drew et al. 2021), a key determinant of substrate recognition that involves more 505 

tightly embedding the sugar molecule in its binding site within the transport channel. In 506 

wild-type MalT4, position 379 has the smaller serine residue, while sites along TMH 11 507 

have bulkier amino acids; in wild-type MalT3, position 379 has the larger glutamine 508 

residue, but TMH 11 has smaller, hydrophilic residues. Thus, in each native maltose 509 

transporter, the steric constraint of the transport channel may be finely tuned at co-510 

evolving sites along TMH 7 and TMH 11 to accommodate maltose with higher affinity 511 

and specificity, which occur at the expense of steric exclusion of other substrates, such 512 

as maltotriose (Fig. S8e). This model is consistent with the crucial role of amino acid side 513 

chain length in shaping substrate specificity in some monosaccharide sugar porters 514 

(Kasahara et al. 2011; Drew et al. 2021), notwithstanding that we also detected a 515 

complex interaction between size and biochemical properties at the key 505 site.  516 

  The difficulty of functional innovation in the high-specificity Agts begs the 517 

question of how the related generalist Agts are capable of transporting not only maltose 518 

and maltotriose, but a diverse range of substrates. If the generalist transporters had 519 

evolved from a more specific ancestor, as has been suggested (Pougach et al. 2014), 520 

their extant substrate range would imply multiple bouts of highly constrained functional 521 

evolution. To determine when and how this broad substrate specificity may have 522 
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evolved in the generalist Agts, we reconstructed the yeast sugar porter phylogeny from 523 

332 newly annotated, representative Saccharomycotina genomes encompassing more 524 

than 400 million years of evolution (Fig. S5). This analysis showed that, somewhat 525 

unexpectedly, the high-specificity Agts are a derived clade within the generalist-like Agts 526 

(Fig. 6a). The copy number of these putative generalist Agts encoded by yeast genomes 527 

is strongly predictive of growth on Agt1-exclusive substrates (Fig. 7), which further 528 

supports the conclusion that these proteins are likely bona fide generalists. The 529 

evolution of maltotriose transport by high-specificity Agts is thus better regarded as a 530 

reacquisition of ancestral function than the de novo evolution of a truly novel function 531 

within this protein family.  532 

It remains subject to debate whether the general trend of protein evolution is 533 

directional: from less to more intrinsically specific (Bridgham et al. 2006; Tawfik 2010; 534 

Copley 2012; Steindel et al. 2016; Wheeler et al. 2016; Wheeler and Harms 2021). 535 

Multiple lines of evidence now suggest that this mode is dominant in genes involved in 536 

α-glucoside metabolism in yeasts. In addition to the α-glucoside transporters, both the 537 

α-glucosidases of S. cerevisiae and the transcriptional activators that regulate the 538 

structural metabolic genes likely evolved from promiscuous ancestral proteins that 539 

optimized subfunctions following duplication events, rendering them specific for 540 

different α-glucosides (Brown et al. 2010; Voordeckers et al. 2012; Pougach et al. 2014). 541 

The extent of intramolecular epistasis apparent in the high-specificity Agts, which may 542 

arise both from intra-protein and protein-substrate interactions, may provide an 543 
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explanation for the inherent difficulty of re-evolving maltotriose transport in these 544 

proteins. Functional entrenchment by historical contingency and epistasis is well 545 

documented, and the irreversibility of evolutionary trajectories at the molecular level 546 

may be a widespread phenomenon (Ortlund et al. 2007; Bridgham et al. 2009; Soylemez 547 

and Kondrashov 2012; Harms and Thornton 2014; Bank et al. 2015; Podgornaia and 548 

Laub 2015; Shah et al. 2015; Starr and Thornton 2016; Starr et al. 2017; Starr et al. 2018; 549 

Ben-David et al. 2020; Xie et al. 2021; Park et al. 2022). Although not directly tested 550 

here, there may be inherent tradeoffs between specificity and substrate affinity in yeast 551 

Agts (Stambuk and Araujo 2001; Salema-Oom et al. 2005; Hatanaka et al. 2022), which 552 

would suggest that walking back through the accumulated mutations that led to higher 553 

specificity in the Mal31-like transporters would be likely to incur an immediate 554 

functional tradeoff and therefore fitness cost. The recurrent gene conversion events 555 

that enable maltotriose transport among members of this family may, therefore, 556 

represent the only meaningfully accessible route to bypass these deleterious 557 

intermediates, but the high degree of context-dependence for mutational effects makes 558 

the prediction or engineering of this novel function difficult (Hatanaka et al. 2022). 559 

