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Pan-cancer profiling of tumor-infiltrating 
natural killer cells through transcriptional 
reference mapping
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Ebba Sohlberg    3, Olli Dufva5, Sarah A. Teichmann    6,7, Demi Brownlie    8, 
Jakob Michaëlsson3, Nicole Marquardt    8, Trevor Clancy    9,10, 
Amir Horowitz11,12,14 & Karl-Johan Malmberg    1,2,3,14 

The functional diversity of natural killer (NK) cell repertoires stems from 
differentiation, homeostatic, receptor–ligand interactions and adaptive-like 
responses to viral infections. In the present study, we generated a single-cell 
transcriptional reference map of healthy human blood- and tissue-derived 
NK cells, with temporal resolution and fate-specific expression of 
gene-regulatory networks defining NK cell differentiation. Transfer learning 
facilitated incorporation of tumor-infiltrating NK cell transcriptomes 
(39 datasets, 7 solid tumors, 427 patients) into the reference map to 
analyze tumor microenvironment (TME)-induced perturbations. Of the 
six functionally distinct NK cell states identified, a dysfunctional stressed 
CD56bright state susceptible to TME-induced immunosuppression and a 
cytotoxic TME-resistant effector CD56dim state were commonly enriched 
across tumor types, the ratio of which was predictive of patient outcome 
in malignant melanoma and osteosarcoma. This resource may inform 
the design of new NK cell therapies and can be extended through transfer 
learning to interrogate new datasets from experimental perturbations or 
disease conditions.

NK cells are innate lymphocytes that play a vital role in the immune 
response through their ability to directly kill transformed and 
virus-infected cells by orchestrating the early phase of the adaptive 
immune response1. NK cells are commonly divided into two functionally 
distinct subsets: CD56bright and CD56dim NK cells2,3. However, this is an 
oversimplified view of the repertoire. Mass cytometry profiling of NK 
cell repertoires at the single-cell level revealed an extensive phenotypic 
diversity comprising up to 100,000 unique subsets in healthy individu-
als4. Much of this diversity is based on combinatorial expression of 
stochastically expressed, germline-encoded activating and inhibitory 
receptors that bind to human leukocyte antigen (HLA) class I and tune 
NK cell function in a process termed NK cell education5,6. Another layer 
of diversity reflects the continuous differentiation through well-defined 

intermediate phenotypes from the naive CD56bright NK cells through 
CD62L+NKG2A+KIR−CD57−CD56dim NK cells to terminally differentiated, 
adaptive CD62L−NKG2C+CD57+KIR+CD56dim NK cells, associated with 
past infection with cytomegalovirus (CMV)7–10. Given the increasing 
interest in harnessing the cytolytic potential of NK cells in cell ther-
apy against cancer, it is of fundamental importance to understand 
the molecular programs and gene-regulatory circuits driving NK cell 
differentiation and the underlying functional diversification of the  
human NK cell repertoire.

Utilizing single-cell RNA sequencing (scRNA-seq), Crinier et al. 
discovered organ-specific signatures in human spleen NK cells and 
two major transcriptional clusters in blood-derived NK cells (PB-NK),  
corresponding to CD56dim (NK1) and CD56bright (NK2) NK cell subsets2. 
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our transcriptomes with five publicly available donor datasets2,18 using 
scVI (single-cell Variational Inference)19 (Supplementary Table 1). By 
retaining only cell-to-cell variation independent of sample-to-sample 
variation, the cells that initially clustered by donor and laboratory 
origin were successfully integrated into a homogeneous population 
and visualized using diffusion maps20 to preserve the continuous tra-
jectories observed with biological differentiation (Fig. 1a). Although 
NK cell differentiation is best described as a continuum, CD56bright and 
CD56dim NK cells represent two distinct stages of differentiation. By 
performing gene signature scoring using AUCell21, we identified cells at 
the top of the diffusion map embedding scoring high for the CD56bright 
gene signature2, whereas the main body of the embedding exhibited 
increasing intensity of the CD56dim signature2 (Fig. 1b). Scoring of two 
independent gene signatures based on the CD56bright/dim regulon11 and 
proteome22 confirmed our results (Extended Data Fig. 1a,b).

