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Abstract

Selective sweeps describe the process by which an adaptive mutation arises and rapidly fixes in the population, thereby removing genetic
variation in its genomic vicinity. The expected signatures of selective sweeps are relatively well understood in panmictic population models,
yet natural populations often extend across larger geographic ranges where individuals are more likely to mate with those born nearby. To
investigate how such spatial population structure can affect sweep dynamics and signatures, we simulated selective sweeps in populations
inhabiting a two-dimensional continuous landscape. The maximum dispersal distance of offspring from their parents can be varied in our
simulations from an essentially panmictic population to scenarios with increasingly limited dispersal. We find that in low-dispersal populations,
adaptive mutations spread more slowly than in panmictic ones, while recombination becomes less effective at breaking up genetic linkage
around the sweep locus. Together, these factors result in a trough of reduced genetic diversity around the sweep locus that looks very similar
across dispersal rates. We also find that the site frequency spectrum around hard sweeps in low-dispersal populations becomes enriched for
intermediate-frequency variants, making these sweeps appear softer than they are. Furthermore, haplotype heterozygosity at the sweep locus
tends to be elevated in low-dispersal scenarios as compared to panmixia, contrary to what we observe in neutral scenarios without sweeps.
The haplotype patterns generated by these hard sweeps in low-dispersal populations can resemble soft sweeps from standing genetic variation
that arose from substantially older alleles. Our results highlight the need for better accounting for spatial population structure when making
inferences about selective sweeps.
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Introduction

The classic selective sweep model introduced by Smith and
Haigh provides the theoretical foundation for many studies
of adaptation in natural and experimental populations (Smith
and Haigh (1974)). This model describes how positive selection
can drive a de novo adaptive mutation to high frequency in a
population and makes several predictions about the expected
patterns of surrounding genetic diversity: As the adaptive mu-
tation spreads, linked neutral variants can "hitchhike" with it,
while non-adaptive haplotypes will be displaced from the pop-
ulation, thereby depleting genetic diversity (Smith and Haigh
(1974)). In the absence of recombination, mutations occurring on
the sweeping haplotype can create new variants of this haplo-
type, which should result in a characteristic power-law decay in
the haplotype frequency spectrum when the adaptive mutation
becomes fixed (Messer and Neher (2012)).

On a recombining chromosome, crossover events during the
sweep can also generate new adaptive haplotype variants that
preserve ancestral genetic variation. This should produce a char-
acteristic trough in neutral genetic diversity around the sweep
locus, with the site frequency spectrum (SFS) of neutral poly-
morphisms in this region displaying an excess of both high-
and low-frequency derived alleles (Fay and Wu (2000); Kim and
Stephan (2002)). The expected size of this trough is approxi-
mately proportional to the ratio of s/r, where s is the selection
coefficient of the adaptive mutation and r is the recombination

rate along the chromosome (Kaplan et al. (1989)). Linkage dise-
quilibrium (LD) and haplotype homozygosity should both be
elevated around the sweep locus as compared to a neutrally
evolving region in equilibrium (Hudson et al. (1994)). These pre-
dicted sweep signatures lie at the core of many existing methods
for the detection and study of selective sweeps from population
genomic data (Messer and Neher (2012); DeGiorgio et al. (2016);
Schrider and Kern (2016); Hejase et al. (2021)).

A key assumption underlying the classic sweep model is that
populations are homogeneously mixed with randomly mating
individuals (so-called "panmixia"). However, natural popula-
tions are often structured in various ways, which can lead to
dramatic violations of the panmixia assumption (Durrett and
Levin (1994)). Many real-world populations inhabit a continu-
ous geographic range, for example, where individuals tend to
disperse over distances much shorter than the dimensions of
the habitat. Individuals will thus be more likely to mate with
individuals who were born nearby. This can increase levels of
inbreeding and produce noticeably different patterns of neutral
genetic diversity as compared to a panmictic population (Wright
(1943); Barton et al. (2002); Ringbauer et al. (2017); Battey et al.
(2020); Etheridge et al. (2023)).

Spatial structure can also significantly affect the spread of an
adaptive mutation when the dispersal of individuals becomes
a limiting factor (Barton et al. (2013)). In such limited-dispersal
scenarios, a strongly advantageous mutation cannot rise in fre-
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quency as quickly as it would in a panmictic population, and its
frequency trajectory will deviate from the logistic growth curve
expected under the panmictic sweep model (Maynard Smith
(1971)). Instead, these dynamics have commonly been described
by Fisher traveling waves (Fisher (1937)). In a one-dimensional
(1D) space, the wave model predicts that the frequency of the
adaptive mutation should increase approximately linearly over
time like the distance traveled by a wave that moves outward
from its origin at constant velocity; in 2D space, it should in-
crease approximately quadratically like the area of a circle with
a linearly growing radius. These disparities in sweep dynamics
could impact various sweep signatures, such as the establish-
ment probability of the adaptive mutation, the fixation time of
the sweep, and the expected patterns in surrounding genetic
diversity.

This raises a key question: How accurate is the classic selec-
tive sweep model for studying adaptation in real-world pop-
ulations that inhabit continuous space? Min et al. (2022) re-
cently explored this question for 1D space using the abstraction
of a stepping-stone model, wherein the population is subdi-
vided into discrete panmictic demes along a one-dimensional
array with migration occurring only between neighboring demes
(Kimura and Weiss (1964)). They found that sweep signatures
under such a model differ from the classic sweeps in several
ways. Most notably, the SFS of neutral variants around the sweep
locus should exhibit a flat tail with many intermediate frequency
variants consisting of mutations that fixed in the wavefront of
the sweep and then hitchhiked through the rest of the popula-
tion (Min et al. (2022)). This is very different from the classic
sweep model where the SFS around the sweep locus should be
heavily skewed towards both low- and high-frequency variants
(Fay and Wu (2000)).

Interestingly, an excess of intermediate frequency variants
in the SFS is commonly associated with so-called "soft" selec-
tive sweeps, which occur when not all adaptive lineages have
coalesced at the onset of positive selection (Hermisson and Pen-
nings (2005); Prezeworski et al. (2005); Messer and Petrov (2013);
Hermisson and Pennings (2017)). Such soft sweeps can occur
when adaptive alleles were either already present as standing ge-
netic variation (SGV) at the onset of selection, or when adaptive
alleles arose recurrently during the sweep. By contrast, sweeps
involving only a single de novo adaptive mutation, as assumed
by the classic selective sweep model, are commonly referred to
as "hard" selective sweeps.

