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The functional diversity of natural killer (NK) cell repertoires stems from
differentiation, homeostatic, receptor-ligand interactions and adaptive-like
responses to viral infections. In the present study, we generated a single-cell
transcriptional reference map of healthy human blood- and tissue-derived
NK cells, with temporal resolution and fate-specific expression of
gene-regulatory networks defining NK cell differentiation. Transfer learning
facilitated incorporation of tumor-infiltrating NK cell transcriptomes

(39 datasets, 7 solid tumors, 427 patients) into the reference map to

analyze tumor microenvironment (TME)-induced perturbations. Of the

six functionally distinct NK cell states identified, a dysfunctional stressed
CD56™ " state susceptible to TME-induced immunosuppressionand a
cytotoxic TME-resistant effector CD56™ state were commonly enriched
across tumor types, the ratio of which was predictive of patient outcome

in malignant melanoma and osteosarcoma. This resource may inform

the design of new NK cell therapies and can be extended through transfer
learning to interrogate new datasets from experimental perturbations or

disease conditions.

NK cells are innate lymphocytes that play a vital role in the immune
response through their ability to directly kill transformed and
virus-infected cells by orchestrating the early phase of the adaptive
immune response’. NK cells are commonly divided into two functionally
distinct subsets: CD56"€" and CD56%™ NK cells**. However, this is an
oversimplified view of the repertoire. Mass cytometry profiling of NK
cellrepertoires at the single-cell level revealed an extensive phenotypic
diversity comprising upto100,000 unique subsets in healthy individu-
als*. Much of this diversity is based on combinatorial expression of
stochastically expressed, germline-encoded activating and inhibitory
receptorsthat bind to human leukocyte antigen (HLA) classIand tune
NK cell functionina process termed NK cell education>®. Another layer
of diversity reflects the continuous differentiation through well-defined

intermediate phenotypes from the naive CD56" NK cells through
CD62L*NKG2A'KIR"CD57 CD56%™ NK cells to terminally differentiated,
adaptive CD62L"NKG2C*'CD57'KIR*CD56%™ NK cells, associated with
past infection with cytomegalovirus (CMV)"'. Given the increasing
interest in harnessing the cytolytic potential of NK cells in cell ther-
apy against cancer, it is of fundamental importance to understand
the molecular programs and gene-regulatory circuits driving NK cell
differentiation and the underlying functional diversification of the
human NK cell repertoire.

Utilizing single-cell RNA sequencing (scRNA-seq), Crinier et al.
discovered organ-specific signatures in human spleen NK cells and
two major transcriptional clusters in blood-derived NK cells (PB-NK),
corresponding to CD56%™ (NK1) and CD56°€" (NK2) NK cell subsets>.
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Bulk RNA and chromatin immunoprecipitation sequencing identi-
fied dominant transcription factor (TF) axes defining CD56°""
(TCFI-LEF-MYC) and CD56%™ (PRDMI) phenotypic subsets, respec-
tively™. Later research reported additional diversity with unique tran-
scriptional clusters, including interleukin (IL)-2- and type l interferon
(IFN)-responding NK cell subsets' and an intermediate CD56“™G-
zmK' stage, potentially bridging CD56°" and CD56%™ NK cells”. A
comprehensive analysis unveiled a role for Bcll1b in driving NK cell
differentiation toward the adaptive state, reciprocally suppressing
early TFs such as RUNX2 and ZBTB16 (ref.14). Combining gene expres-
sion analysis, chromatin accessibility and lineage tracing via mito-
chondrial DNA mutations, Riickert et al. revealed clonal expansions
and a distinct inflammatory memory signature in adaptive NK cells®.
Using a pan-cancer, single-cell atlas approach, Tang et al." identified
a tumor-enriched dysfunctional CD56“™CD16" NK cell population
interacting with LAMP3" dendritic cellsin the TME. Hence, scRNA-seq
and bulk RNA-seq usage have defined major transcriptional regulatory
hubs during NK cell differentiation and identified a persistent memory
statein humaninnate immunity. However, it remains unclear how the
regulatory gene circuits that operate under homeostasis in healthy tis-
suesare affected by cellular and/or soluble cues in the TME, resulting in
perturbed functional states within tumor-infiltrating NK (TiNK) cells.
In the present study we established a single-cell transcriptional
reference map that resolves gene expression trends and dominating
TF-target interactions during NK cell differentiation in blood and
normal tissues. Reference mapping enabled the analysis of cellular
differences and gene programs in diseases and various conditions by
contextualizing new datasets within a healthy transcriptional refer-
ence, facilitating the identification of new states not found in the lit-
erature”. We utilized our NK cell reference map, compiled from 44,640
PB-NK cells (12 donors) and 27,732 tissue-resident NK (TrNK) cells
(136 donors), to query the regulons and functional states, as defined
through gene expression signatures, of TiNK cells derived from 427
patients with 7 distinct solid tumors (38,982 TiNKs). We found that TrNK
and TiNK cells have a clear tissue-residency signature but still share the
dominantregulons of blood CD56°¢" and CD56“™ NK cells. Of the six
functional states identified in our pan-cancer atlas and confirmedina
spatial transcriptomics dataset, a dysfunctional stressed CD56" € state
susceptible to TME-associated cellular communication and a cytotoxic
effector CD56%™ state were commonly enriched across tumor types.
Stratification of patient survival dataidentified a high ratio of effector
CD56%™mto stressed CD56° ™ state to correlate withimproved survival
in patients with osteosarcomaand melanoma. Thisresource provides a
granular view of cancer-specific alterations of solid TiNK cells, identify-
ing how the TME can lead to NK cell dysfunction and may inspire new
strategies to engineer cell therapy products with robust functional
phenotypes resistant to TME-induced suppressive mechanisms.

Results

NK cell subset annotation using predictive gene signatures

To establish a pan-cancer atlas of TiNK cells, we first defined NK cell
differentiation at the transcriptional level. We performed scRNA-seq of
the total NK cell population from seven healthy donors and integrated

our transcriptomes with five publicly available donor datasets®™® using

scVI (single-cell Variational Inference)'” (Supplementary Table 1). By
retaining only cell-to-cell variationindependent of sample-to-sample
variation, the cells that initially clustered by donor and laboratory
origin were successfully integrated into ahomogeneous population
and visualized using diffusion maps to preserve the continuous tra-
jectories observed with biological differentiation (Fig. 1a). Although
NK cell differentiationis best described as a continuum, CD56°€" and
CD56%™ NK cells represent two distinct stages of differentiation. By
performing gene signature scoring using AUCell”, we identified cells at
the top of the diffusion map embedding scoring high for the CD56°1&"
gene signature?, whereas the main body of the embedding exhibited
increasing intensity of the CD569™ signature? (Fig. 1b). Scoring of two
independent gene signatures based on the CD56°€"4im regylon™ and
proteome? confirmed our results (Extended Data Fig. 1a,b).

The relatively large and heterogeneous population of CD56%™
NK cells is commonly phenotypically defined into functionally dis-
tinct subsets based on a selected number of inhibitory and activat-
ing receptors contributing to the functional tuning’. To identify
predictive gene signatures associated with these functional stages
encompassing NK cell differentiation, we sorted and sequenced
equal numbers of CD56"&" NK cells and four CD56%™ NK cell subsets
(NKG2A'KIR"CD577,NKG2A self-KIR*CD57, NKG2A nonself-KIR*CD57,
NKG2A self-KIR'CD57* or NKG2A"*self-KIR*CD57*NKG2C") from
two donors, one without and one with a large adaptive NK cell
expansion (Fig. 1c and Extended Data Fig. 1c,d). Transcription-
ally, the adaptive NK cell subset was the most distinct because the
remaining CD56%™ subsets exhibited a high degree of transcrip-
tional overlap, while still ordering themselves along the previously
defined maturation scheme (Fig. 1c). As previously observed in bulk
RNA-seq data®, the transcriptomes of self and nonself KIR* NK cells
were highly similar even at the single-cell level and thus merged
for subsequent analysis (Fig. 1c). The five transcriptionally distinct
NK cell subsets were renamed to reflect their maturation stage:
‘CD56°8" ‘early CD56™, ‘intermediate CD56%™, ‘late CD564™ and
‘adaptive’ (Fig.1c).