The relatively large and heterogeneous population of CD56dim 
NK cells is commonly phenotypically defined into functionally dis-
tinct subsets based on a selected number of inhibitory and activat-
ing receptors contributing to the functional tuning7. To identify 
predictive gene signatures associated with these functional stages 
encompassing NK cell differentiation, we sorted and sequenced 
equal numbers of CD56bright NK cells and four CD56dim NK cell subsets 
(NKG2A+KIR−CD57−, NKG2A−self-KIR+CD57−, NKG2A−nonself-KIR+CD57−, 
NKG2A−self-KIR+CD57+ or NKG2A−/+self-KIR+CD57+NKG2C+) from 
two donors, one without and one with a large adaptive NK cell 
expansion (Fig. 1c and Extended Data Fig. 1c,d). Transcription-
ally, the adaptive NK cell subset was the most distinct because the 
remaining CD56dim subsets exhibited a high degree of transcrip-
tional overlap, while still ordering themselves along the previously 
defined maturation scheme (Fig. 1c). As previously observed in bulk 
RNA-seq data23, the transcriptomes of self and nonself KIR+ NK cells 
were highly similar even at the single-cell level and thus merged 
for subsequent analysis (Fig. 1c). The five transcriptionally distinct 
NK cell subsets were renamed to reflect their maturation stage: 
‘CD56bright’, ‘early CD56dim’, ‘intermediate CD56dim’, ‘late CD56dim’ and  
‘adaptive’ (Fig. 1c).

We next trained a semi-supervised model, scANVI (single-cell 
ANnotation using Variational Inference)24, to leverage our identified 
NK cell subset gene signatures to predict and infer subset annotation 
of compiled bulk NK cell scRNA-seq datasets. We first tested the accu-
racy of the prediction model (M1) on 15% of the subset-sorted NK cells 
(Fig. 1c) that were not included in the training of the model. Transcrip-
tionally distinct subsets (CD56bright, adaptive) were annotated with high 
accuracy, whereas subsets exhibiting higher transcriptional overlap 
were annotated with slightly reduced accuracy (Fig. 1d). Using this 
model, we could annotate the total NK cell dataset comprising 23,253 
single-cell transcriptomes across 12 donors at the subset level (Fig. 1e). 
The transcriptional profiles of the subsets are captured by the model 
and used to identify differentially expressed genes (DEGs). The overlap-
ping sets of genes illustrate the transition between the subsets. (Fig. 1f). 
To validate our annotation model, we performed unbiased clustering 
(Leiden) of the total NK cell dataset (12 donors), identifying 5 clusters 
closely matching our annotated 5 NK cell subsets (Fig. 1g). A small 

Bulk RNA and chromatin immunoprecipitation sequencing identi-
fied dominant transcription factor (TF) axes defining CD56bright 
(TCF1-LEF-MYC) and CD56dim (PRDM1) phenotypic subsets, respec-
tively11. Later research reported additional diversity with unique tran-
scriptional clusters, including interleukin (IL)-2- and type I interferon 
(IFN)-responding NK cell subsets12 and an intermediate CD56dimG-
zmK+ stage, potentially bridging CD56bright and CD56dim NK cells13. A 
comprehensive analysis unveiled a role for Bcl11b in driving NK cell 
differentiation toward the adaptive state, reciprocally suppressing 
early TFs such as RUNX2 and ZBTB16 (ref. 14). Combining gene expres-
sion analysis, chromatin accessibility and lineage tracing via mito-
chondrial DNA mutations, Rückert et al. revealed clonal expansions 
and a distinct inflammatory memory signature in adaptive NK cells15. 
Using a pan-cancer, single-cell atlas approach, Tang et al.16 identified 
a tumor-enriched dysfunctional CD56dimCD16hi NK cell population 
interacting with LAMP3+ dendritic cells in the TME. Hence, scRNA-seq 
and bulk RNA-seq usage have defined major transcriptional regulatory 
hubs during NK cell differentiation and identified a persistent memory 
state in human innate immunity. However, it remains unclear how the 
regulatory gene circuits that operate under homeostasis in healthy tis-
sues are affected by cellular and/or soluble cues in the TME, resulting in 
perturbed functional states within tumor-infiltrating NK (TiNK) cells.

In the present study we established a single-cell transcriptional 
reference map that resolves gene expression trends and dominating 
TF–target interactions during NK cell differentiation in blood and 
normal tissues. Reference mapping enabled the analysis of cellular 
differences and gene programs in diseases and various conditions by 
contextualizing new datasets within a healthy transcriptional refer-
ence, facilitating the identification of new states not found in the lit-
erature17. We utilized our NK cell reference map, compiled from 44,640 
PB-NK cells (12 donors) and 27,732 tissue-resident NK (TrNK) cells 
(136 donors), to query the regulons and functional states, as defined 
through gene expression signatures, of TiNK cells derived from 427 
patients with 7 distinct solid tumors (38,982 TiNKs). We found that TrNK 
and TiNK cells have a clear tissue-residency signature but still share the 
dominant regulons of blood CD56bright and CD56dim NK cells. Of the six 
functional states identified in our pan-cancer atlas and confirmed in a 
spatial transcriptomics dataset, a dysfunctional stressed CD56bright state 
susceptible to TME-associated cellular communication and a cytotoxic 
effector CD56dim state were commonly enriched across tumor types. 
Stratification of patient survival data identified a high ratio of effector 
CD56dim to stressed CD56bright state to correlate with improved survival 
in patients with osteosarcoma and melanoma. This resource provides a 
granular view of cancer-specific alterations of solid TiNK cells, identify-
ing how the TME can lead to NK cell dysfunction and may inspire new 
strategies to engineer cell therapy products with robust functional 
phenotypes resistant to TME-induced suppressive mechanisms.