Whether hard or soft selective sweeps are more common in
nature has been intensely debated over the past years (Karasov
et al. (2010); Jensen (2014); Feder et al. (2016); Hermisson and
Pennings (2017); Schrider and Kern (2017); Garud et al. (2021)).
To tackle this question, various summary statistics and compu-
tational inference methods have been developed for discrimi-
nating among the different types of sweeps (Prezeworski et al.
(2005); Peter et al. (2012); Ferrer-Admetlla et al. (2014); Garud et al.
(2015); Schrider and Kern (2016)). However, these approaches
typically assume a panmictic population. It is therefore critical to
know whether patterns of diversity left behind by hard sweeps
in continuous-space populations can indeed resemble those of
soft sweeps in panmictic models, and thereby perhaps confound
our inferences. While Min et al. (2022) focused on SFS-based
signatures, it remains unclear whether the apparent "softening"
of sweep signatures in continuous-space populations extends
to patterns beyond the SFS that can discriminate hard from soft
selective sweeps more effectively, such as haplotype structure

(Ferrer-Admetlla et al. (2014); Garud et al. (2015)). Furthermore,
we do not know how results from a 1D model translate to 2D
continuous space, which should be more appropriate for the
majority of natural populations.

In this paper, we conduct a comprehensive analysis of selec-
tive sweeps in continuous-space populations. Using individual-
based simulations of a population that inhabits a 2D continuous-
space landscape, we study how different dispersal rates af-
fect sweep trajectories, establishment probabilities, and fixation
times for varying selection strengths, as compared to a panmictic
population model with otherwise similar properties. We then
examine how these changes in sweep dynamics – as well as
local versus global sampling schemes – impact the observed
patterns of neutral genetic variation around the sweep locus,
including the size of the trough in neutral diversity, the SFS, and
the haplotype frequency spectrum.

Model

We implemented an individual-based simulation model in SLiM
version 4.0.1 (Haller and Messer (2023)) to study selective
sweeps in 2D spatial populations of diploid, sexually repro-
ducing hermaphrodites. Our model is designed to allow for
a gradual transition from a panmictic population to one with
strongly limited dispersal, while otherwise resembling a stan-
dard Wright-Fisher model as closely as possible. In particular,
we assume discrete, non-overlapping generations, and a con-
stant population size (Walsh and Lynch (2018)). We also want to
keep the local population density constant over time and space.
This is a non-trivial setup for a spatial model, as fluctuations in
local density can often arise due to the random nature of disper-
sal, mating, and other stochastic processes (Felsenstein (1975);
Sasaki (1997); Vinatier et al. (2011)). In addition, the requirement
of a constant local density entails a model of "soft" selection
(Wallace (1975)), in which selection only affects local allele fre-
quencies but not the overall number of individuals in any given
region of the population (as compared to any model of "hard"
selection, which directly affects viability and/or fecundity).

Our motivation for seeking a soft selection model with con-
stant population density is grounded in several factors: First,
such a model should more closely resemble standard theoretical
results, most notably the Fisher-KPP equation for modeling the
spatial dynamics of an adaptive allele in a reaction-diffusion
framework (Fisher (1937)). Second, a hard selection model
would typically require some form of local density control to
avoid runaway clustering (Felsenstein (1975)), introducing a
level of complexity we would like to avoid here. Finally, the
definition of a selection coefficient can be more ambiguous in a
hard selection model, rendering key properties such as the estab-
lishment probability or fixation time of a sweep more difficult to
compare with theoretical expectations.

To satisfy all of the above assumptions, we implemented our
simulation model as follows: Individuals inhabit a continuous-
space 2D square arena of size 1 × 1. The arena features periodic,
"toroidal" boundaries, where the edges connect seamlessly to
the opposite edges (e.g., an individual that exits the upper-left
corner returns in the lower-right one). This allows our model
to avoid various edge effects encountered in scenarios with
reflective, absorbing, or reprising boundaries (Mazzucco et al.
(2018)). Generations are discrete and non-overlapping. In each
generation, a new set of N = 104 individuals is generated with
parents drawn from the individuals in the previous generation.
To achieve locally uniform population density, we imposed a
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Figure 1 Simulation model and sampling strategy. A. We simulate a 2D continuous-space square arena of size 1 × 1 with toroidal
boundaries, inhabited by N = 104 individuals (black dots). To ensure constant population size and uniform population density,
the arena is split into a 100 × 100 square grid, with one individual living per grid cell in each generation. The zoom into the upper
right corner shows how a focal individual (red dot) picks its two parents from the individuals of the previous generation (black
dots). Two dispersal rates d = 0.015, 0.04 are shown (red circles), each containing all potential parents for the focal individual
under the given value of d. B. Illustration of the local and global sampling strategies used for the evaluation of sweep signatures. A
global sample (shown in purple) contains individuals randomly drawn from the entire arena, while a local sample (shown in green)
contains only individuals randomly drawn from within a square region of size 0.1 × 0.1 in the center of the arena.

100 × 100 square grid on our square arena, such that exactly one
individual always lives inside each grid cell (Figure 1A). The
coordinates of each individual are chosen randomly within its
cell, and its two parents are randomly sampled (without replace-
ment) from those individuals in the previous generation that
were located within a circle of radius d, centered at the location of
the newly generated individual. The dispersal radius d thereby
specifies the maximum possible distance between offspring and
parent. In the following, we will always refer to d as the "dis-
persal rate" of the model. Once all offspring are generated, the
individuals from the previous generation are removed and the
generation cycle starts anew.

By varying the dispersal rate d, we can gradually transition
from a scenario with highly localized dispersal to a completely
panmictic population. We chose a value of d = 0.015 as the
low-dispersal limit, which ensures that for any newly generated
individual, two parents can practically always be found within
its dispersal radius. By contrast, the high-dispersal limit was
set at d = 1.0, where the circle encompasses all individuals of
the previous generation, thus corresponding to a completely
panmictic population.

Under this model, we simulated the evolution of a chromo-
some of length 10 Mbp with a recombination rate of 10−8 per bp
per generation and a neutral mutation rate of 10−8 mutations
per bp per generation, with neutral mutations being overlaid
onto tree sequences obtained at the end of each simulation run
using msprime (version 1.2.0) (Baumdicker et al. (2021)).

For each value of d used in our simulations, we first per-
formed three replicate neutral burn-in simulations runs of
5 × 105 generations to allow the simulated population to reach
equilibrium (confirmed by testing that 100% of sites have suc-
cessfully coalesced at the end of the simulation run). The result-
ing populations were then output as tree sequence files (Kelleher
et al. (2018); Haller et al. (2019)).

Although our spatial model does not encompass all aspects of
natural populations in continuous space, it captures key aspects
of spatiality by allowing for dispersal and variation in local allele
frequencies across the habitat, while at the same time controlling

for other potentially complicating factors such as fluctuations
in total population size and local density. We therefore believe
that our model can serve as a useful baseline model for under-
standing the effects of continuous space and dispersal on the
dynamics and signatures of selective sweeps.

Sweep simulations
To simulate a selective sweep, we first load a randomly cho-
sen neutral burn-in tree sequence file for the given dispersal
rate d into SLiM and then introduce an adaptive allele of the
given selection coefficient s at the center of a randomly sampled
chromosome from the population. We assume codominance
(h = 1/2), such that wildtype homozygotes have fitness 1.0,
heterozygotes have fitness 1 + s/2, and homozygotes for the
adaptive mutation have fitness 1 + s.