Might the evolution of yeast sugar porters more broadly be organized along an 560 

axis of increasing specialization and specificity? This family encompasses functionally 561 

diverse transporters with varying specificities for different mono- and di-saccharides and 562 

sugar alcohols; notably, functionally similar proteins are not monophyletic across the 563 

family (Donzella et al. 2023). Our phylogenetic analysis of these proteins places the Agts, 564 
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which may retain some glucose transport capacity (Wieczorke et al. 1999), as a deeply 565 

branching sister clade to most of the broader family (Fig. S5). These results imply 566 

multiple bouts of functional specialization from a highly promiscuous ancestor, in some 567 

cases starting from partially subfunctionalized ancestral proteins, with the Agts perhaps 568 

remaining the most representative of the ancestral multifunctionality. While the extant 569 

diversity of yeast sugar porters has generally been regarded as an example of functional 570 

diversification (i.e. highly plastic gains of novel substrate affinity; (Brown et al. 2010; 571 

Hatanaka et al. 2022; Donzella et al. 2023)), the evolution of this important gene family 572 

may have followed a very different mode. In the former model, functional diversification 573 

by neofunctionalization follows duplication of ancestral transporter genes, whereas our 574 

analyses suggest that duplications in this gene family may be primarily followed by 575 

subfunctionalizing escapes from adaptive conflict (Hughes 1994; Hittinger and Carroll 576 

2007; Des Marais and Rausher 2008), wherein transporters can gain increased specificity 577 

and affinity for a narrow substrate range at the expense of other ancestral ligands. 578 

These two models have distinct implications for the myriad biotechnological 579 

applications predicated upon sugar consumption by yeasts, which might be targets for 580 

improvement by protein engineering. If extant transporters are indeed highly plastic and 581 

evolvable, shifting or expanding their substrate range should be relatively simple. If, on 582 

the other hand, they have undergone entrenched specialization, they may be inherently 583 

less evolvable (Bridgham et al. 2009; Starr et al. 2018; Wheeler and Harms 2021). 584 

Results here and elsewhere (Hatanaka et al. 2022) support the latter corollary. However, 585 
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this model also implies that reconstructed ancestral proteins, or even generalist extant 586 

proteins from this clade, might both possess desirable properties and be inherently 587 

highly amenable to engineering, mutagenesis, or directed evolution approaches.  588 

 589 

METHODS 590 

Strains and cultivation conditions 591 

 S. eubayanus strains, plasmids, and oligonucleotides used in this work are listed 592 

in Tables S1 and S2. Yeasts were propagated on YPD medium (1% yeast extract, 2% 593 

peptone, 2% glucose) supplemented with 400mg/L G418 and/or 50mg/L Nourseothricin 594 

(CloNAT) as appropriate and cryopreserved in 15% glycerol at -80° for long-term 595 

storage.  596 

Transformation of S. eubayanus was performed by the PEG/LiAc/carrier DNA 597 

method (Gietz and Schiestl 2007) with minor modifications (Baker and Hittinger 2019). 598 

CRISPR-mediated gene deletions and insertions were achieved by co-transformation of 599 

pXIPHOS vectors (Kuang et al. 2018) and repair templates for homologous 600 

recombination. Repair templates were purified PCR products consisting of single linear 601 

fragments, multiple linear fragments for in vivo assembly, or recombinant amplicons 602 

generated by overlap extension PCR, depending on the application. All repair templates 603 

were amplified using Phusion polymerase (New England Biolabs) per the manufacturer’s 604 

instructions and purified using QiaQuick or MinElute spin columns (Qiagen). 605 
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We assessed transporter function via expression from the native MALT4 locus in 606 

yHJC207, a haploid derivative of the wild strain yHKS210 that was constructed as 607 

previously described (Crandall et al. 2023). Because the MALT2 and MALT4 loci are 608 

recent duplicates and almost identical at the nucleotide level, transporter variants were 609 

inserted into both loci out of necessity. Both MALT2 and MALT4 were simultaneously 610 