We next trained a semi-supervised model, scANVI (single-cell
ANnotation using Variational Inference)*, to leverage our identified
NK cell subset gene signatures to predict and infer subset annotation
of compiled bulk NK cell scRNA-seq datasets. We first tested the accu-
racy of the prediction model (M1) on15% of the subset-sorted NK cells
(Fig.1c) that were notincluded in the training of the model. Transcrip-
tionally distinct subsets (CD56°7€™, adaptive) were annotated with high
accuracy, whereas subsets exhibiting higher transcriptional overlap
were annotated with slightly reduced accuracy (Fig. 1d). Using this
model, we could annotate the total NK cell dataset comprising 23,253
single-cell transcriptomes across 12 donors at the subset level (Fig. 1e).
The transcriptional profiles of the subsets are captured by the model
and used toidentify differentially expressed genes (DEGs). The overlap-
pingsets of genesillustrate the transition between the subsets. (Fig. 1f).
Tovalidate our annotation model, we performed unbiased clustering
(Leiden) of the total NK cell dataset (12 donors), identifying 5 clusters
closely matching our annotated 5 NK cell subsets (Fig. 1g). A small

Fig.1|NK cell differentiation at the transcriptional level. a, Integration
process of scRNA-seq data of NK cells from 12 donors and 4 different laboratories
using scVIshowing a UMAP based on the scVI latent representation, followed

by aUMAP based on the diffusion map components. b, AUCell scores of gene
signatures for CD56""¢" and CD56“™ NK cell subsets. ¢, UMAP representation of
five sorted subsets from a donor with an adaptive expansion (left) and adonor
without an adaptive expansion (right). d, Heatmap depicting accuracy of our
prediction model for subset annotation tested on the held-out 15% of cells from
the subset-specific dataset (two donors). e, UMAP of the scANVI representation
of both bulk and sorted NK cells, showing original annotation of NK cells

(12 donors, left) and subset labels predicted (right) using the scANVImodel

trained with sorted subset data (2 donors). f, Dot plots showing the top three
up-and downregulated genes between all pairs of subsets (x and y axes) as
identified by the differential expression module in scANVI. These top genes were
thenvisualized across all NK cell subsets within the differentiation spectrum
(xaxis), to highlight the continuous nature of NK cell differentiation. g, Diffusion
map representation showing the predicted subset labels for the bulk data (top)
and depicting Leiden clustering of the 12 donor NK cell dataset (bottom).

h, Heatmap showing distribution of our annotated 12 donor NK cell subsets

over the 5Leiden clusters. i, Frequency (freq.) of annotated late CD56%™

and adaptive NK cell subsets in donors with and without an adaptive NK cell
expansion. Int., intermediate.
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portion ofintermediate CD56%™-annotated NK cells clustered together
with late CD56%™-annotated NK cells in cluster 4 (Fig. 1h), probably
corresponding to more mature cells within the population. The subset
stratification obtained through training of our model based on subset
signatures, as well as the unbiased Leiden clustering, harmonizes well

with the recently proposed NK1-3 nomenclature” (Extended Data
Fig. 1e). Having confirmed the validity of our five NK cell subsets, M1
was utilized to identify donors with an adaptive NK cell expansion,
which were all confirmed to be CMV seropositive (Fig. 1i). Thus, this
first scANVImodel forms a basis to interrogate cellular states layered
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Fig.2| GRNs defining conventional and adaptive NK cell fates. a, UMAP
representation highlighting the starting cell (blue) with the lowest value CD56%™
signature score and the two terminal cells (orange) as predicted by Palantir.

b, UMAP representation of the data from the sorted subsets (two donors)
showing the RNA velocity vector field as a stream plot and the inferred
pseudotime. ¢,d, PAGA graph with directionality and transitions from RNA
velocity analysis for the sorted subsets (2 donors) (¢) and subset-inferred bulk

— Conventional

— Adaptive

donors (12 donors) stratified based on the presence or absence of adaptive
expansion (d). e, Gene trends clustered into five overall trends of expression
along pseudotime, showing expression of KLRC2, CD52 and IL32in both
terminal fates (pink, conventional fate; orange, adaptive fate). f, Inferred GRNs
where dominant TFs for each trend are highlighted. g, Selection of regulons
showing differential expression over pseudotime within the conventional and
adaptive fate.

on top of the natural transcriptional changes with NK cell subsets at
different stages of differentiation.

Fate-specific gene-regulatory networks

To decipher the regulatory gene pathways driving NK cell differentia-
tion at the transcriptional level, we used Palantir?® and RNA velocity
to calculate pseudotime?”?®, Palantir identifies terminal cells based
on achosen starting cell, placing the remaining cells along a timeline
(pseudotime). Defining the starting cell (blue) based on the lowest
CD56%Mscore? (Fig. 1b) identified two terminal cells (orange), predicted
to be part of the late CD56%™ and adaptive population, respectively
(Fig. 2a). To validate this trajectory, we utilized the dynamic model

implemented in scVelo” to compute RNA velocity (spliced versus
unspliced transcripts), inferring pseudotime without a predefined
starting cell (Extended Data Fig. 2a,b). The resulting vector field and
extrapolated pseudotime confirmed a trajectory starting within the
CD56° " NK cell subset and terminating in the adaptive subset (Fig. 2b).
Last, toinfer developmental relationships at the resolution of the five
subsets, representing functionally distinct subsets and proposed stages
of NK cell differentiation’, we applied partition-based graph abstrac-
tion (PAGA)” to quantify their connectivity and estimate transitions.
Inline with the two terminal fates (late CD56™, adaptive) identified
by Palantir, we analyzed donors with conventional and adaptive NK
cells separately (Fig. 1i). In both types of donors, early CD56%™ NK
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cells formed the connecting link between CD56°€" and the remain-
ing CD56“™populations (Fig. 2c,d). However, although adaptive donor
NK cells continued their progression to intermediate CD56™ cells,
terminatinginthe transcriptionally distinct adaptive population, con-
ventional donors instead progressed toward intermediate/late CD564™
populations (Fig. 2¢,d).

Having established a temporal axis to NK cell differentiation, we
utilized generalized additive models (GAMs) to compute gene expres-
sion trends as a function of time for each gene®®, which clustered into
five distinct trends (Fig. 2e). Genes varying in expression across the
two terminal fates were depicted in their trends for each fate, exempli-
fied by KLRC2, CD52 (refs.15,18) and /IL32 clustering into trend 1in the
conventional late CD56%™fate and trend 4 in the adaptive fate (Fig. 2e).
Based onthe two-fate model, we constructed gene-regulatory networks
(GRNs)” stratified by the five gene trends and identified the dominant
TFs across pseudotime and their known downstream target genes
(Fig. 2f). Trend 1is dominated by genes that are downregulated with
differentiation from CD56"&" to CD56™ cells, including previously
reported TFs (MYC, LEF1,RUNX2)", RBPJ*° involved in Notch signaling,
the retinoic acid receptor (RXRA) and TFs regulating ID2 expression
(HOXA9, HOXA10)" (Fig. 2¢,f). Trend 2 genes, compared with trend
1, are upregulated during differentiation from early to intermediate
CD56%™ cells and include, among others, EGRI (ref. 32) (cell survival,
proliferation, apoptosis, regulation of TRAIL expression), BHLHE40
(refs. 33,34) (associated with NK cell activation and repression of
RXRA) and IRF8 (refs. 35,36) (role in orchestrating adaptive response,
essential NK cell gene) (Fig. 2e,f). TFs exhibiting less dynamic changes
across pseudotime are clustered in trend 3, such as /IKZF1 (ref. 37),
XBPI1 and KLF2, which play a role in regulating homeostatic prolif-
eration, effector function and cytokine responsiveness®**’. TFs exhib-
iting higher expression at the start and end of pseudotime fall into
trend 4, including STAT3 (cell survival, IFN-y production) and DDIT3
(ref. 40) (stress response, metabolism). Last, expression of trend 5
genes steadily increases with differentiation, decreasing only during
late differentiation, and includes previously reported TFs associated
with CD569™NK cells (MAF, PRDMI, TBX21)", the AP-1family member
BATF, the ETS family member ETV7 and the Wnt target gene ASCL2
(Fig.2e,f). The TF-based GRNs were further curated to only retain direct
targets with significant motif enrichment, referred to as ‘regulons’
(denoted by ‘(+)’), expression of which was confirmed in anindepend-
ent bulk RNA-seq dataset on sorted NK cell subsets. Regulon expres-
sion substantially differing between the conventional and adaptive
fate includes conventional fate-associated BHLHE4O (ref. 34), IRF8
(refs. 35,36) and DDIT3 (ref. 40) and adaptive fate-associated MAF",
BATF and PRDM 1 (ref. 41) regulons (Fig. 2g). Clustering of dominant
TFsaccording totheir temporal expression during NK cell differentia-
tionrevealed aset of highly connected regulatory circuits, expression
of which diverged during terminal differentiation into one of the two
cell fates: conventional or adaptive.

Transfer learning to generate pan-cancer atlas

Having transcriptionally defined NK cell differentiation in peripheral
blood (PB), we proceeded to train a second model (M2) with publicly
available scRNA-seq datasets encompassing 6 healthy tissues (prostate,
lung, pancreas, skin, breast, brain) fromatotal of 136 donors using scvVI*”
to generate a healthy reference map (PB-NK + TrNK) (Fig. 3a and Sup-
plementary Table 2). The tissue-specific datasets wereintegrated and
annotated using scANVIand CellTypist* was used to identify immune
subsets of interest at the pan-tissue level (Fig. 3b and Extended Data
Fig.3a) and within individual tissues (Extended Data Fig. 3b-f). The
annotationand integration steps were repeated for the scRNA-seq data-
sets from 7 solid tumors (prostate (PRAD), lung (NSCLC), melanoma
(SKCM), pancreas (PAAD), breast cancer (BRAC), glioblastoma (GBM)
and osteosarcoma (SARC)) from atotal of 427 patients (Supplementary
Tables3and 4), at the pan-cancer level (Fig. 3c,d) and within individual

tumor types (Extended Data Fig. 4a-g). CellTypist-annotated innate
lymphoid cells (ILCs) (Extended Data Fig. 5a, b) were further stratified
into ILC1/2/3 based on previously described scRNA-seq signatures®.
We could not identify ILCls in both the tissue and the tumor datasets,
but,importantly, ILC2-and ILC3-annotated cells scored highly for /L7R
expression compared with CD56€"- and CD56%™-annotated NK cells,
excluding contamination by ILC1s (Extended Data Fig. 5c,d).