Results
NK cell subset annotation using predictive gene signatures
To establish a pan-cancer atlas of TiNK cells, we first defined NK cell 
differentiation at the transcriptional level. We performed scRNA-seq of 
the total NK cell population from seven healthy donors and integrated 

Fig. 1 | NK cell differentiation at the transcriptional level. a, Integration 
process of scRNA-seq data of NK cells from 12 donors and 4 different laboratories 
using scVI showing a UMAP based on the scVI latent representation, followed 
by a UMAP based on the diffusion map components. b, AUCell scores of gene 
signatures for CD56bright and CD56dim NK cell subsets. c, UMAP representation of 
five sorted subsets from a donor with an adaptive expansion (left) and a donor 
without an adaptive expansion (right). d, Heatmap depicting accuracy of our 
prediction model for subset annotation tested on the held-out 15% of cells from 
the subset-specific dataset (two donors). e, UMAP of the scANVI representation 
of both bulk and sorted NK cells, showing original annotation of NK cells  
(12 donors, left) and subset labels predicted (right) using the scANVI model 

trained with sorted subset data (2 donors). f, Dot plots showing the top three  
up- and downregulated genes between all pairs of subsets (x and y axes) as 
identified by the differential expression module in scANVI. These top genes were 
then visualized across all NK cell subsets within the differentiation spectrum  
(x axis), to highlight the continuous nature of NK cell differentiation. g, Diffusion 
map representation showing the predicted subset labels for the bulk data (top) 
and depicting Leiden clustering of the 12 donor NK cell dataset (bottom).  
h, Heatmap showing distribution of our annotated 12 donor NK cell subsets  
over the 5 Leiden clusters. i, Frequency (freq.) of annotated late CD56dim 
and adaptive NK cell subsets in donors with and without an adaptive NK cell 
expansion. Int., intermediate.
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portion of intermediate CD56dim-annotated NK cells clustered together 
with late CD56dim-annotated NK cells in cluster 4 (Fig. 1h), probably 
corresponding to more mature cells within the population. The subset 
stratification obtained through training of our model based on subset 
signatures, as well as the unbiased Leiden clustering, harmonizes well 

with the recently proposed NK1–3 nomenclature25 (Extended Data 
Fig. 1e). Having confirmed the validity of our five NK cell subsets, M1 
was utilized to identify donors with an adaptive NK cell expansion, 
which were all confirmed to be CMV seropositive (Fig. 1i). Thus, this 
first scANVI model forms a basis to interrogate cellular states layered 
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on top of the natural transcriptional changes with NK cell subsets at 
different stages of differentiation.

Fate-specific gene-regulatory networks
To decipher the regulatory gene pathways driving NK cell differentia-
tion at the transcriptional level, we used Palantir26 and RNA velocity 
to calculate pseudotime27,28. Palantir identifies terminal cells based 
on a chosen starting cell, placing the remaining cells along a timeline 
(pseudotime). Defining the starting cell (blue) based on the lowest 
CD56dim score2 (Fig. 1b) identified two terminal cells (orange), predicted 
to be part of the late CD56dim and adaptive population, respectively 
(Fig. 2a). To validate this trajectory, we utilized the dynamic model 

implemented in scVelo27 to compute RNA velocity (spliced versus 
unspliced transcripts), inferring pseudotime without a predefined 
starting cell (Extended Data Fig. 2a,b). The resulting vector field and 
extrapolated pseudotime confirmed a trajectory starting within the 
CD56bright NK cell subset and terminating in the adaptive subset (Fig. 2b). 
Last, to infer developmental relationships at the resolution of the five 
subsets, representing functionally distinct subsets and proposed stages 
of NK cell differentiation7, we applied partition-based graph abstrac-
tion (PAGA)29 to quantify their connectivity and estimate transitions. 
In line with the two terminal fates (late CD56dim, adaptive) identified 
by Palantir, we analyzed donors with conventional and adaptive NK 
cells separately (Fig. 1i). In both types of donors, early CD56dim NK 
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Fig. 2 | GRNs defining conventional and adaptive NK cell fates. a, UMAP 
representation highlighting the starting cell (blue) with the lowest value CD56dim 
signature score and the two terminal cells (orange) as predicted by Palantir.  
b, UMAP representation of the data from the sorted subsets (two donors) 
showing the RNA velocity vector field as a stream plot and the inferred 
pseudotime. c,d, PAGA graph with directionality and transitions from RNA 
velocity analysis for the sorted subsets (2 donors) (c) and subset-inferred bulk 