deleted using CRISPR-Cas9 and replaced with kanMX. Novel transporter variants, as well 611 

as MALT434 and S. eubayanus AGT1 positive controls, were subsequently inserted into 612 

both loci by co-transformation with a pXIPHOS vector expressing Cas9 and a gRNA 613 

targeting kanMX (Lee et al. 2021). Transformants were cured of plasmids, and the 614 

inserted alleles were sequenced. 615 

 616 

Quantitative growth measurements of S. eubayanus strains 617 

 Strains were streaked to single colonies on YPD plates, arrayed in 96-well plates 618 

in a randomized layout, and precultured in YPD at room temperature for 72 hours with 619 

gentle shaking. Precultures were serially diluted in minimal medium (0.5% ammonium 620 

sulfate, 0.017% Yeast Nitrogen Base) and inoculated into minimal medium containing 621 

2% sugars in 96-well plates at a final dilution of 10-4. OD600 was measured every hour for 622 

7 days using a SPECTROstar Omega plate reader (BMG Labtech) equipped with a 623 

microplate stacker. Raw growth data was summarized using GCAT (Bukhman et al. 624 

2015). Area under the curve (AUC) measurements for growth on maltotriose, 625 

normalized to a common negative control within each experiment, were used as a 626 
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response variable in linear models with protein identity (MalT3 or MalT4) at each 627 

domain or at key amino acid sites as categorical predictor variables. The effects of 628 

protein identity at some single regions and for many pairwise interactions could not be 629 

estimated due to singularities. We tested for evidence of epistasis by statistically 630 

comparing additive models and those with interaction terms (Li and Fay 2019). The 631 

amino acid properties compiled to test associations with transporter function included 632 

chemical composition, polarity, and volume (Grantham 1974), aromaticity (Xia and Li 633 

1998), hydropathy (JANIN 1979; Kyte and Doolittle 1982; Hopp and Woods 1983; 634 

Eisenberg et al. 1984; Rose et al. 1985; Cornette et al. 1987; Engelman et al. 2003), and 635 

BLOSUM similarity (Henikoff and Henikoff 1992). Some matrices were compiled from 636 

Braun (Braun 2018). For dimensionality reduction, BLOSUM similarity was omitted.  637 

 638 

Quantitative growth measurements of Saccharomycotina yeasts  639 

 Growth on α-glucosides was measured for the strains whose genome 640 

annotations were analyzed, which were primarily the type strains for their respective 641 

species. Strain information, including taxonomic order (Groenewald et al. 2023), major 642 

clade (X.-X. Shen et al. 2018), and updated annotation mapping, can be found in Table 643 

S3. Cryopreserved strains were inoculated directly to YPD in 96-well plates and 644 

incubated for 7 days at room temperature. Some slow-growing species failed to revive 645 

during this time frame and were removed from further analysis, and we did not 646 

phenotype opportunistic pathogens, ultimately resulting in data for 287 species. 647 
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Precultures were inoculated to minimal medium with 1% sugar or no added carbon 648 

source using a pinning tool, incubated for 7 days at room temperature, and re-649 

inoculated to new plates containing the same medium. OD600 of the second round of 650 

growth was measured every hour using a SPECTROstar Omega plate reader (BMG 651 

Labtech) equipped with a microplate stacker. The growth experiments were performed 652 

four times independently. Raw growth data was summarized using Growthcurver 653 

(Sprouffske and Wagner 2016). Wells with poor model fits were discarded, and each 654 

curve was manually inspected to identify species with unreliable growth curves 655 

(Opulente et al. 2024). Growth on each carbon source was normalized to the average 656 

growth of the same species in medium with no added carbon to control for background 657 

growth. Caper (cran.r-project.org/web/packages/caper/index.html) was used to fit 658 

phylogenetically corrected regressions (PGLS) to growth data and square-root 659 

transformed Agt number, using the rooted ML species phylogeny (X.X. Shen et al. 2018). 660 