To assess tissue-residency status in our annotated NK cells in the
tissue- and tumor-derived datasets (Extended Data Fig. 5a,b), we uti-
lized aliterature-derived TR signature as well as our own atlas-derived
TR (atlas-TR) signature (Fig. 3e). The atlas-TR signature is based on the
top six genes differentially expressed by both CD56"€" and CD56%™
NK cells across tissue types when comparing with the corresponding
subsetinthe blood-derived NK cells (Extended Data Fig. Se,f). CD56°"ent
NK cells scored generally higher for a TR signature compared with
CD56%™NK cells in both normal tissue and tumors, witha more distinct
TRsignal (compared with PB-NK) achieved with the atlas-TR signature
(Fig.3e and Extended Data Fig. 5g). NK cells annotated ina healthy brain
scored verylow for tissue residency and thus we cannot exclude blood
contamination in these samples (Extended Data Fig. 5g).

CD56&"- and CD56%™M-annotated TiNK cells were mapped on to
the reference map (PB-NK, TrNK) using transfer learning (scArches**)
to generate the final model (M3), our pan-cancer NK atlas (Fig. 3f).
CD56°€" and CD56“™ subsets from PB, tissues and tumors clustered
together (Fig. 3g,h) and were more tightly connected than to their
respective tissues/tumor origin, apart from skin-/SKCM-derived NK
cells (Fig. 3g,h). Thus, differentiation stage had a greater influence on
the NK cell transcriptome compared with tissue origin. Transfer learn-
ing facilitated incorporation of TiNK cells on to our healthy reference
map of PB and TrNK cells, allowing for downstream systematic inter-
rogation of cellular states within solid TiNK cells.

Altered NK cell subset frequencies across tissues and tumors
The TME is shaped by its cellular composition, in particular by the
infiltrating immune cells, which in turn can be modulated by their
surroundings. A pan-cancer comparison of the healthy tissue and
tumor-annotated immune subtypes (Fig. 3b,d) identified anincreased
proportion of plasma cells and naive B cells, as well as a decreased
proportion of CD56%™NK cells, classic monocytes, dendritic cells, NK
T cells, and effector memory/effector T helper cells (helper Teyeee),
effector memory/effector memory re-expressing CD45RA cytotoxic
T cells (cytotoxic Tgyemra) and resident memory cytotoxic T cells (cyto-
toxic Try) inthe pan-cancer datasets (Fig. 4a). The fraction of CD56"s"t
NK cells out of total immune cells was enriched in BRAC, whereas
CD56%™NK cells were enriched in SKCM, but decreased in NSCLC and
BRAC (Fig. 4a—c). We further annotated the CellTypist-identified NK
cells at the subset level using our subset-trained model (M1) (Fig. 4d,e).
Skewing of the CD56°€":CD56%™ ratio between healthy blood or tissue
and tumor was observed for most tumor types (Fig. 4d,e), including
non-small cell lung cancer (NSCLC), which was independently vali-
dated by flow cytometry in an NSCLC cohort (Fig. 4f and Extended
Data Fig. 6a). In line with this, we observed a general decrease in the
intermediate CD56%™ population within the TiNK cells (Fig. 4d,e).
Protein-based annotation of the CD56“™ population in the NSCLC
cohortalsoidentified adecrease of the early and intermediate CD56%™
subsetand amodestincrease of the late CD56“™ subsets in the NSCLC
cohort compared with healthy blood controls (Fig. 4g and Extended
DataFig. 6b-e). Solid TiNK cells were enriched for a CD56°"€" transcrip-
tional phenotype whereas intermediate CD56“™NK cells were reduced
within the CD56%™ compartment in solid tumors, findings that were
verified at the protein level in an NSCLC cohort®.

Six functionally distinct cellular states of NK cells
TMEs of solid tumors are hostile and oftenimmunosuppressive environ-
ments forimmune cells to infiltrate*’. Understanding how the TME can
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a, Graphic overview of healthy tissue datasets included in the analysis, with
the number of donors denoted in brackets. b, UMAP representation showing
integration of all healthy tissue datasets. ¢, Graphic overview of solid tumor
datasets included in the analysis, with the number of donors denoted in
brackets. d, UMAP representation showing integration of all solid tumor
datasets. e, Scoring of tissue-residency signatures (sig.) in PB-NK cell subsets,
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as well as CD56""- and CD56“™-annotated TrNK and TiNK subsets. f, UMAP
representation showing integration of subset-annotated PB-NK, TrNK and TiNK
cells. g,h, PAGA graphs (g) and connectivity heatmap (h) showing connectivity
of PB-NK, TrNK and TiNK subsets across all tissues/tumor types, with individual
tissues/tumor types highlighted (g). The scale represents gene set activity
computed by AUCell (e). Panels aand c created with BioRender.com.

modulate NK cells at the transcriptional level can provide important
insights into understanding the tumor-mediated immunosuppressive
mechanisms and how to overcome them.

We implemented an unbiased approach (Milo*) to ascertain cel-
lular states in our pan-cancer NK cell atlas by identifying 6,932 indi-
vidual neighborhoods without pre-clustering based on cellular origin.
Annotating individual neighborhoods as subset specific (>70% of cells

inthe neighborhood) identified TICD56°"€" NK cells as having the most
frequent, but also the most unique (differentially abundant), specific
neighborhoods (Extended Data Fig. 7a). Notably, most neighborhoods
were annotated as ‘mixed’, highlighting transcriptional similarities
among NK cells found in PB, tissues and tumors (Extended Data Fig. 7a).
The 6,932 neighborhoods were grouped into 6 distinctive neighbor-
hood groups and tested for differential abundance of neighborhoods
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Fig. 4| Cellular composition of pan-cancer cell atlas and subset distribution
of TiNK cells. a, Heatmap depicting changes inimmune subset proportionin
tumor samples compared with healthy tissue samples at the pan-cancer level and
withinindividual tumor types. b,c, Proportions of major immune subsets within
healthy tissue (b) and tumor samples (c). d,e, Predicted subset annotations

of CellTypist-identified NK cells in healthy tissue (d) and tumor samples (e)
compared with annotated PB-NK cells. f.g, Frequency of CD56°€" NK cells (f)

and relative frequency of subsets (g) identified by flow cytometryinacohort

of healthy blood donors (n =19) and central tumor samples from patients with
NSCLC (n=25), from 23 independent experiments. Data were analyzed using two-
sample Student’s ¢t-test with Bonferroni’s correction (a) and a two-tailed Mann-
Whitney U-test (f):*P< 0.05,"P<0.01, "P<0.001, ""P< 0.0001. The bar graphin f
represents the mean + s.d, with the actual Pvalue indicated (P < 0.0001).

between TiNK cells and Ref-NK cells (Fig. 5a and Extended Data Fig. 7b).
Neighborhood groups1and2 consisted of neighborhoods significantly
enriched for TiNK cellsand group 6 included neighborhoods enriched
for Ref-NK cells (Fig. 5b and Extended Data Fig. 7b).

Next, we visualized the distribution of NK cell subsets within each
group using our annotation model (M1). Groups 1and 2 were enriched
for, but not exclusive to, CD56"&" cells, whereas groups 3-6 were domi-
nated by CD56%™ NK cell subsets (Fig. 5¢). The dominant TF regulons
of PB-NK cell differentiation previously identified (Fig. 2f) confirmed
groups1and 2 as two CD56°¢" states and groups 3-6 as four CD564™
NK cell states (Fig. 5d).

Cell-state-specific GRNs, DEGs, gene set enrichment analysis
(GSEA) and signature scoring informed our annotation of the states
as stressed CD56°&" (group 1), typical CD56°€" (group 2), effector
CD56%™ (group 3), adaptive CD564™ (group 4), activated CD56™
(group 5) and typical CD56“™ (group 6) (Fig. 5e-n and Extended Data
Fig. 7c-i). Comparing the stressed with the typical CD56&" state

(group 1versus group 2) identified increased expression of the cel-
lular stress response ATF3 regulon, the hypoxia-induced MAFF regu-
lon and numerous heat shock proteins (Fig. 5e,g and Extended Data
Fig. 7f). The stressed CD56"€" cell state scored highly for immuno-
suppressive pathways (transforming growth factor (TGF)-f signal-
ing, hypoxia, reactive oxygen species (ROS)) and exhibited increased
metabolic activation (glycolysis, cholesterol homeostasis, fatty acid
metabolism and mTORCI (mammalian target of rapamycin complex 1))
(Fig.5g,j-1). Furthermore, alow NK cell cytotoxicity score, exemplified
byreduced effector and activating signaling molecules, was suggestive
of reduced functionality in this stressed CD56"¢" cellular state, which
was uniquely enriched across all seven tumor types (Fig. 5i,m,0). In
line withincreased infiltration of CD56°€" cells in the TME, the typical
CDS56% €M cellular state was also enriched in five of seven tumor types
compared with healthy tissue, with both CD56°€" groups exhibiting
higher expression ofimmunomodulatory molecules, including XCL1,
XCL2and IFNG (Fig.5n-0).
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Of the CD56"™ states, the effector state was most frequently
enriched across tumor types (SARC, PAAD), characterized by anenrich-
ment for apicaljunction, actinand cytoskeleton-related genes as well as
effector molecules (Fig. 5h and Extended Data Fig. 7g). This state, phe-
notypically enriched for intermediate and late CD56%™ NK cell subsets,
scored highly for NK cytotoxicity and oxidative phosphorylationand,
importantly, low forimmune suppression (Fig. 5i,k-m). The adaptive
CD56%™ state was uniquely enriched for adaptive NK cells, in line with
adaptive-associated genes (CD52,1L32, GZMH, CD3E) being upregulated
in this state (Fig. 5c and Extended Data Fig. 7c). The activated CD56%™
state was distinguished by increased hypoxia, upregulated nutrient
transporters and the mTORCI1-Myc axis (Fig. 5i,k and Extended Data
Fig. 7d,h). Last, the PB-enriched typical CD56™ state exhibited a low
stress score and a high cytotoxicity score and was associated with IFN,
tumor necrosis factor (TNF) and JAK/STAT signaling (Fig. 5i-j,m and
Extended Data Fig. 7e,i). Notably, although we observed enrichment
ofindividual cellular states in the TME, including the two CD56"&" and
theeffector CD56%™states, all states were represented in healthy blood
and tissue samples, albeit at different frequencies.