Selection is implemented in our model by weighing the prob-
abilities of picking different parents within the dispersal circle of
a newly generated individual according to their relative fitness
values. For example, if three individuals are present inside the
circle, with two of them having fitness 1.0 while the third has fit-
ness 1.2 (because it is homozygous for an adaptive mutation with
selection coefficient s = 0.2), the first two individuals would
each be picked with probability 1.0/3.2 while the third would
be picked with probability 1.2/3.2. Since we sample without
replacement, if we end up picking one of the individuals with
fitness 1.0 as the first parent, the probabilities for picking the
second parent would then be 1.0/2.2 and 1.2/2.2, respectively.
In the panmictic limit, where the dispersal circle encompasses
all individuals in the population, this approach should converge
to a standard Wright-Fisher model with selection.

Each selective sweep simulation was run until either fixation
or loss of the adaptive mutation. If the mutation reached fixation,
we stored the tree sequence file and then overlaid neutral muta-
tions onto the tree sequences to obtain the resulting patterns of
neutral diversity (Haller et al. (2019); Kelleher et al. (2018); Ralph
et al. (2020b)).

For the softness analysis presented in Figure 7, we simu-
lated soft sweeps from SGV in a panmictic Wright-Fisher model,
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where the adaptive allele was previously neutral and present
at a given starting frequency (x0) in the population before it be-
came adaptive. These sweeps were modeled by first simulating
a neutral equilibrium population with Θ = 4Neµ = 0.0004 in
the coalescent simulator msprime (version 1.2.0) (Baumdicker
et al. 2021). We then randomly chose one of the neutral muta-
tions that had the required derived allele frequency and was
located at least 50 kbp away from the ends of the genome. This
mutation was subsequently assigned a selection coefficient of
s = 0.1, while all other neutral mutations were removed and the
simulation was saved as a tree-sequence file. The tree-sequence
files were then loaded into SLiM and a forward-in-time simula-
tion was performed until eventual fixation or loss of the now-
beneficial allele. The coalescent and forward-in-time simulations
were repeated until we had 1000 fixation events for each desired
starting frequency, which were all saved as tree-sequence files.
Finally, neutral mutations were overlaid onto the tree sequences
to obtain the resulting patterns of neutral diversity, analogous
to the hard sweep simulations.

Local versus global sampling
Generating a population sample can be more complicated in a
spatial population as compared to a panmictic one because the
location of individuals could be a factor in the sampling strat-
egy. We studied two distinct sampling strategies in our spatial
model: global versus local sampling (illustrated in Figure 1B).
To generate a global sample, 50 individuals (and thus, n = 100
chromosomes) are randomly drawn from the entire population
(without replacement). By contrast, a local sample is generated
by drawing 50 individuals from within a square region of side-
length 0.1 in the center of the arena. The individuals in a local
sample therefore lived much closer to each other as compared
to those from a global sample. Note that in our sweep simula-
tions, we chose the origin of each sweep randomly across the
entire habitat. Thus, the central habitat area from which we
draw local samples usually does not coincide with the area in
which the sweep originated, so this sampling strategy can still
be considered random relative to the sweep origin.

Estimation of summary statistics
For Figure 2, we computed several summary statistics on popu-
lations after the neutral burn-in. For each dispersal rate d, we
used one replicate to obtain a distribution of coalescence times
estimated across all sites of the simulated chromosome for 50
pairs of individuals in a global sample. Variation in coalescence
time is directly reflected in the measurement of nucleotide het-
erozygosity (π), defined as the average number of heterozygous
sites in a pair of chromosomes normalized by its length (Nei and
Li (1979)). We used tskit to measure the average pairwise neutral
heterozygosity (π0) for local and global samples of individuals,
showing the mean over all three replicates (Kelleher et al. (2018);
Ralph et al. (2020a,b)). In addition, we calculated the average
neutral heterozygosity within diploid genomes for a sample of
individuals, showing the mean over all three replicates.

For Figures 5A and 6A-B, we computed several summary
statistics using individuals sampled from the population im-
mediately after the sweeps reached fixation. We used tskit to
compute the heterozygosity, SFS, and Tajima’s D within a ge-
nomic window centered at the sweep locus (Kelleher et al. (2018);
Ralph et al. (2020a,b)). The sizes of the windows were chosen to
capture the characteristic trough in heterozygosity around the
sweep locus, and therefore depend on the strength of selection.

Specifically, we chose a window size of 150 kbp for s = 0.01 and
1 Mbp for s = 0.1. For all three sweep statistics, we obtained
the mean and standard deviation over 1000 replicate simula-
tions for each combination of s and d. For comparison, we also
computed the SFS and Tajima’s D across the entire chromosome
for individuals from the neutral burn-in simulations, averaging
over all three replicates. In addition, for Figure 5B we identified
runs of homozygosity (ROHs), using PLINK (version 1.9) with
command-line arguments "–homozyg-snp 20 –homozyg-kb 200
–homozyg-het 0" (Purcell and Chang (2022); Chang et al. (2015)).
We calculated the average proportion of a diploid genome cov-
ered by ROHs for global samples of individuals, averaging over
the three neutral burn-in replicates.

For Figures 6C-D, we calculated several haplotype statistics
for individuals sampled from populations immediately after the
sweeps reached fixation. For Figure 6C, we calculated the aver-
age haplotype frequency spectra for global and local samples
of individuals for the low-dispersal limit (d = 0.015) and global
samples of individuals for the panmictic limit (d = 1.0), using
1000 replicates each and considering sweeps of strength s = 0.1.
We recorded the frequency of distinct haplotypes, and arranged
them in descending order of frequency (Miles et al. (2023)). For
Figures 6D and E, we derived the haplotype heterozygosity and
the number of haplotypes across the range of dispersal rates and
selection strengths of s = 0.01, 0.1. Haplotype heterozygosity
is defined as the probability that two randomly sampled chro-
mosomes are distinct, calculated as 1 − ∑m

i=1 p2
i , where m is the

total number of distinct haplotypes at the time of fixation in a
given sample set, and pi is the frequency of the haplotype i in
the sample set (Muralidhar and Veller (2022)). These statistics
were computed over a range of genomic window sizes (10 kbp,
30 kbp, and 100 kbp) centered around the sweep locus, and were
averaged over 1000 replicates for each data point. We calculated
the haplotype heterozygosity and the number of haplotypes
for samples from the neutral burn-in simulations, arbitrarily
centering the windows around the center of the genome and
averaging over all three replicates. Additionally, for Figure 7
we calculated the haplotype heterozygosity for the soft SGV
sweeps within a window of size 100 kbp (the largest of our three
window sizes) centered at the sweep locus. We computed the
average haplotype heterozygosity over 1000 replicates for each
value of x0.