 661 

Structure prediction and analyses 662 

 Structural models for MalT434 were generated using four different software: 663 

AlphaFold2 (Jumper et al. 2021), Phyre2 (Kelley et al. 2015), I-TASSER (Yang et al. 2015), 664 

and SWISS-MODEL (A. Waterhouse et al. 2018). All gave extremely similar results across 665 

the structured region (mean and SD pairwise RMSD: 1.61±0.51Å), and AlphaFold2 666 

models for all proteins of interest were generated and used for further analysis. Docking 667 
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of maltotriose was performed using SwissDock (Grosdidier et al. 2011). Structure 668 

models and docking results were visualized in PyMol v2.5 (Schrödinger, LLC).   669 

 670 

Genome annotation  671 

To improve the quality of existing gene models, publicly available genome 672 

assemblies of 332 Saccharomycotina yeast species (X.-X. Shen et al. 2018) were re-673 

annotated de novo. For consistency, we retained the assembly and species names, 674 

although some species have since been renamed; consult MycoBank 675 

(www.mycobank.org) for the most up-to-date taxonomic information. Repetitive 676 

sequences were softmasked with RepeatMasker v4.1.2, and protein-coding genes were 677 

annotated using ab inito predictors AUGUSTUS v3.4.0 (Stanke et al. 2008) and 678 

GeneMark-EP+ v4.6.1 (Brůna et al. 2020) in BRAKER (Brůna et al. 2021), with 679 

Saccharomycetes proteins in OrthoDB v10 (Kriventseva et al. 2019) as homology 680 

evidence and using the --fungus mode. Where applicable, the longest transcript of each 681 

gene was retained. BUSCO v5.7.0 (Manni et al. 2021) was used to assess the 682 

completeness of the new and preexisting genome annotations using single-copy yeast 683 

orthologs in OrthoDB v10 (R.M. Waterhouse et al. 2018). 684 

This approach was chosen so as to generate a useful community resource in two 685 

ways: first, to enable direct comparisons with a larger, partially overlapping dataset of 686 

yeast genomes published recently (Opulente et al. 2024), which were annotated using 687 

identical methods; and second, to facilitate future studies by significantly improving the 688 
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quality of annotations for the widely-used 332-genomes dataset. Median annotation 689 

completeness was increased from 94.6% to 98.8%, while the median percentage of 690 

missing BUSCO genes decreased to 0.9% from 4.6% (both p < 2.2x10-16, two-sided t-691 

tests; Fig. S10). Table S4 documents BUSCO analyses of existing and updated 692 

annotations for all genomes. The full updated annotations in protein and nucleotide 693 

FASTA, GFF3, and GTF formats will be available on figshare (confidential link will be 694 

updated to a public link prior to publication).  695 

 696 

Phylogenetic analyses 697 

The amino acid translations of the newly predicted protein-coding genes were 698 

queried by BLASTp+ v2.9 (Camacho et al. 2009) using characterized Saccharomyces 699 

cerevisiae sugar transporters (Mal31, Agt1, Gal2, Hxt1-5, Hxt7) retrieved from SGD 700 

(Wong et al. 2023). BLAST subjects less than 400 or greater than 1000 amino acids in 701 

length were discarded to remove partial or fused annotations, based on distributions of 702 

sugar porter length in TCDB (Saier et al. 2006; Saier et al. 2021). Remaining proteins 703 

were annotated with their most similar S. cerevisiae homolog using a reciprocal BLASTp 704 

search against all translated ORFs in S. cerevisiae, which were retrieved from SGD. 705 

Protein sequences were aligned using the E-INS-i strategy of MAFFT v7.222 (Katoh et al. 706 

2002; Katoh et al. 2005; Katoh and Standley 2013), and the alignment was trimmed with 707 

trimAL v1.4.22 (Capella-Gutiérrez et al. 2009) using the --gappyout parameter. The 708 

phylogeny was inferred using IQ-TREE v2.2.2.7 (Minh et al. 2020) with 1000 bootstraps 709 
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(Hoang et al. 2018) and automatic substitution model selection (Kalyaanamoorthy et al. 710 

2017). Due to the significant homology between MFS proteins, this dataset contained a 711 

small proportion of non-sugar porter MFS proteins, primarily belonging to the 712 

drug:proton antiporter family. These were retained in the alignment and tree inference 713 

to test the assumption of sugar porter monophyly. As expected, the sugar porters and 714 

non-sugar porter MFS proteins formed well-supported reciprocally monophyletic clades. 715 