State-specific signaling in the TME links to functionality
Toelucidate any TME-based influence on the six functional statesiden-
tified, we employed CellChat* to infer intercellular communication,
focusing on commonly enriched signaling pathways across all seven
tumor types. Group 1and 2 NK cell states were enriched for incom-
ing signaling across tumor type from four dominant communication
pathways (Fig. 6a). Increased expression of CD44, CXCR4 and CD74 on
group 1and 2 NK cells, on which numerous signals from fibroblasts,
endothelial cells, tumor cells and macrophages converged (COLLA-
GEN, MIF, LAMININ), facilitated the augmented incoming signaling
inNSCLC (Fig. 6b,c). Notably, the fibroblasts, endothelial cells, tumor
cellsand cancer-associated fibroblasts (CAFs) also exhibited the strong-
estoutgoinginteraction strength across tumor types (Extended Data
Fig.8a-g).Furthermore, group 1and 2 NK cells preferentially received
inhibitory input via the major histocompatibility complex 1 (MHC-I)
(HLA-E/KLRCI) pathway owing to high KLRCI expression in these cel-
lular states (Fig. 6a,d). Hence, group 1and 2 cellular states were more
receptive to TME-induced immunosuppressive signals viaupregulated
expression of CD44, CXCR4, CD74 and KLRCI.

To understand how NK cells contribute to shaping the TME via
an immunomodaulatory role, we focused our analysis on outgoing
signaling largely restricted to NK cells. We identified three signaling
pathways (CC chemokine ligand (CCL), protease-activated inhibitors
(PARs), IFN-II) through which NK cells predominantly communicated
with dendritic cells, macrophages, fibroblasts and endothelial cells
(Fig. 6e,f). CCL3 and CCL5, expressed across all states, can lead to the
recruitment of cells expressing ACKR1, CCR1and CCR4 (Extended Data
Fig.6h).Release of granzyme A, highly expressed at the transcriptional
level by the effector NK cell state (group 3), can induce apoptosis of
F2R-expressing cellsinthe TME, such as fibroblasts (Fig. 6g). Granzyme
Aexpressionwas reduced inboth frequency and intensity in CD56%™ NK
cells from central tumor samples from patients with NSCLC compared
with healthy blood controls, hinting at a release of granzyme A by NK

cells within the tumor (Fig. 6h,i). Release of IFN-y, predominantly by
the stressed CD56°€" (group 1) state, can induce surrounding cells to
upregulate MHC-1 expression, including HLA-E (Fig. 6g and Extended
Data Fig. 9a-d). Inhibitory signaling via the HLA-E axis significantly
inhibits degranulation and granzyme B release of both CD56"€" and
CD56%™NK cells, as demonstrated by co-culturing NK cells with A549
(NSCLC) targets cells pre-stimulated with IFN-y to upregulate HLA-E
expression (Fig. 6j,k and Extended Data Fig. 9a-e). Blockade of the
NKG2A-HLA-E axis, using an anti-NKG2A antibody, resulted in signifi-
cantrecovery of function, both degranulation and granzyme B release
(Fig. 6j,k and Extended Data Fig. 9e). CD56°€" cellular states exhibited
increased inhibitory signaling (MHC-I) and augmented susceptibility
to TME-induced suppression (MIF, COLLAGEN, LAMININ) whereas
CD56%m states, particularly the effector state, exhibited high GZMA
signaling, which was confirmed in samples of CD56“™ from patients
with NSCLC.

Ratio of cellular states is predictive of patient outcome

Having identified 6 functionally distinct cellular states of NK cells
within our pan-cancer NK cell atlas comprising 89,850 scRNA-seq
transcriptomes, we validated our findings in spatial RNA-seq data-
sets (Supplementary Table 5). Spatial RNA-seq tissue sections from
SKCM, NSCLC and GBM were deconvoluted using Tangram* combined
with our established scRNA-seq references for the tumor types being
analyzed to identify the cell types in these datasets (Fig. 7a). Compo-
sitional analysis of the main immune subtypes in SKCM, NSCLC and
GBMvaried greatly across tumor type, but was highly consistent across
sequencing technique (scRNA-seq versus spatial-seq) (Fig. 7b). Focus-
ing on SKCM, harboring the highest proportion of NK cells (Fig. 7b),
we could further stratify the annotated NK cells into CD56 " and
CD56%Msubsets (Fig. 7c) and cellular states (Fig. 7d). Importantly, con-
firming previous results (Fig. 5i,m), the effector (group 3) and typical
(group 6) CD56™ states scored highly for genes associated with NK
cell cytotoxicity. Similarly, stress response-related genes, as well as
immunosuppressive-related genes (ROS, hypoxia) scored highest in
the stressed CD56€" (group 1) state (Fig. 7f,g), in line with resultsin
the scRNA-seq data (Fig. 5i-k).

Theclinical benefit of NK cell infiltrationin solid tumors has previ-
ously been assessed through ageneral NK cell signature score*®*', Hav-
ingidentified six functional states of NK cells in blood, tissue and solid
tumors, inboth scRNA-seq and spatial-seq datasets, we proceeded to
test clinical relevance of these cellular states by using BayesPrism* to
deconvoluted TCGA (The Cancer Genome Atlas) RNA-seq data where
we also had survival data®*** (Extended Data Fig. 10). A higher ratio of
effector CD56%™:stressed CD56°€" NK state signatures was predictive
of improved survival in SARC and SKCM (Fig. 7h). We hereby confirm
that the six functional states identified in our pan-cancer NK cell atlas,
and confirmed in spatial RNA-seq datasets, are also predictive of out-
comein patients with osteosarcoma and melanoma.

Discussion
Inthe present study, we reportacompact description of the transcrip-
tional diversification encompassing human NK cell differentiation at

Fig. 5| Distinct cellular states of NK cells identified in pan-cancer atlas.

a, UMAP depicting neighborhood (Nhood) groups identified by Milo and
computed using the scVl representation. b, Beeswarm plot depicting differential
abundance of neighborhoods (TiNK versus Ref-NK enriched). Colored
neighborhoods are differentially abundant at a false recovery rate (FDR) of O.1.
¢, Pie charts showing distribution of NK subsets across neighborhood groups
annotated using our annotation model (Fig. 1). d, Expression of dominant

TF regulons of NK cell differentiation across NK cell states (neighborhood
groups). e, Expression of TF regulons uniquely expressed across cellular
states. f, Graphic representation of cellular states. g,h, Volcano plots depicting
DEGs between group1versus group 2 (g) and group 3 versus group 4/5/6

(h) cellular states. Differential expression analysis was performed using the
findNhoodGroupMarkers method within the miloR package. Counts were
aggregated per sample; groups were compared using edgeR and the adjusted
Pvalues were used for the plots. i, Scoring of pathway gene signatures in NK cell
states. Func., function; homeo., homeostasis. j-n, Dot plots depicting selected
genes belonging to stress response (j), immune suppression (k), metabolism (I),
cytotoxicity (m) and chemokine/cytokine secretion (n). o, Pie charts depicting
distribution of NK cell states in blood, tissues and tumors. Volcano plots:
log(fold-change) cutoffat 0.5, P< 0.05. The scale represents regulon activity
(dand e) or gene set activity (i) computed by AUCell.
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Fig. 6| Intercellular communication of distinct cellular states in the TME.