Results

Our individual-based simulation model allows us to study evo-
lutionary dynamics in continuous-space populations with vary-
ing levels of dispersal, ranging from an effectively panmictic
population to one where offspring are displaced from their par-
ents by an average distance of just 1-2% of the diameter of the
simulated habitat. The parameter choices for our baseline model
(N = 104, µ = r = 10−8) are broadly inspired by a regime
relevant to human populations, with an expected pairwise coa-
lescence time of 2N = 20, 000 generations and an equilibrium
nucleotide heterozygosity level of π ≈ 4Nµ = 0.0004 when as-
suming panmixia. Under this model, we simulated the evolution
of a chromosomal region of length 10 Mbp.

First, we wanted to assess the impact of spatiality on equilib-
rium patterns of neutral genetic diversity for varying dispersal
rates d, as this pre-existing diversity provides the background
on which sweeps will act. The results shown in Figure 2 con-
firm that limited dispersal increases pairwise coalescence times
and thus also π. This known effect is due to the character-

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2024. ; https://doi.org/10.1101/2024.07.26.605365doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.26.605365
http://creativecommons.org/licenses/by/4.0/


0.0
15

0.0
20

0.0
40

0.1
00

1.0
00

dispersal (d)

0

1

2

3

4

5
co

ale
sc

en
ce

 ti
m

e
×104A

0.0
15

0.0
20

0.0
40

0.1
00

1.0
00

dispersal (d)

0

1

2

3

4

5

6

7

he
ter

oz
yg

os
ity

 (
)

×10 4B

global
local
per genome

Figure 2 Patterns of neutral diversity under limited disper-
sal: A. Distribution of pairwise coalescence times in neutral
simulations for different dispersal rates after a burn-in of 50N
generations. The solid lines show the 25th, 50th and 75th per-
centiles, while the dotted line shows the mean. B. Nucleotide
heterozygosity in neutral simulations for different dispersal
rates in global samples, local samples, and when estimated in
a diploid genome. The grey dashed line represents the panmic-
tic expectation of π ≈ 4Nµ. The mean and standard deviations
(represented by the error bars) were calculated from 100 ran-
dom samples across the 3 neutral replicates.

istic changes in genealogical histories in spatial populations
with limited dispersal, where spatially distant genomes will
have deeper coalescence histories as compared to two randomly
sampled genomes from an equally sized panmictic population
(Charlesworth et al. (2003); Ralph and Coop (2013)). The eleva-
tion is more pronounced in global as compared to local samples,
since the latter will more frequently contain highly related in-
dividuals with shorter branches among them. The smallest
increase is observed when π is estimated in one diploid genome,
which can be considered a "maximally local" sample of two hap-
loid chromosomes. In the panmictic limit, pairwise coalescence
time and nucleotide heterozygosity in our simulation converge
to their theoretical panmictic expectations regardless of the sam-
pling strategy.

Sweep dynamics in the spatial population model
Next, we studied how limited dispersal in a spatial population
affects the dynamics of hard selective sweeps from a single de
novo adaptive mutation. Figure 3 shows examples of two sim-
ulated sweep runs originating at the center of the arena that
already illustrate three qualitative differences in the sweep dy-
namics between a spatial population with limited dispersal and
a panmictic one: (i) in the spatial population with limited dis-
persal, the sweep spreads in a wave-like manner from its point
of origin, whereas under panmixia, the frequency of the adap-
tive mutation increases homogeneously across the habitat; (ii)
in the spatial population with limited dispersal, the adaptive
allele spreads slower as compared to panmixia; (iii) in the spatial
population with limited dispersal, heterozygotes are present
only at the wavefront, and their relative frequency in the popu-
lation tends to be lower throughout the sweep as compared to
panmixia. These effects are generally consistent with previous
results (Barton et al. (2013); Min et al. (2022)). Below, we will
investigate how they quantitatively impact sweep dynamics and
the resulting signatures in neutral genetic diversity.

Figure 3 Qualitative illustration of sweep dynamics under
limited-dispersal (top row, d = 0.015) versus panmixia (bot-
tom row, d = 1.0). Each row shows two population snapshots,
taken when the adaptive mutation first reached a population
frequency of 5% (left) and 50% (right). Light blue points rep-
resent heterozygous individuals, while dark blue points rep-
resent homozygous individuals. The adaptive mutation had a
selection coefficient of s = 0.1 and was introduced close to the
center of the habitat.

The reason for the prolonged fixation times in a spatial model
with limited dispersal can be understood when considering the
expected change in the population frequency x(t) of the adap-
tive mutation. For a co-dominant mutation (h = 1/2) with
selection coefficient s in a panmictic Wright-Fisher population,
these dynamics are described by the logistic differential equation
dx(t)/dt ≈ sx(1 − x)/2, where the approximation is accurate as
long as sx ≪ 1 (Kimura (1962)). The rate at which the adaptive
mutation can spread is thus limited solely by its selection coeffi-
cient. In a continuous-space population with limited dispersal,
by contrast, the maximum rate of spread can also be limited by
the dispersal of individuals. Regardless of selection strength,
the adaptive mutation can only spread as far in each generation
as offspring are dispersed from their parents. When d becomes
small enough, this can become the limiting factor for the rate of
spread, resulting in a prolonged fixation time.

Figure 4A shows the magnitude of this effect in our spatial
model for different values of d. For instance, adaptive mutations
with s = 0.01 have an approximately 1.7× longer average fixa-
tion time in the low-dispersal limit (d = 0.015) compared to their
average fixation time under panmixia. This effect is more pro-
nounced the larger the selection coefficient (e.g., for sweeps with
s = 0.1 the average fixation time is approximately 2.1× longer
in the low-dispersal limit compared to the panmictic limit).

A slower rate of spread of an adaptive mutation under lim-
ited dispersal could have important consequences during the
early sweep phase. In particular, if a mutation remains at a low
frequency for a longer time, there should be an increased proba-
bility of stochastic loss due to genetic drift, decreasing the overall
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Figure 4 Fixation times and probabilities: A. Ratio of the av-
erage sweep fixation time for varying dispersal rates relative
to the average fixation time under panmixia. Error bars rep-
resent the standard deviation from the mean, estimated over
∼ 3000 successful sweeps per data point. B. Ratio of the fix-
ation probability of a new adaptive mutation with selection
coefficient s for varying dispersal rates relative to the expected
fixation probability under panmixia ((1 − e−s)/(1 − e−2Ns)).
Each data point was estimated from ∼ 3000 successful sweeps.
Error bars represent the binomial sampling error, calculated as√
(2pq/n).

fixation probability of such mutations. In a panmictic diploid
population of size N, a new mutation with selection coefficient s
and dominance coefficient h = 1/2 initially present in one copy
is expected to ultimately become fixed in the population with
probability (1 − e−s)/(1 − e−2Ns) (Kimura (1957)). Our simula-
tions confirm this classic theoretical result in the panmictic limit
(Figure 4B). For limited dispersal scenarios, fixation probabilities
indeed slightly decrease from the panmictic expectations. For in-
stance, the probability of fixation of a new mutation with s = 0.1
in the low-dispersal limit is ∼ 20% lower than under panmixia.