The α-glucoside transporter phylogeny was refined by re-aligning the proteins from that 716 

clade and inferring the phylogeny as before, albeit with 10 independent runs of IQ-TREE 717 

with 10000 bootstrap replicates each and secondary branch support assessment by SH-718 

aLRT tests. Trees were visualized and annotated in iTOL (Letunic and Bork 2021).  719 
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FIGURES 763 

 764 

 765 

Figure 1. Architecture of a chimeric neofunctionalized α-glucoside transporter. (a) A 766 

structural model of the chimeric transporter MalT434 is shown from the side and top 767 

views, with alternating colors demarking regions contributed by different parental 768 

proteins. The top view is orientated looking down the transport channel. MalT3 side 769 

chains are drawn for the 11 substitutions between MalT4 and MalT434. The asterisk 770 
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label marks the position of the three substitutions on a helical face that bounds the 771 

transport channel. (b) Schematic of mutations. The 11 substitutions between MalT4 and 772 

MalT434 are drawn as side chains along the cartoon secondary structure of the protein, 773 

with loops that connect transmembrane helices truncated for clarity. Polar hydrogens 774 

are shown. Asterisks mark the amino acids that face the transport channel.   775 
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 776 

Figure 2. High-order intramolecular interactions are required to evolve a novel function 777 

in chimeric α-glucoside transporters. Points and bars show mean +/- SEM of normalized 778 

growth on maltotriose (AUC, area under the curve) of strains expressing chimeric 779 

transporters or wild-type MalT4 (top row). Filled circles denote growth significantly 780 

greater than the negative control (p < 0.01, Mann-Whitney U test with Benjamini-781 

Hochberg correction). The architecture of each tested transporter is depicted as a 782 

cartoon on the y-axis, where rounded rectangles represent each of the twelve 783 

transmembrane helices and circles represent the intracellular ICH domain that links the 784 

N- and C-terminal six-helix bundles; regions are colored by parental protein identity. In 785 

almost every case, the N- and C-terminal intracellular regions have the same parental 786 
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protein identity as the neighboring transmembrane helix and are omitted for clarity; the 787 

two exceptions are depicted. Inverted arrows indicate the location and identity of 788 

protein regions underlying the largest detected intramolecular interaction.   789 
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 790 

Figure 3. Numerous substitutions are required to evolve a novel function in a maltose 791 

transporter. Points and bars show mean +/- SEM of normalized growth on maltotriose 792 

(AUC, area under the curve) of strains expressing MalT4 variants. The genotype of each 793 

protein at the 11 sites that differ between MalT4 (top row) and MalT434 (second from 794 

top row) is depicted on the Y-axis. Filled circles denote growth significantly greater than 795 

the negative control (p < 0.01, Mann-Whitney U test with Benjamini-Hochberg 796 

correction). The bar chart shows rescaled BLOSUM similarity between the MalT4 and 797 

MalT3 residue at that site, with a higher bar indicating a more conservative substitution. 798 
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Horizontal dotted lines in the protein haplotype grid separate related groups of 799 

genotypes. The vertical dotted line demarcates the substitutions that are sufficient (left) 800 

to impart novel function to MalT4 and those that are insufficient (right).    801 
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 802 

Figure 4. A single amino acid underlies a large epistatic effect. (a) Structural model of 803 

MalT434 with helices colored as in Fig. 1. Side chains are drawn for amino acids on 804 

transmembrane helices 7, 11, and 12 that are polymorphic between MalT3 and MalT4, 805 

and those that are proximal to or project into the transport channel are labeled. (b) 806 

Points and bars show mean +/- SEM of normalized growth on maltotriose (AUC, area 807 

under the curve) of strains expressing transporter variants. Filled circles denote growth 808 

significantly greater than the negative control (p < 0.01, Mann-Whitney U test with 809 

Benjamini-Hochberg correction). For each transporter, the parental protein identity at 810 
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transmembrane helix 11 (filled rectangular ovals) and residues 378 and 379 in 811 

transmembrane helix 7 is depicted.   812 
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 813 

Figure 5. Physicochemical requirements constrain the evolution of novel function. (a) 814 

Points and bars show mean +/- SEM of normalized growth on maltotriose (AUC, area 815 

under the curve) of strains expressing MalT4 variants. The x-axis shows the amino acid 816 
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identity at position 505; all variants share F468, M503, A504, T508, and T512. Filled 817 

circles denote growth significantly greater than the negative control (p<0.01, Mann-818 