a, Selected predicted incoming signaling pathways involving TiNK cells common
across tumor type, identified by CellChat. b, Violin plots showing expression

of receptors for the MIF, COLLAGEN and LAMININ communication pathway in
NSCLC.c, Circle plot depicting predicted incoming signaling via CD74, CXCR4
and CD44 expression (NSCLC). d, Violin plots showing expression of receptor and
ligand for the MHC-1 communication pathway in NSCLC. e, Selected predicted
outgoing signaling pathways involving TiNK cells across tumor type. f, Heatmap
depictinginteraction role of individual cell populations in CCL, PARs and IFN-II
signaling pathways in NSCLC based on network centrality analysis. g, Dot plot
depicting GZMA expression (ligand for PARs) and IFNG expression (ligand for
IFN-II) in NK cell states across tumor type. h, Frequency of granzyme A'CD56%™

b
AT IR AT
“”4Qﬁlﬁ!iillli?Q@l?liﬁﬁ?Jf?ﬁ?ﬁ'
°“4iiLlllliillﬁiﬁiﬁlﬁllliiﬁlﬁl
T T T T T T T T T T
¥¥¥¥¥¥2ﬂ_ mﬂgovﬂ oo noonn0a0
222222535 ER33 203 538338888882
ST ENE K K LR et
3 gE8ot® 5By $E5¢E
©323335 E3zois °3923225FZ EEs:
OB6666 2L£BEge 8T8 S22 330
295 8 8 = g ZTE3-rFzo
P8 5 = o5 8%
wn =g OxX o35 L
S £ oS0 %
5 23T
=§ o T >
3 0O = ©)
w O (&)
d
i daeesd 101 1999l?£if§?lf?ﬁ§§i
|| minl
I
1T 1 T T 1T T 1T T 1 rTT° 11T 1T 1 T 1T T T TT
MMYMYMMNO00TIRL00TLEL L0008 080000
ZZZZZZEEEEgEﬁ:‘gEmEEEEEEﬁﬁﬁ%%
Zwmvmwooggzﬁo Eﬁgsgﬁgz,(joﬂ,oﬂ,%oﬁ
559339328202 BEaBILOET $5EE
2200000 52w O0BQ8 035552395 SS323
OCC006 258 gE 275 E Sg% Bo--
23 <6 8 = & SE- 58
og3 5w = 22503
W = c QX 0 o
== DﬁQﬁIO
L—Jg oT =
30 = o
w O (&)
g h i
. _ 6,000 0.0156
Group11 @ © Fraction (%) ﬁ =
Group2 1@< | o 0 @ @@ £ 2 4,000
Group 3 @ ° S <
Group 4 {@ o (VX OO © g
Group 5 1 @ o | Expression .g’ EQ,OOO
Group6-{ @ | S
2 4 0 O
— = 0
PO - 5 O
6/\9&% \ooe(oo\/
CCL
CCL3
Gar5 . ‘ ‘ K
PARs ) CD56"  CcpsEUm
GZMA <0.0001 0.0057 0.0192
IFN-II "
IFNG 2 _
o s
"(l\c )
o
T :
g o 3
g 5
E o g o
s
IFN VDDIIDDII (FN-y [
o-NKG2A [ | ]I/ o-NKG2A [ ]|/

NK cells in healthy blood donors (n = 6) and patients with NSCLC (n=11) from 9
independent experiments. i, Geometric mean fluorescence intensity (gMFI) of
granzyme A'CD56“™ NK cells in healthy blood donors and patients with NSCLC
(n=7) fromssixindependent experiments.j,k, Degranulation (CD107a) (j) and
granzyme B release (k) of CD56°"€" and CD56“™ NK cells against A549 target cells
pre-treated with (black box) and without (white box) IFN-y (24 h) in the presence
(black box) or absence (white box) of a-NKG2A antibody (E:T1:1,4 h,n=5
biologically independent replicates from one experiment). Data were analyzed
using two-way analysis of variance followed by Sidak’s multiple-comparison test
(jand k), two-tailed Mann-Whitney U-test (h) or two-tailed Wilcoxon’s test (i).
Allbar graphs represent the mean + s.d, with the actual Pvalues indicated.
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the single-cell level. By enriching for less frequent, but phenotypi-
cally well-defined, functionally distinct NK cell subsets, we could first
train a model to correctly annotate five transcriptional subsets from
bulk NK cell populations. By applying probabilistic models imple-
mented in scvi-tools, we created a transcriptional reference map of
human blood and TrNK cells from normal tissues, including blood,
pancreas, lung, breast, skin, prostate and brain. Transfer learning using
scArches facilitated integration of query datasets comprising a total
0f2,176,214 transcriptomes from 427 patients spanning 7 solid tumor
types. By extracting, annotating and mapping the TiNK cells on to our
reference map of healthy donors, we could systematically interrogate
TME-induced perturbations of GRNs and functional states of TiNK cells
(Supplementary Fig.1). Our pan-cancer atlas revealed six functionally
distinct NK cell states with varying abundance across blood, tissues
and tumor types, which we could confirmin spatial RNA-seq datasets
(SKCM, NSCLC, GBM). Two states commonly enriched for across tumor
types included a dysfunctional CD56°"&" cellular state susceptible
to TME-induced immunosuppression and a cytotoxic TME-resistant
CD56%mstate, the ratio of which was predictive of patient outcome.

TheviewthatNK cells, like T cells and otherimmune cells, undergo
acontinuous process of NK cell differentiation is relatively recent and
was originally based on phenotypic and functional classification of
discrete subsets””. There is abundant evidence to suggest that the
CDS56"et NK cell subset is the most naive, giving rise to the more dif-
ferentiated CD56%™ NK cells which can further differentiate toward
terminal stages, a process accelerated by CMV infection®**”’. Instead
of forcing individual NK cells into arbitrary clusters representing a
snapshot of a given time point of differentiation, we clustered TFs
and their target genes into five distinct gene expression trends as a
function of pseudotime, reflecting continuous differentiation. The
dominant TF regulons within these five gene trends correlated with
functional traits of NK cells along the differentiation axis, such as
cytokine responsiveness, as well as proliferative and cytotoxic capac-
ity. By retaining fate-specific expression profiles, conventional versus
adaptive fate in donors with CMV-induced clonal NK cell expansions,
we could observe clear divergence of regulon expression (for example,
BATF, MAF) during terminal differentiation. BATF belongs to the AP-1
TF family which have been identified as potential drivers in shaping
adaptive NK cell chromatinaccessibility and thus dictating the unique
functional features of this subset, including enhanced IFN-y response
to receptor stimulation®. Establishing dominant regulons defining
NK cell differentiationin PB provided a vital reference for downstream
interrogation of both TrNK and solid TiNK cells.

Utilizing CellTypist, we harmonized annotations of individual
cell subtypes across multiple datasets from six different healthy
tissues, extracting and integrating CD56°"" and CD569™ NK cells
using scVI¥ to expand our transcriptional reference map. Impor-
tantly, tissue-, as well as tumor-annotated, NK cells, did not express
humanILCsignature genes (/L7R), instead expressing both EOMES and
TBX21.Literature-derived tissue-residency genes (for example, CD69,
ITGAE,ITGA1, CXCR6,ZNF683 and IKZF3), originally extrapolated from
tissue-resident T cell signatures®* ', were more highly expressed in
tissue-derived NK cells, particularly in CD56°€" NK cells®?. Using our
extensive pan-cancer NK cell atlas, we were able to generate a solely
NK cell-derived, tissue-residency signature (atlas-TR: PSMA2, SLC5A3,
CCL4L2, CLN3, SCGB1A1, AREG), which outperformed the conven-
tional literature-derived TR signature across tissue and tumor type.
CD56" and CD569™ NK cells from healthy brain tissue exhibited
alow TR- score, indicative of potential blood contamination in this
specific dataset. Importantly, GBM-derived CD56" " and CD56™
NK cells scored highly for tissue residency, supporting their infiltra-
tion into the tumor. Expression of CCL4L2, encoding a chemokine
thatinduces chemotaxis of CCR5- and CCR1-expressing cells, such as
T cells, dendritic cellsand macrophages, has previously been described
in NK cells isolated from melanoma samples®. This represents an

independent verification, because this dataset was not included in
our study. These melanoma-infiltrating NK cells also exhibited high
AREG expression, an epidermal growth factor (EGF) receptor ligand.
Notably, upregulation of AREG has also been described in the setting of
healthy and cirrhoticliver-resident NK cells®*, a tissue type not included
inour pan-cancer atlas. Intriguingly, SCGB1A1,amember of the secre-
toglobin family, functions as a potent inhibitor of phospholipase A,
(ref. 65), awell-described immunosuppressive molecule contributing
tothe development of the TME. Hence, it is tempting to speculate that
secretion of the SCGBIAI-encoded protein could be another effector
mechanism through which TiNK cells can positively contribute to
remodeling of the TME.

The presence and abundance of NK cells that reside in the tumor
bed vary across tumor types and treatments and between patients, and
appearstobeassociated with the chemokine profilesinthe different tis-
sues/TMEs®"*’, In agreement with previous studies**”’°, we observed
apredominance of CD56°&" NK cellsin tumors compared with the cor-
responding normal tissue. TrNK cells are probably amixed population
including naturally residing TrNK cells and TiNK cells. Compositional
differences between normal and tumor tissues suggests some degree
ofactiverecruitment, particularly in SKCM where NK cell frequencies
starklyincreased, albeit expansion fromtissue-resident pools cannot
be excluded. Migration into the TME is regulated by a broad family of
integrins, selectins and chemokine receptors that are differentially
expressed during NK cell differentiation. CXCR3, primarily expressed
on CD56"&" NK cells, has been implicated in homing to several solid
tumors based on CXCL10 gradients”"%, and thus may contribute to
the predominance of this subsetintumors. CCL2, CCL3, CCL5, CXCLS,
CXCL9, CXCL10 and CXCL12 have similarly been implicated in medi-
ating predominantly CD56°"8" NK cell trafficking into solid tumors
based on chemokine receptor expression®’. Release of CCL3and CCL5
by NK cells can also recruit CCR1-expressing immune cells, such as
macrophages. We observed increased CXCR4 expression in group 1
and 2 cellular states, corresponding to CD56"" TrNK and TiNK cells.
Previousreports”’* have demonstrated CD44-induced CXCR4 upregu-
lation resulting inincreased migration and invasiveness of malignant
cells. Notably, CD44 was highly expressed on the tumor-enriched
stressed CD56"€" state, alongside CXCR4 and CD74, possibly sensitiz-
ing this population to TME-mediated immunosuppression from CAFs,
fibroblasts, endothelial and tumor cells, as noted by high scores for
TGF-p signaling, hypoxia and ROS. High immunosuppression of this
stateisinlinewith theincreased stressed response noted, as exempli-
fied by high expression of the cellular stress response-associated TF
ATF3,the HSP70 co-chaperone BAG3, the stressful growth arrest gene
GADD45B and DUSP1, which is associated with cellular response to
environmental stress.