Limited dispersal has little effect on sweep size
A key signature of a selective sweep is the reduction of genetic
diversity in the vicinity of the sweep locus due to hitchhiking.
At fixation, the expected size of this trough is determined by
the probability that recombination events occurring during the
sweep were able to break up linkage between the adaptive alle-
les and linked neutral hitchhiker alleles. A higher recombination
rate and/or a longer fixation time should therefore produce a
narrower trough, and vice versa. Under panmixia, expected fix-
ation times are roughly proportional to the selection coefficient
of the sweep, so sweep sizes should be approximately propor-
tional to s/r (Kaplan et al. (1989)). Several existing methods
leverage this result to estimate the selection strengths of recently
completed sweeps (Kim and Stephan (2002); Sattath et al. (2011)).

Previous studies have suggested that the increased fixation
time in a spatial population with limited dispersal should lead to
narrower sweep sizes compared to panmixia (Kim and Maruki
(2011); Barton et al. (2013); Min et al. (2022)). Thus, methods for
estimating selection strength based on sweep size could underes-
timate the true s. We investigated whether this prediction holds
true in our spatial population model. Contrary to expectation,
we found that sweep sizes are in fact very similar in the low-
dispersal and panmictic limits, with no discernible differences
across the range of selection coefficients we tested (Figure 5A).

4500 4750 5000 5250 5500
position (in kbp)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(x
)

0

A s = 0.01

d = 0.015
d = 1.000

3000 4000 5000 6000 7000
position (in kbp)

s = 0.10

0 2 4 6 8 10
length of ROH (Mb)

0

5

10

15

20

25

%
 o

f t
he

 g
en

om
e

B
d = 0.015
d = 0.020
d = 0.040
d = 0.100
d = 1.000

Figure 5 Sweep sizes and ROH distributions: A. Reduction
in heterozygosity (π) around the sweep locus estimated at
sweep fixation relative to the neutral level before the sweep
(π0) for the two extreme dispersal rates d = 0.015 and d =
1.0, and for selection strengths of s = 0.01 (left) and s = 0.1
(right). For the left plot, each data point was estimated over
a non-overlapping window of size 5 kbp, averaged over 1000
replicates. For the right plot, each data point was estimated
over a non-overlapping window of size 40 kbp, averaged over
1000 replicates. The grey dashed line represents the panmictic
expectation of 1 − (2Ns)−4rx/s, where x is the distance from
the sweep locus (Barton (2000)). B. Cumulative proportion
of a diploid genome covered by ROHs as a function of the
maximum length of ROHs considered. For each value of d, the
result represents an average across samples from three neutral
burn-in replicates. A minimum length of 200 kbp is used for
calling ROHs.

One hypothesis for why this could be the case is that recom-
bination might be less effective at breaking up genetic linkage in
low-dispersal populations, thereby compensating for the longer
fixation times. In particular, we surmised that the presence of
long ROHs, which should be more common in populations with
low dispersal due to higher inbreeding rates (Min et al. (2022)),
could be lowering the efficacy of recombination. This is because
any crossover event occurring inside an ROH will be ineffective
at shuffling alleles at other loci within the same ROH. In other
words, looking backward in time, if the two segments created
by a recombination breakpoint coalesce with each other before
either coalesces with another lineage, the recombination event
has no effect on linkage patterns within that region (Nordborg
(2000)).
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Indeed, we observed a dramatic increase in the number of
long ROHs for populations under limited dispersal as compared
to panmixia (Figure 5B). For example, in panmictic populations,
ROHs (defined as homozygous regions of length ≥ 200 kbp
containing ≥ 20 SNPs, see Model) make up only ∼ 0.89% of the
cumulative genome length of a sample of n = 50 individuals,
while this number is approximately 26 times higher (∼ 23.7%) in
the low-dispersal limit (d = 0.015). In comparison to other sum-
mary statistics of neutral diversity, such as π, this is arguably the
most striking difference we observed between the panmictic and
low-dispersal limits. However, while this substantial increase in
long ROHs should lower the efficacy of recombination, it is not
clear whether this effect is truly a driving factor in determining
sweep size, and why it would almost perfectly counteract the
effect of longer fixation times. A more rigorous study of this
question would require a better understanding of how continu-
ous spatial population structure with limited dispersal affects
linkage patterns and the effectiveness of recombination in break-
ing up linkage when long ROHs are common.

Limited dispersal can make sweeps appear softer
In the hard selective sweep model implemented in our simula-
tions, a sweep arises from a single de novo mutation that is imme-
diately adaptive. Under panmixia, this model predicts the classic
sweep signatures: a reduction in π around the sweep locus, an
excess of high- and low-frequency derived nucleotide variants
in the SFS, and the presence of one long haplotype at high popu-
lation frequency. By contrast, soft selective sweeps from SGV or
recurrent de novo mutations tend to produce markedly different
signatures. In particular, nucleotide heterozygosity around the
sweep locus is not necessarily reduced to the same extent as
in a hard sweep, the SFS can show an excess of intermediate-
frequency variants, and several long haplotypes can be present
at intermediate population frequencies, resulting in generally
higher levels of haplotype heterozygosity at the sweep locus
(Hermisson and Pennings (2017)).

Based on the data depicted in Figure 5A, the reduction in π
around the sweep locus looks very similar in the panmictic and
low-dispersal limits. At the center of the sweep, π diminishes to
nearly 0% of its neutral equilibrium value in either scenario, sug-
gesting that limited dispersal does not make these hard sweeps
appear softer in that regard. This is consistent with the fact that
at the sweep locus, all lineages present when the adaptive mu-
tation fixes must have coalesced by the time this mutation first
arose. Even though it may take the adaptive mutation about
twice as long to go to fixation in the low-dispersal limit as com-
pared to pamixia, this is not enough to substantially increase
levels of neutral diversity close to the sweep locus.

A different result has been suggested for SFS-based signa-
tures. In particular, Min et al. (2022) modeled hard selective
sweeps in a 1D stepping-stone model and found an excess of
intermediate frequency variants in the SFS compared to the
classic sweep model, which led them to conclude that hard selec-
tive sweeps in 1D spatially structured populations may appear
softer than they actually are. To investigate whether we can
also observe this "softening" effect in our 2D continuous-space
model, we studied the SFS and Tajima’s D values estimated
around simulated sweeps in global samples (Figures 6A-B). In
the panmictic limit, our simulations show the predicted excess of
high- and low-frequency variants resulting in negative Tajima’s
D values. However, as the dispersal rate decreases, the SFS
indeed becomes enriched for intermediate-frequency SNPs, con-

firming that the apparent softening effect also occurs in our
2D continuous-space model. We further find that this effect
is much more pronounced for stronger (s = 0.1) than weaker
(s = 0.01) sweeps. In neutral simulations, SFS and Tajima’s D
values closely follow the equilibrium expectation under pan-
mixia across the range of dispersal rates when estimated in
global samples.