Whitney U test with Benjamini-Hochberg correction). (b) Correlations between growth 819 

and properties of the amino acid variant at position 505. Growth is plotted as in (a) 820 

against physicochemical property or overall similarity to the wild-type residue at 821 

position 505, asparagine. Lines and shaded ranges show regressions and 95% confidence 822 

intervals for significant (p < 0.05) regressions for all data (black) or after removing 823 

observations for C505 (gray). Dotted lines show regressions that are not statistically 824 

significant. Inset text shows Kendall’s Τ; ***p < 10-6, **p < 10-4, *p < 0.05.   825 
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 826 

Figure 6. The high-specificity maltose transporters are evolutionarily derived and 827 

restricted to a subset of Saccharomycetales. (a) Consensus phylogeny of the α-glucoside 828 

transporter clade from 332 budding yeast genomes. Agt1-like and Mal31-like proteins 829 

from all Saccharomycetales are colored, as is the Saccharomyces-specific Mph2/3 clade. 830 

Bootstrap support is shown for two splits leading to the Saccharomycetales. (b) Rooted 831 

consensus tree of the clade containing Saccharomycetales α-glucoside transporters. 832 

Branches are colored as in (a) with the inclusion of a well-supported clade of 833 
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Brettanomyces Agt1-like proteins that nests within the Saccharomycetales; the 834 

Saccharomyces-specific Mph2/3 clade is indicated. Circles denote branches with >90% 835 

bootstrap support. Colored bars outside the tree show genus-level taxonomic 836 

assignment, and the inset circular tree shows the Saccharomycotina species phylogeny 837 

(X.-X. Shen et al. 2018) with those genera colored; Zygo/torulaspora represents 838 

Zygosaccharomyces, Zygotorulaspora, and Torulaspora. The rooted maximum-likelihood 839 

tree can be found in Fig. S6. Newick-formatted trees are available in Data S2 and S3.   840 
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 841 

Fig. 7. Species with Agt proteins grow on Agt1-specific substrates. (a) Time-calibrated 842 

phylogeny of 332 Saccharomycotina species (X.-X. Shen et al. 2018) with branches 843 

colored (key in panel c) by taxonomic order (Groenewald et al. 2023). Heatmaps around 844 

the tree show growth (normalized area under the curve) on α-glucosides: methyl-α-845 
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glucoside (inner ring), trehalose (middle ring), and maltotriose (outer ring). Gray boxes 846 

denote no growth above background; white boxes represent unsampled species. The 847 

bar chart shows the number of proteins in the α-glucoside transporter clade for each 848 

genome. (b) Generalist Agt content of Saccharomycetales genomes is not 849 

representative. Density plots show distributions of the number of Agt-clade proteins per 850 

genome for Saccharomycetales species (blue density) and species from all other orders 851 

(gray). (c) Scatterplots of Agt-clade transporter count versus growth on each α-852 

glucoside. Each species is represented by a point, colored by taxonomic order. Lines and 853 

shaded regions are loess-smoothed regressions of the untransformed data; inset p-854 

values are from phylogenetically corrected regressions (PGLS). 855 
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SUPPLEMENTAL MATERIALS 857 

Table S1. S. eubayanus strains and plasmids used in this study.  858 

Table S2. Oligonucleotides used in this study.  859 

Table S3. Strain information for the 332 Saccharomycotina species. Column A (“Species 860 

name”) corresponds to Column C (“Species name”) of Table S1 from X.-X. Shen et al. 861 

2018.  862 

Table S4. Benchmark Universal Single-Copy Orthologs (BUSCO) statistics for existing and 863 

updated genome annotations of species in this study.  864 

Data S1. Maximum likelihood phylogenetic trees of sugar porters and outgroup MFS 865 

proteins from Saccharomycotina genomes in Newick format.  866 

Data S2. Consensus phylogenetic tree of Agt clade proteins in Newick format. Branch 867 

supports are from SH-aLRT test and ultrafast bootstrapping, respectively.  868 

Data S3. Maximum likelihood phylogenetic tree of Agt clade proteins in Newick format. 869 

Branch supports are from SH-aLRT test and ultrafast bootstrapping, respectively. 870 
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