Transcriptional stress response programs, including heat shock
proteins, have previously beenreported as a potential artefact down-
stream of digestion of tissues”. We therefore took several measures to
rule out digestion artefacts when compiling the present resource. In
additiontoimplementing upstream data-processing steps, including
removal of ambient RNA using decontX’®, we found no evidence for
systematic artefactual stress signal coming from a particular study
or tumor type. Perhaps most importantly, the stress signature defin-
ing the group 1 NK cell state was also found in spatial transcriptomics
data directly on tissue sample sections that have not undergone any
upstream tissue dissociation/digestion.

We also found high KLRCI expression on the group1and 2 states,
which, alongside high IFNG expression, caninduce aninhibitory feed-
back loop, whereby local IFN-y secretion leads to HLA-E upregulation
resulting in inhibitory input through CD94/NKG2A. Conversely, the
effector CD56%M state, associated with improved patient outcome,
lacked CD44 expression and highly expressed GZMA. Notably, this
state exhibited high expression of the KLF2, PRDM1, BATF, TBX21 and
IKZF1 regulons, indicative of high effector function, regulation of
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Fig.7 | Distinct cellular states in spatial RNA-seq and association with patient

outcome. a, Deconvoluted spatial RNA-seq images from SKCM, NSCLC and

GBM at the level of immune populations. b, Pie charts depicting compositional
analysis of majorimmune populations from scRNA-seq datasets and spatial-seq
datasets for SKCM, NSCLC and GBM samples. ¢,d, Annotation of CD56"¢" and

CD569™NK cell subsets (c) and the six cellular states of NK cells (d) in SKCM.
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Pvalues were computed using the log(rank) test.

seq data from SKCM. h, Kaplan-Meier survival curves showing association of
high/low group 1/3 gene signatures with patient outcome across tumor types.
Survival analysis was performed using Cox’s proportional hazards model;
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homeostatic proliferation and survival, but also cell migration and
tissue residency. Unique TiNK cell-specific regulons in this state con-
sisted of NFYC, CTBP1, POLE4 and CEBPA, which are involved in DNA
repair, monitoring of proliferation, regulating MHC expression and
maintaining structural homeostasis in the Golgi complex”*°. Con-
versely, TiNK cell-specific regulons in the stressed CD56°"¢" state
included hypoxia-induced MAFF, cellular stress response regulon
ATF3 and EGR3 (ref. 81) which induce negative regulators in response
to activation. Metabolically, the effector CD564™ state scored highly
for oxidative phosphorylation, compared with the stressed CD56°7&"
state which favored glycolysis, mTORCI activation and exhib-
ited upregulated nutrient transporters and genes associated with
cholesterol homeostasis.

Contrary to Tang et al.”, increased gene signature scoring of the
tumor-enriched states stressed that the CD56°" state did not con-
sistently associate with reduced survival across tumor types. Instead,
we observed increased survival in patients exhibiting a high effector
CD56%™ state, which was further augmented with a low signature for
the stressed CD56"" " state. Of the four CD56%™ states, the effector
CD56"™state was enriched across two tumor types, painting a promis-
ing picture for the role of solid TiNK cells.

This resource provides atranscriptional reference map of human
NK cells across healthy blood and tissues with harmonized annota-
tions of transcriptional NK cell subsets. Uncovering the dominant
gene-regulatory circuits during NK cell differentiation enabled identi-
fication of TME-induced perturbationsin solid TiNK cells across tumor
type. We identified functionally distinct NK cell states across healthy
and malignant tissues, including tumor-enriched states predictive of
patient outcome. Modeling of the intercellular communication path-
ways of outcome predicting NK cell states with the surrounding TME
identified potential pathways of TME-induced NK cell suppression.
Thus, our analysis has the potential to design more potent NK cell
therapy products able to resist suppressive factors operating within
the TME of solid tumors. Ultimately, this resource can be extended
endlessly through transfer learning to interrogate new datasets from
experimental perturbations or different tumor types.
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Methods

Cell processing

Peripheral mononuclear cells (PBMCs) were isolated using density
gradient centrifugation from anonymized healthy blood donors (Oslo
University Hospital; Karolinska University Hospital) with informed
consent. The study was approved by the regional ethics committee
in Norway (Regional etisk komité (REK): protocol no. 2018/2482) and
Sweden (Regionala etikprovningsnamnden i Stockholm: protocol no.
2016/1415-32; Etikprovningsmyndigheten: protocol no.2020-05289).
Donor-derived PBMCs were screened for KIR education and adaptive
status using flow cytometry. NK cells were purified using an AutoMACS
(DepleteS program, Miltenyi Biotec) and before overnight resting in
complete Roswell Park Memorial Institute (RPMI) 1640 (Cytiva) (10%
fetal bovine serum (FBS; GE Healthcare), 2 mM L-glutamine (GE Health-
care)) at 37 °Cand 5% CO,.

Flow cytometry screening

PBMCs were stained for surface antigens and viability in a 96
V-bottomed plate, followed by fixation/permeabilization and intra-
cellular staining at 4 °C. The following antibodies were used in the
screening panel: CD3-V500 (clone UCHT1), CD14-V500 (clone M@P9),
CD19-V500 (clone HIB19) and Granzyme B-AF700 (clone GB11) from
Beckton Dickinson; CD57-FITC (clone HNK-1), CD38-BV650 (clone HB-7)
and CD158e1-BV421 (clone DX9) from BioLegend; CD158a-APC-Vio770
(clone REA284) and CD158a/h-PE-Vio770 (clone 11PB6) from Miltenyi
Biotec; and CD158b1/b2,j-PE-CyS5.5 (clone GL183), CD159a-APC (clone
7199) and CD56-ECD (clone N901) from Beckman Coulter. LIVE/DEAD
Fixable Aqua Dead Stain kit for 405-nM excitation (Life Technolo-
gies) was used to determine viability. Samples were acquired on an
LSR-Fortessa equipped with a blue, red and violet laser and analyzed
inFlowJo v.9 (TreeStar, Inc.).

FACS sorting

Cellswere harvested and surface stained with the following antibodies:
CDS57-FITC (HNK-1) from BioLegend; CD158el/e2-APC (clone Z27.3.7),
CDS56-ECD (clone N901) and CD158b1/b2,j-PE-Cy5.5 (clone GL183) from
Beckman Coulter; and CD158a-APC-Vio770 (clone REA284), CD159¢-PE
(clone REA205) and CD159a-PE Vio770 (clone REA110) from Miltenyi
Biotec. Cells, 12,000, were directly sorted into Eppendorf tubes at
4 °C for each sample using a FACSAriall (Beckton Dickinson). Sorting
strategies for scRNA-seq for the donor with and without an adaptive
NK cell expansion are depicted in Extended Data Fig. 1c,d.

ScRNA-seq

After sorting, cells were kept on ice during the washing (phosphate-
bufferedsaline (PBS) + 0.05% bovine serum albumin (BSA)) and count-
ing steps. Cells, 10,000, were resuspended in 35 pl of PBS + 0.05%
BSA and immediately processed at the Genomics Core Facility
(Oslo University Hospital) using the Chromium Single Cell 3’ Library &
GelBeadKit v.2 (Chromium Controller System, 10x Genomics). The rec-
ommended 10x Genomics protocol was used to generate the sequenc-
ing libraries, which was performed on a NextSeq500 (Illumina) with
~5% PhiX as spike-in. Sequencing raw data were converted into fastq
files by running Illumina’s bel2fastq v.2.

ScRNA-seq data collection and processing

Previously published scRNA-seq datawere collected mostly in the form
of count matrices already aligned to GRCh38; therest were collected as
fastqfiles. For the datasets where we collected fastq files, the datawere
aligned to GRCh38 using Cell Ranger (10x Genomics Cell Ranger 7.0.0).

Quality control and normalization of scRNA-seq data

Data-cleaning steps were first carried out whereby cells not express-
ing a minimum of 1,000 molecules and genes expressed by <10 cells
were filtered out. Doublets were removed using the SOLO algorithm®.

The count matrices for all the tumor and tissue types were corrected
for ambient RNA using decontX’. The data were normalized using
log(transformation) for some of the downstream analysis as well as for
visualization of gene expression-like dot plots. Quality control, trans-
formation and most of the visualization of the gene expression data
were performed using Scanpy®. For analysis using scVl and scANVI,
the raw count data were used.

Integration of scRNA-seq data

The probabilistic models scVI and scANVI, as implemented in
scvi-tools', were used for integration of scRNA-seq data. These meth-
ods have been shown to perform well for integration of scRNA-seq
data, especially when dealing with complex batch effects and integrat-
ing atlas-level data®. For cell-type and -subset annotations and predic-
tion, scANVI was used to capture annotation of single-cell profiles.
For the analysis of PB-NK subsets, the sorted subsets provided labels
fortrainingthe scANVImodel. The subset prediction provided by the
modelwastested on aheld-outset of cells (15%) from the sorted subset
data, giving us a confusion matrix summarizing the performance of
the prediction.

Dimensionality reduction, clustering and visualization of
scRNA-seq data

We computed the Uniform Manifold Approximation and Projection
(UMAP) embeddings for visualization using the embedding learned
from scVI and scANVI. Unsupervised clustering was also carried out
using this learned embedding with Phenograph and the Leiden algo-
rithm as implemented in Scanpy. PAGA?’ was used to quantify the
connectivity of different groups of cells, thereby providing a repre-
sentation of the data asasimpler graph. The various plots were mostly
generated using the plotting functions in Scanpy.