In addition to nucleotide diversity and the SFS, haplotype-
based signatures can provide a third distinguishing feature be-
tween hard and soft sweeps. In a hard sweep, when the adaptive
mutation becomes fixed, the haplotype on which it originally
arose should be the most prevalent one, while variants of this
haplotype that arose from mutation or recombination events
during the sweep should typically remain at much lower fre-
quencies. By contrast, soft sweeps can involve several differ-
ent adaptive haplotypes present at intermediate frequencies,
resulting in generally higher levels of haplotype heterozygosity
around the sweep locus.

Indeed, we find that haplotype frequency spectra around
hard sweeps (with s = 0.1) also appear softer under limited
dispersal (Figure 6). When estimating the average haplotype
frequency spectrum in a window of size 50 kbp around such
sweeps in global samples, we observe a clear shift towards more
intermediate frequency haplotypes in the low-dispersal limit
as compared to panmixia. This is consistent with a systematic
increase in haplotype heterozygosity around the sweep locus
under limited dispersal (Figure 6D), while no such increase is
observed under neutrality. Finally, there is also an increase in the
overall number of haplotypes in the analysis window, especially
for the stronger sweeps (Figure 6E). Again, no such increase is
observed under neutrality.

Effect of local sampling
Next, we wanted to examine how these findings are affected
when we estimate SFS and haplotype statistics within local sam-
ples rather than global ones. In this case, the enrichment of
intermediate frequency variants in the SFS around sweeps due
to limited dispersal is even more pronounced (Figure 6A). For
example, while Tajima’s D values estimated in global samples re-
main negative for almost all simulated sweeps across the range
of dispersal regimes tested, in local samples they are almost
always positive in the low-dispersal limit, with typical values on
the order of one (Figure 6B). We also observe an enrichment of
intermediate frequency variants under limited dispersal in neu-
tral simulations in local samples, while no such effect was seen
in global samples. This is consistent with previous studies that
observed a shift in the SFS towards intermediate frequencies in
local samples taken from neutrally evolving, spatially-structured
populations (De and Durrett (2007); Städler et al. (2009); Min et al.
(2022)).

Similar to what we observed in global samples, haplotype
heterozygosity generally increases in local samples with lower
dispersal rates, except for the weak sweeps (s = 0.01) in the
longest windows (100 kbp), where we see a slight decrease
in haplotype heterozygosity in the low-dispersal limit. This
decrease is also observed in neutral simulations, presumably
because of longer and more frequent ROHs in such samples.
Thus, for weak sweeps, our longest windows presumably con-
tain enough neutral diversity far away from the sweep to revert
to the patterns observed under neutrality. As demonstrated in
Figure 6E, there is a marked decrease in the overall number of
different haplotypes observed within local samples, thus reveal-
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Figure 6 Softening of hard selection sweeps under limited dispersal: A. Site frequency spectra under neutrality and two sweep
strengths for varying dispersal rates. For the neutral simulations, the spectra were estimated across the entire simulated chromo-
some of length 10 Mbp. For the sweep scenarios, the windows were centered on the sweep locus, with their sizes chosen to capture
the average dip in diversity (150 kbp for s = 0.01, and 1 Mbp for s = 0.1). B. Tajima’s D values for each of the spectra estimated
above. Values of D = 0 correspond to the neutral equilibrium expectation (grey dashed line); negative values indicate a skew to-
wards low- and/or high-frequency derived variants; positive values indicate enrichment for intermediate-frequency variants. C.
Haplotype frequency spectra for selective sweep simulations of strength s = 0.1 within a window of size 50 kbp centered on the
sweep for the panmictic limit (d = 1.0) and the low-dispersal limit (d = 0.015), and estimated in global versus local samples. Each
haplotype frequency spectrum was averaged over 1000 sweeps. D. Haplotype heterozygosity under neutrality and two selection
strengths for varying dispersal rates, different window sizes, and global versus local sampling. E. Same as D, but showing the over-
all number of haplotypes present in the analysis window instead of haplotype heterozygosity. The mean and standard deviation
(represented by the error bars) of each data point in B,D,E were estimated across 1000 replicates.

ing no clear signature of softening. However, this effect is also
observed under neutrality.

Overall, these findings suggest that limited dispersal can
produce a softening effect in haplotype signatures around the
sweep locus, marked by increased haplotype heterozygosity (in
both global and local samples) and higher haplotype numbers
(in global but not local samples). In most cases, these effects
do not conform to the impact of limited dispersal on haplotype
patterns in neutral scenarios.

Comparing spatial hard sweeps to SGV soft sweeps

One scenario that can produce true soft sweeps is when adapta-
tion occurs from SGV. For instance, a previously neutral allele
could have already been present at a certain starting frequency
in the population when it suddenly became adaptive. To bet-
ter understand the degree by which limited dispersal softens
the hard sweeps in our spatial model, we wanted to investi-
gate which starting frequency in this panmictic SGV soft sweep
model yields similar levels of haplotype heterozygosity to hard
sweeps in our spatial model under limited dispersal. When the
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starting frequency is very low, the level of haplotype heterozy-
gosity observed at fixation of SGV soft sweeps should converge
to that of spatial hard sweeps in the panmictic limit, while sys-
tematically increasing with higher starting frequency.

Figure 7 shows the haplotype heterozygosity of simulated
soft sweeps from SGV in a panmictic population as a function of
their starting frequency, compared to the haplotype heterozygos-
ity of simulated hard sweeps in spatial populations as a function
of the dispersal rate. The right end of the plot depicts the panmic-
tic limit of the spatial model, and SGV sweeps with the lowest
possible starting frequency x0 = 1/(2N), corresponding to a
single copy of the adaptive allele. In this limit, both curves
converge to a haplotype heterozygosity of ∼ 0.56, as expected
from Figure 6D. On the left end of the plot, which depicts the
low-dispersal limit of the spatial hard sweep model and SGV
sweeps with high starting frequency, we find that haplotype
heterozygosity in the spatial hard sweeps is elevated to ∼ 0.794.
This is comparable to the haplotype heterozygosity of 0.791 mea-
sured for SGV soft sweeps with a starting frequency of x0 = 0.03.
Thus, for this specific scenario, limited dispersal softens haplo-
type heterozygosity levels of hard sweeps in our spatial model
to an extent where they resemble soft sweeps from SGV in a
panmictic population starting from a previously neutral allele
that was initially present in 2Nx0 = 600 copies when it became
adaptive.