Cell-type annotations and harmonization

For many of the publicly available datasets, cell-type annotations were
readily available and used as seed labels when training the scANVI
model for that particular tissue/tumor type to annotate the nonim-
mune cells. The scANVI model allowed us to harmonize annotations
that were needed for analysis across datasets. Allimmune cells for all tis-
sue types were integrated using scVl and annotated using Cell Typist*.
The same was done for all immune cells across all tumor types. The
CD16™ and CD16" NK cells identified by CellTypist were annotated as
CD56"8" and CD569™, respectively. Where CITE-seq data were avail-
able, the surface expression of key markers also helped validate the
cell-type annotations. For the identified NK cells, the cells were also
scored using NK1/NK2 (CD56""€"/CD56%™) signatures to validate the
annotation of CD56°" and CD569™ NK cells. We also performed our
ownunsupervised Leiden clustering, which identified two dominating
clusters corresponding to CD56°€" and CD56“™ NK cells.

Calculation of signature scores

Signature scores were computed using AUCell*, allowing for explo-
ration of the relative expression of the signatures of interest in the
datasets. Various gene sets were taken from the MSigDB Hallmark
gene set collection®,

IZl

Pseudotime and RNA velocity analysis

Pseudotime was computed using Palantir®®, which captures the con-
tinuous nature of differentiation, and cell fate, which allowed us to
explore two terminal states and the gene expression changes seen
alongthese trajectories. For this analysis, the starting cell was defined
as the cell that was the least CD56“™ (the lowest score for the NK1
signature). GAMs fitted on cells ordered by pseudotime were used to
calculate gene trends, where the contribution of cells was weighted by
their probability to end up in the given terminal state as calculated by
Palantir. The gene trends indicate how gene expression levels develop
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over the differentiation timeline. These trends were clustered using
the Leiden clustering algorithm to give us five clusters of gene trends.
RNA velocity* was also used to take advantage of splicing kinetics to
identify directed dynamicinformation. We used velocyto® and scVelo”
for this analysis, specifically the dynamic model implemented in the
scVelo toolkit. The RNA velocity analysis was runon the 2donors where
sorted subsets were sequenced separately, aswell ason the integrated
datafrom12blood donors.

GRN analysis

SCENIC? was used to infer TFs and GRNs from the scRNA-seq data.
The SCENIC workflow® was followed and the pySCENIC implemen-
tation was used. TF-gene associations were inferred by GRNBoost®’
and motif-TF associations were downloaded from Aerts’s lab website
and used for pruning the inferred associations. The inferred regula-
tory networks were also further pruned by removing lowly expressed
TFs based on the bulk RNA-seq data. AUCell was used to compute the
activity of the final regulons. The regulon activity was visualized using
matrix plots, asimplemented in Scanpy, to look at the activity across
different groups of cells.

Bulk RNA-seq for TF and target validation

For validation of the TF and targets, we checked their expression in
bulk RNA-seq data from four sorted NK cell populations (CD56°7",
NKG2A KIR'CD56%™, NKG2A KIR*CD569™ and NKG2A KIR'NKG2C*C
D56"™). Sequencing was performed using single-cell tagged reverse
transcription®®,

Reference mapping

The TiNK cells were added after the model for a healthy NK cell refer-
encewas trained. Then, scArches** asimplemented in scvi-tools" was
used to map these new dataon to the established reference.

Cell-cell communicationinference using CellChat

Toinfer the communication between the various cell typesinthe tumor
datasets we used CellChat*®. Based on gene expression of receptors
and ligands in the data and a curated database of pathways, CellChat
computes the communication probability between various receptor—
ligand pairs. CellChat also provided ways to aggregate thisinformation
and forusto visualize theinferred cell-cell communication networks.
CellChat was computed separately for each of the tumor typesincluded
inthe analysis.

Differential gene expression analysis

To perform differential gene expression analysis we used pseudobulk
because this has shown good results when analyzing scRNA-seq data
in various studies®. This allowed us to aggregate up counts for each
sample and consider the samplesinstead of the cells asreplicates. We
then used edgeR’° on the pseudobulk data. We could then identify
DEGs between healthy reference NK cells and TiNK cells within and
across subsets.

Differential abundance analysis using Milo

We used Milo* to assign cells to neighborhoods on the k-nearest neigh-
bors graph (k-NNG). The scVI representation of the cells was used
for building the k<-NNG. This allowed us to have a batch-corrected
representation of the cells as input to this analysis. The differential
abundance of the neighborhoods between the healthy reference and
the TiNK cells was then computed. The neighborhoods were grouped
into six groups using the groupNhoods functionin Milo. These groups
were considered as different NK cell states and further characterized
using the functionsin Milo for identification of DEGs. The differential
expression analysis was done using pseudobulk by aggregating gene
expression per sample. The single cells were then annotated using
these groups for downstream analysis.

GSEA

GSEA was performed using the GSEA software” and the MSigDB col-
lection of gene sets. Genes were first ordered based on the differential
expression analysis based on either the pseudobulk approach or the
Milo analysis.

Spatial transcriptomics

Spatial transcriptomics datasets from lung tumor, glioblastoma and
melanoma were collected from the 10x Genomics website (https://
www.10xgenomics.com/datasets). Squidpy®? was used for preproc-
essing and segmentation and Tangram*’ was used for deconvolution
using our annotated scRNA-seq data for each of the tumor types as
reference. The deconvolution was performed with the NK cells anno-
tated as CD56°€" and CD56™, as well using the group annotations
established in this paper.

Clinical and bulk RNA-seq data from TCGA and TARGET

Bulk RNA-seq dataand clinical data were downloaded from TCGA and
TARGET using TCGAbiolinks®® and curated survival data were down-
loaded from Xena*.

Deconvolution of bulk RNA-seq

Deconvolution of the bulk RNA-seq data was performed for each of
the tumor types using BayesPrism®%. BayesPrism has been shown to
work well for deconvolution of data from tumors and especially well
in dealing with high cell-type granularity”. The annotated reference
datasets for each of the tumor types were used as prior information
inthe deconvolution. BayesPrism then computed both an expression
matrix for each cell type and the cell-type fraction for each sample.

Survival analysis

TheNK expression matrixinferred by BayesPrism for the various tumor
types was used to score the signature genes for each of the identified
NK cell states. The patients were then assigned as high and low for a
group/state based on belonging to the highest or lowest halfin terms
of expression of these signature genes within the group of patients
with a specific tumor type. The high and low designations could then
becombinedinanapproachwherea patient could be assigned as high
or lowin multiple groups. Survival analysis was conducted using Cox’s
proportional hazards model from the R package survival®, adjusting
for confounding clinical factors such as tumor stage, gender and age.
Subsequently, survival curves were derived using the Kaplan-Meier
method within the same package. For visualization, the ggsurvplot
function of the survminer package in R was utilized.

Samples from patients with primary NSCLC
The patient cohort, processing of tissue specimens and flow cytometry
staining were collected and performed as previously described®.

Functional assay using A549 cells

A549 cells were cultured in Dulbecco’s modified Eagle’s medium/
high glucose with L-glutamine, sodium pyruvate (Cytiva) +10%
heat-inactivated FBS (Sigma-Aldrich) at 37 °C in 5% CO,. A549
cells, 20,000, were seeded per well in a 96-well F-bottom plate and
pre-treated withand without 50 ng mI™ of IFN-y (PeptroTech) for24 h
before addition of NK cells. HLA-E expression after IFN-y stimulation
was evaluated using HLA-E-PE antibody (BioLegend, clone 3D12).
NK cells were isolated using negative selection (NK cell isolation kit,
Miltenyi Biotec) from previously cryopreserved PBMCs from healthy
individuals. Cells were activated overnight with 5 ng mI™ of IL-15
(R&D) in RPMI 1640 (Cytiva) +10% heat-inactivated FBS at 37 °C in
5% CO,. NK cells were washed, resuspended in RPMI 1640 +10% FBS
and pre-incubated with and without a-NKG2A (a monalizumab bio-
similar: immunoglobulin (Ig)G1 with PGLALA mutation, Merck) for
20 min prior. Target cells were washed in PBS before the addition of
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NK cells at a 1:1 effector:target (E:T) ratio in the presence of brefeldin
A (GolgiPlug, 1:1,000, BD Biosciences), monensin (GolgiStop, 1:1,500,
BD Biosciences) and anti-CD107a-BUV394 (BD Horizon, clone H4A3).
After a4-hincubation, the cells were stained with anti-IgG Fc-PE (Inv-
itrogen), followed by surface, fixation and permeabilization (Cytofix/
Cytoperm, BD) and finally intracellular staining using the following
antibodies: CD159a-VioBright FITC (Miltenyi Biotec, clone REA110),
Granzyme B-AF700 (BD, clone GB11), CD16-Pacific Blue (BD, clone
3G8), CD3-V500 (BD, clone UCHT1), TNF-a-BV650 (BioLegend, clone
Mabll), IFN-y-BV78S (BioLegend, clone 4S.B3), CD56-ECD (Beckman
Coulter, clone N901) and perforin-PE-Cy7 (eBioscience, clone dG9),
LIVE/DEAD Fixable Aqua Dead Cell Stain kit (Thermo Fisher Scientific).

Reagents and antibodies
Afulllist containing company information, catalog nos and antibody
clones for all reagents can be found in Supplementary Data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The gene expression datagenerated for this paper are available at the
National Center for Biotechnology Information’s Gene Expression
Omnibus with accession no. GSE245690 and raw sequencing data are
available at the European Genome-Phenome Archive with accession
no.EGAS50000000014. The details about the publicly available data
includedinthe analysis are available in Supplementary Tables 1,2 and
3.For GSEA the Molecular Signature Database (v.2023.2.Hs), available
at https://www.gsea-msigdb.org/gsea/msigdb, was used. Relevant
gene sets for scoring were also retrieved from this database. Bulk
RNA-seq data were downloaded from TCGA and TARGET. Curated
survival datawere downloaded from Xena. Processed dataand models
have also been made available via Zenodo at https://doi.org/10.5281/
zenodo.8434223 (ref. 95) and as an online resource at http://nk-scrna.
malmberglab.com. Source data are provided with this paper.

Code availability
The code generated for our analysis is available on GitHub at https://
github.com/hernet/transcriptional-map-nk.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXO O O00000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  R/Bioconductor package TCGAbiolinks (v 2.25.3)

Data analysis 10x Genomics Cell Ranger (v 7.0.0), r-base (v 4.2.3), python (v 3.9.16), scvi (v 0.20), CellChat (v 1.6.1), survival (v 3.5-5), survminer (0.4.9),
scanpy (v 1.9.3), scikit-learn (v 1.2.2), scvelo (v 0.2.5), palantir (v 1.2), numpy (v 1.23.5), pyscenic (v 0.12.1), phenograph (v 1.5.7), arboreto (v
0.1.6), anndata (v 0.9.1), GSEA (v 4.2.3), edgeR (v 3.40.2), miloR (v 1.7.1), BayesPrism (v 2.0), decontX (v 1.0.0), Tangram (v 1.0.4), CellTypist (v
1.6.2), SOLO (v 1.0)

Code from our own analysis have been made available on GitHub: https://github.com/hernet/transcriptional-map-nk

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The gene expression data generated for this paper is available at NCBI GEO with accession number GSE245690 and raw sequencing data is available at EGA with
accession number EGAS50000000014. The details about the publicly available data included in the analysis are available in Supplemental tables S1, S2, S3 and S5.
Processed data and models have also been made available on Zenodo (https://zenodo.org/doi/10.5281/zenodo.8434223) and as an online resource at http://nk-
scrna.malmberglab.com/. For GSEA the Molecular Signature Database (v2023.2.Hs) available at https://www.gsea-msigdb.org/gsea/msigdb/ was used. Relevant
gene sets for scoring were also retrieved from this database. Bulk RNA-seq data was downloaded from TCGA and TARGET. Curated survival data was downloaded
from Xena.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Donors are anonymous and sex/gender is not discussed.

Reporting on race, ethnicity, or  Donors are anonymous and race/ethnicity/social groupings are not discussed.
other socially relevant

groupings

Population characteristics Donors are anonymous.

Recruitment Peripheral mononuclear cells (PBMC) were isolated using density gradient centrifugation from anonymized healthy blood
donors (Oslo University Hospital; Karolinska University Hospital) with informed consent.

Ethics oversight The study was approved by the regional ethics committee in Norway (Regional etisk komité (REK): 2018/2482) and Sweden

(Regionala etikprévningsndmnden i Stockholm: 2016/1415-32, Etikprévningsmyndigheten: 2020-05289).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Instead the sample size was chosen based on availability of material and published datasets at the
time of study.

Data exclusions  No data was excluded from the analysis. Filtering and quality control of sequencing datasets are describe in the method section.

Replication Different datasets were utilized as replicates for statistical analysis. More than 3 biologically independent replicates were used for all in vitro
experiments. Data in Fig 4 f-g and Extended Data Fig. 6¢c-e is from 23 independent experiments, Fig. 6h is from 9 independent experiments,
Fig. 6i is from 6 independent experiments, Fig. 6j-k from one independent experiment, Extended Data Fig. 9b-d is from 2 independent
experiments

Randomization  Randomization was not relevant to this study as it involves the analysis of pre-existing datasets where conditions already have been applied.
The analysis is also descriptive in nature and does not involve an intervention and there is no experimental manipulation to test.

Blinding Blinding was not relevant to this study. Data was collected from existing datasets and the analysis aims to identify patterns and describe the
transcriptional landscape of NK cells using computational methods, and blinding is not relevant in this context.
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.

Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? |:| Yes |Z No
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging
Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Antibodies

Antibodies used Flow cytometric analysis was performed with the following antibodies: PE-Cy7 mouse anti-human Perforin (eBioscience, deltaG9, cat
#25-9994-42, 1/100), PE goat anti-human 1gG Fc Secondary Antibody (eBioscience, cat # 12-4998-82, 1/200), V500 mouse anti-
human CD3 (BD Biosciences, UCHT1, cat # 561417, 1/100), V500 mouse anti-human CD14 (BD Biosciences, M¢$P9, cat # 561391,
1/100), V500 mouse anti-human CD19 (BD Biosciences, HIB19, cat # 561121, 1/100), Alexa Fluor 700 mouse anti-human Granzyme B
(BD Biosciences, GB11, cat # 560213, 1/100), BUV395 mouse anti-human CD107a (BD Biosciences, H4A3, cat # 565113, 1/80), Pacific
Blue mouse anti-human CD16 (BD Biosciences, 3G8, cat # 558122, 1/50), FITC mouse anti-human CD57 (BioLegend, HNK-1, cat #
359604, 1/50), Brilliant Violet 650 mouse anti-human CD38 (BioLegend, HB-7, cat # 356620, 1/50), Brilliant Violet 421 mouse anti-
human CD158e1 (BioLegend, DX9, cat # 312714, 1/50), PE mouse anti-human HLA-E (BioLegend, 3D12, cat # 342604, 1/50), Brilliant
Violet 650 mouse anti-human TNFa (BioLegend, Mab11, cat # 502938, 1/25), Brilliant Violet 785 mouse anti-human IFNg (BioLegend,
4S.B3, cat # 502542, 1/25), APC-Vio770 anti-human CD158a (Miltenyi Biotec, REA284, cat # 130-120-444, 1/10), PE-Vio770 mouse
anti-human CD158a/h (Miltenyi Biotec, 11PB6, cat # 130-099-891, 1/10), PE anti-human CD159c (Miltenyi Biotec, REA205, cat #
130-119-776, 1/10), PE-Vio770 anti-human CD159a (Miltenyi Biotec, REA110, cat # 130-113-567, 1/10), VioBright FITC anti-human
CD159a (Miltenyi Biotec, REA110, cat # 130-113-568, 1/100), PE-Cy5.5 mouse anti-human CD158b1/b2,j (Beckman Coulter, GL183,
cat # A66900, 1/50), APC mouse anti-human CD159a (Beckman Coulter, Z199, cat # A60797, 1/25), ECD mouse anti-human CD56
(Beckman Coulter, N901, cat # A82943, 1/20), APC mouse anti-human CD158e1/e2 (Beckman Coulter, Z27.3.7, cat # A60795, 1/50),
LIVE/DEAD Fixable Aqua Dead Stain kit, 405 nM (Life Technologies, cat # L34965, 1/200).

Validation All antibodies used in this study were titrated on human PBMCs prior to usage. Validated staining was determined by FACS and
compared to other validated antibodies.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The A549 cell line was purchased from ATCC.
Authentication The cell line was fingerprinted prior to usage.
Mycoplasma contamination The cells are mycoplasma tested regularly (Eurofins).

Commonly misidentified lines  no commonly misidentified cell lines were used in this study.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.
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Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.
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Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

OO0oodoods
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Any other potentially harmful combination of experiments and agents
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Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A

ChlP-seq

Data deposition
|Z Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|Z Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links Publicly available datasets were used. Relevant GEO accession numbers can be found in the supplemental tables.
May remain private before publication.

Files in database submission N/A

Genome browser session N/A
(e.g. UCSC)

Methodology
Replicates N/A
Sequencing depth N/A
Antibodies N/A

Peak calling parameters  N/A
Data quality N/A

Software N/A




Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

& A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Peripheral mononuclear cells (PBMC) were isolated using density gradient centrifugation from anonymized healthy blood
donors (Oslo University Hospital; Karolinska University Hospital) with informed consent (Norway: Regional etisk komité (REK):
2018/2482, Sweden: Regionala etikprévningsnamnden i Stockholm: 2016/1415-32, Etikprévningsmyndigheten: 2020-05289).
PBMC were stained for surface antigens and viability in a 96 V-bottom plate, followed by fixation/permeabilization and

intracellular staining at room temperature.
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Instrument Samples were acquired on an LSR-Fortessa equipped with a blue, red and violet laser or sorted using a FACSAriall (Beckton
Dickinson).
Software Data was analyzed in FlowJo version 9 and 10 (TreeStar, Inc.).

Cell population abundance All cell populations contained > 100 cells and 12,000 cells were sorted for each sample.

Gating strategies are show in the supplemental figures. Restrictive gates were used to ensure clean sorted populations. Post-
sort purity testing was performed. Single-color stains and fluorescence minus one (FMQ) were used as controls to set PMT
voltages.

Gating strategy

& Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Design specifications

Behavioral performance measures

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI

D Used

Preprocessing

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

|:| Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Preprocessing software

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for

transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Normalization template




Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based || Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
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(See Eklund et al. 2016)
Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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