One conceivable explanation for this observed degree of soft-
ening could be the increased fixation time in a low-dispersal
scenario as compared to panmixia. In other words, maybe the
panmictic SGV sweeps that yield comparable levels of haplo-
type heterozygosity as the spatial hard sweeps under limited
dispersal have adaptive alleles with comparable overall ages at
fixation as these hard sweeps, and this essentially explains why
they appear softer. However, as we already showed above, a mu-
tation with s = 0.1 undergoing a hard sweep in a low-dispersal
scenario only takes about twice as long to fix (∼ 730 genera-
tions) as a mutation undergoing a hard sweep in a panmictic
population (∼ 340 generations). By contrast, the mean age of
a neutral mutation present at a starting frequency of x0 = 0.03
is ∼ 3500 generations in our SGV sweep simulations, which is
close to the theoretical expectation (Kimura and Ohta (1973)).
The total average age of such a mutation at the fixation of an
SGV soft sweep is then ∼ 3800 generations, and thus they are
substantially older than their counterparts in the spatial hard
sweep model, suggesting that the increase in fixation time alone
cannot explain the elevated haplotype heterozygosity.

Discussion

Our current understanding of selective sweeps is largely based
on panmictic models where all individuals in the population are
well mixed. This assumption could be problematic for many real-
world organisms that inhabit larger geographic ranges but only
disperse over short distances during their lifetime. In this study,
we used individual-based simulations of selective sweeps to
investigate how such spatial structure can affect sweep dynamics
and signatures in 2D continuous-space populations.

We first showed that limited dispersal can slow down the
spread of an adaptive allele and thereby lower its fixation prob-
ability compared to expectations in a panmictic population of
equal size, echoing previous findings in a 1D stepping-stone
model (Min et al. (2022)). In the low-dispersal regime, the popu-
lation dynamics of the adaptive allele are no longer described by
logistic growth, but rather by a Fisher traveling wave spreading

Figure 7 Softness comparison between SGV and spatial
sweeps: The two curves show average haplotype heterozy-
gosity levels measured in windows of size 100 kbp in global
samples for sweeps of strength s = 0.1. The blue curve depicts
the results for hard sweeps in our spatial model for varying
dispersal rates (bottom x-axis), while the red curve depicts the
results for SGV sweeps in a panmictic population for varying
starting frequencies (top x-axis). Note that the top x-axis is
inverted. Higher haplotype heterozygosity indicates a softer
sweep, as found for SGV sweeps with higher starting frequen-
cies and spatial hard sweeps in scenarios with lower dispersal
rates. The mean and standard deviation (represented by the
error bars) of each data point were estimated across 1000 repli-
cates.

in an approximately circular fashion outward from the point
of origin of the adaptive allele. As a result, heterozygotes are
mostly found at the wavefront of the expanding sweep, and their
population frequency deviates substantially from the Hardy-
Weinberg equilibrium. We showed that these qualitatively dif-
ferent dynamics can profoundly alter the signatures left by a
selective sweep in surrounding genetic diversity from those
expected under panmixia. In many cases, the effects reflect a
complex interplay between the changed sweep dynamics and
the impact of limited dispersal on equilibrium patterns of neu-
tral genetic variation that provide the background on which the
sweep occurs.

For example, we showed that contrary to what had been pre-
dicted in previous studies (Min et al. (2022); Barton et al. (2013)),
the slowed spread of the sweep under low dispersal does not nec-
essarily result in a narrower trough of neutral diversity around
the sweep locus. This is surprising because a longer fixation time
should allow for more recombination events during the sweep
that could break up the linkage between the adaptive allele and
surrounding neutral variants. It is, therefore, not entirely clear
why we do not observe a narrower trough in our simulations.
We surmised that this may be due to a reduced effectiveness of
recombination from crossover events occurring inside ROHs,
which are much longer and more prevalent in low-dispersal
populations as compared to panmictic ones, presumably due to
higher rates of local inbreeding. A crossover event within an
ROH cannot shuffle alleles at other loci within the same ROH
(Nordborg (2000)). Thus, if ROHs are common and long enough
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to extend over typical sweep sizes, this should lower the effec-
tive rate of recombination between SNPs within those distances,
while not affecting the rates across loci that are farther apart.

The consequences of a reduction in the effective recombi-
nation rate on selection have been studied extensively in the
context of selfing populations Hedrick (1980); Charlesworth et al.
(1997); Hartfield and Glémin (2014); Roze (2016); Hartfield and
Bataillon (2020); Sianta et al. (2022). Indeed, several of these
studies showed that a reduced effective recombination rate in
selfing populations is expected to increase the span of the hitch-
hiking region in a selective sweep. More rigorous methods
are still needed to understand how these results could apply
to continuous-space populations. Nevertheless, if our finding
that sweep size is not severely affected by low dispersal does
hold more generally, this would imply that methods for infer-
ring selection strength based on this signal remain robust in
low-dispersal populations even when their inferences rely on
predictions from panmictic models.

Regarding the SFS around a sweep locus, our study revealed
that low-dispersal causes an enrichment of intermediate fre-
quency SNPs compared to the panmictic expectation. A similar
phenomenon was noted by Min et al. (2022) for selective sweeps
in a 1D stepping-stone model. They proposed that this flattening
of the SFS results from mutations that fix in the wavefront of the
sweep and are then carried through the rest of the population,
while also suggesting that this effect might be less pronounced
in 2D populations. Our results demonstrate that the flattening
effect is still clearly observable in 2D populations with limited
dispersal.

Furthermore, we found that low dispersal can systemati-
cally alter the haplotype structure observed around a sweep
locus, with characteristic changes in the haplotype frequency
spectrum. Specifically, we showed that limited dispersal gener-
ally increases the level of haplotype heterozygosity around the
sweep locus, contrary to what is observed under neutrality. This
is true for local and global samples but with different underlying
changes in the haplotype frequency spectrum in each case. In
global samples, the average number of haplotypes observed in
a genomic window increases under low dispersal, both around
a sweep locus and under neutrality (consistent with the longer
coalescence times in low-dispersal populations). By contrast,
average haplotype numbers decrease in local samples in both
scenarios (consistent with the higher prevalence of long ROHs).
Yet we still observed higher haplotype heterozygosity around
a sweep with lower dispersal even in local samples because
more of those haplotypes tend to be present at intermediate
frequencies.

A key question is whether the parameter regime we studied
could be relevant to real-world populations so that these effects
can manifest in practice. Generally, we expect those effects to
become more severe with stronger selection and lower dispersal
rate (relative to the extent of the population’s geographic range).
In our simulation model, we studied sweeps with selection co-
efficients ranging from s = 0.01 to s = 0.1. These are arguably
relatively strong sweeps. However, many examples of sweeps
of such strength have been observed in nature. For instance, the
selection coefficient of the sweep associated with lactase persis-
tence in humans has been estimated to be in the range of 1 − 2
percent (Bersaglieri et al. (2004)). Even stronger sweeps have
been observed at the MC1R gene in Monarch birds associated
with color pigmentation (Campagna et al. (2022)), or the evolu-
tion of pesticide resistance in Anopheles mosquitoes (Lynd et al.

(2010)). There is evidence that sweeps with selection coefficients
on the order of 1% or larger could have been common in various
species (Sella et al. (2009); Enard et al. (2014); Rogers et al. (2023);
Wei et al. (2023)). Thus, we conclude that the strength of selection
modeled in our study is not unrealistic.

Neither should the dispersal rates studied in our model be
considered unrealistically low for many real-world populations.
We observed the strongest effects in our model’s low-dispersal
limit, which was set at d = 0.015. This means that the average
distance between parent and offspring locations is still roughly
one percent of the diameter of the population range. In many
real-world populations, dispersal rates should actually be lower.
For example, the average distance between the birthplaces of
second-degree cousins or closer was found to be only < 5 km
in the UK Biobank (Nait Saada et al. (2020)), which is signif-
icantly less than one percent of the diameter of the UK. Sim-
ilarly, the maximum recorded dispersal distance in Anopheles
gambiae mosquitoes was found to be less than 700 meters in a
mark–release–recapture study in Kenya (Midega et al. (2007)),
again a much shorter distance than one percent of this species’
geographic range in sub-Saharan Africa.

Hence, we believe that the effects of limited dispersal on
sweep dynamics and signatures we demonstrated in this study
could be relevant for various real-world populations inhabiting
large geographical ranges, such as humans or mosquitoes. One
indication that this might be the case for any given sweep would
be the observation of clear differences in haplotype patterns
around the sweep locus between local and global samples, as
illustrated in Figure 6E.

An important caveat to our study is that we did not include
the potential for long-range dispersal, which could be an im-
portant factor in shaping the dynamics of sweeps in real-world
populations (Paulose et al. (2019)). When the dispersal kernel
has a long tail such that a few individuals occasionally migrate
over much larger distances than typical, this could lead to mul-
tiple introductions of the adaptive allele into distant regions
of the population. Each such new introduction can potentially
seed a new patch in which the allele can then spread locally,
accelerating its overall spread (Paulose et al. (2019)).

Our model makes several other simplifications that could
limit its generality. In particular, we modeled a completely
homogeneous population with a constant local density and dis-
persal rate across space and time. Real-world populations will
always be more heterogeneous, and this could affect sweep be-
havior in various ways. We also only studied a population of a
fixed size of N = 10, 000 individuals, neglecting any potential
impact of demographic events such as historic bottlenecks or
expansions. A larger or smaller population size (while keeping
the dispersal rate and habitat size the same) will change the rate
of genetic drift in the population. This could impact both the
background patterns of neutral diversity and the dynamics of
the adaptive allele in complex ways that remain to be explored.

Importantly, we also assumed a highly idealized sweep
model involving a codominant adaptive mutation with a con-
stant selection coefficient. These assumptions are likely violated
at least to some extent in most real-world populations. For
recessive mutations in particular, sweep dynamics could be
even more different in the continuous-space model as compared
to a panmictic population because when the mutation is still
rare, homozygotes can be present in the population at a higher
frequency than expected under Hardy-Weinberg proportions,
thereby potentially facilitating its initial spread.
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Perhaps most problematic is our assumption of a population
sample obtained precisely when the adaptive mutation fixes in
the population. In most practical applications, the population
will likely be sampled when the sweep is either still ongoing
or has already ended. In fact, many sweeps may not reach
fixation at all due to various factors, such as when the benefit of
the adaptive allele weakens over time or exists only in certain
contexts or parts of the population (Pritchard et al. (2010)). The
signatures produced by such partial selective sweeps can be
more multi-faceted than the simple model we studied here, as
both adaptive and non-adaptive haplotypes will be captured in
the sample.

Given all these simplifications, as well as the general diffi-
culty of parameterizing any real-world spatial population model,
our results should not be seen as questioning the results from
any particular sweep inference method. However, they do raise
the possibility that spatial population structure could be a strong
confounding factor in some previous studies that assumed pan-
mixia, especially when selection is strong. In particular, the
flattening of the SFS we observed in low-dispersal populations,
in combination with the increase in haplotype heterozygosity,
are both commonly associated with soft selective sweeps. Some
methods for distinguishing hard from soft sweeps based on such
signals could hence be misled into classifying hard sweeps as
soft if they rely on expectations from panmictic models.

Our results highlight a general problem for methods that base
their inferences solely on summary statistics, which can often
yield the same results under fundamentally different evolution-
ary scenarios. For sweep classification, the defining feature is the
true genealogy of adaptive alleles at the selected site. In a hard
sweep, by definition, all adaptive lineages in the sample must
coalesce more recently than when it first became advantageous
to carry the allele. A soft sweep, by contrast, is defined by coa-
lescence occurring before the onset of positive selection (Messer
and Petrov (2013); Hermisson and Pennings (2017)). All sweeps
we simulated in our spatial model were hard by definition, aris-
ing from a single mutation that was immediately adaptive. If
the true genealogy at the selected site were known, it would
be clear that these sweeps were hard, and did not arise from a
mutation in the SGV that had been segregating for thousands
of generations before it became adaptive, as suggested by the
observed level of haplotype heterozygosity. We hope that recent
progress in the development of methods for accurate inference
of ancestral recombination graphs (Brandt et al. (2024); Deng
et al. (2024)) could pave the way for a new class of sweep infer-
ence methods that are more robust to confounding factors than
current approaches that rely on summary statistics alone.

The appeal of the classic selective sweep model introduced
by Smith and Haigh stems in no small part from its elegance
and simplicity, yet biological reality is inevitably more complex.
Consequently, there has been a long history of studying how
various potentially confounding factors, such as background
selection and demography, can affect selective sweeps and po-
tentially bias the inferences of methods that do not account for
them appropriately. Our study adds another layer of complexity
to this challenge by demonstrating that continuous spatial pop-
ulation structure can also profoundly impact sweep dynamics
and signatures.

In light of our findings, we suggest that methods for studying
selective sweeps, when applied to populations where dispersal
could be a limiting factor, should explicitly consider the potential
impact that such spatial structure might have on their inferences.

In some cases, it may be evident that the level of dispersal in the
study population is high enough over the timescales relevant to
a sweep that the assumption of a panmictic model remains justi-
fied. In other cases, it may be necessary to explicitly show that
results obtained under this assumption remain robust for a given
level of population structure. When this is not the case, spatial
structure should be explicitly included in the model or analysis.
This can be challenging because of the complexity involved in
accurately parameterizing spatial models, where key parameters
such as the dispersal kernel of the study population are often
unknown. However, with the advent of powerful simulation
tools (Chevy et al. (2024)), it is now at least feasible to simulate
evolutionary dynamics in baseline models of continuous-space
populations that can help us better understand how such struc-
ture affects evolutionary processes, as we have demonstrated in
this study.

Data availability

Scripts used for all analyses and figures are available at
https://github.com/meerachotai/spatial_selection.
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