donors (12 donors) stratified based on the presence or absence of adaptive 
expansion (d). e, Gene trends clustered into five overall trends of expression 
along pseudotime, showing expression of KLRC2, CD52 and IL32 in both  
terminal fates (pink, conventional fate; orange, adaptive fate). f, Inferred GRNs 
where dominant TFs for each trend are highlighted. g, Selection of regulons 
showing differential expression over pseudotime within the conventional and 
adaptive fate.
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cells formed the connecting link between CD56bright and the remain-
ing CD56dim populations (Fig. 2c,d). However, although adaptive donor 
NK cells continued their progression to intermediate CD56dim cells, 
terminating in the transcriptionally distinct adaptive population, con-
ventional donors instead progressed toward intermediate/late CD56dim 
populations (Fig. 2c,d).

Having established a temporal axis to NK cell differentiation, we 
utilized generalized additive models (GAMs) to compute gene expres-
sion trends as a function of time for each gene26, which clustered into 
five distinct trends (Fig. 2e). Genes varying in expression across the 
two terminal fates were depicted in their trends for each fate, exempli-
fied by KLRC2, CD52 (refs. 15,18) and IL32 clustering into trend 1 in the 
conventional late CD56dim fate and trend 4 in the adaptive fate (Fig. 2e). 
Based on the two-fate model, we constructed gene-regulatory networks 
(GRNs)21 stratified by the five gene trends and identified the dominant 
TFs across pseudotime and their known downstream target genes 
(Fig. 2f). Trend 1 is dominated by genes that are downregulated with 
differentiation from CD56bright to CD56dim cells, including previously 
reported TFs (MYC, LEF1, RUNX2)11, RBPJ30 involved in Notch signaling,  
the retinoic acid receptor (RXRA) and TFs regulating ID2 expression 
(HOXA9, HOXA10)31 (Fig. 2e,f). Trend 2 genes, compared with trend 
1, are upregulated during differentiation from early to intermediate 
CD56dim cells and include, among others, EGR1 (ref. 32) (cell survival, 
proliferation, apoptosis, regulation of TRAIL expression), BHLHE40 
(refs. 33,34) (associated with NK cell activation and repression of 
RXRA) and IRF8 (refs. 35,36) (role in orchestrating adaptive response, 
essential NK cell gene) (Fig. 2e,f). TFs exhibiting less dynamic changes 
across pseudotime are clustered in trend 3, such as IKZF1 (ref. 37), 
XBP1 and KLF2, which play a role in regulating homeostatic prolif-
eration, effector function and cytokine responsiveness38,39. TFs exhib-
iting higher expression at the start and end of pseudotime fall into 
trend 4, including STAT3 (cell survival, IFN-γ production) and DDIT3  
(ref. 40) (stress response, metabolism). Last, expression of trend 5 
genes steadily increases with differentiation, decreasing only during 
late differentiation, and includes previously reported TFs associated 
with CD56dim NK cells (MAF, PRDM1, TBX21)11, the AP-1 family member 
BATF, the ETS family member ETV7 and the Wnt target gene ASCL2 
(Fig. 2e,f). The TF-based GRNs were further curated to only retain direct 
targets with significant motif enrichment, referred to as ‘regulons’ 
(denoted by ‘(+)’), expression of which was confirmed in an independ-
ent bulk RNA-seq dataset on sorted NK cell subsets. Regulon expres-
sion substantially differing between the conventional and adaptive 
fate includes conventional fate-associated BHLHE40 (ref. 34), IRF8  
(refs. 35,36) and DDIT3 (ref. 40) and adaptive fate-associated MAF11, 
BATF and PRDM1 (ref. 41) regulons (Fig. 2g). Clustering of dominant  
TFs according to their temporal expression during NK cell differentia-
tion revealed a set of highly connected regulatory circuits, expression 
of which diverged during terminal differentiation into one of the two 
cell fates: conventional or adaptive.

Transfer learning to generate pan-cancer atlas
Having transcriptionally defined NK cell differentiation in peripheral 
blood (PB), we proceeded to train a second model (M2) with publicly 
available scRNA-seq datasets encompassing 6 healthy tissues (prostate, 
lung, pancreas, skin, breast, brain) from a total of 136 donors using scVI19 
to generate a healthy reference map (PB-NK + TrNK) (Fig. 3a and Sup-
plementary Table 2). The tissue-specific datasets were integrated and 
annotated using scANVI and CellTypist42 was used to identify immune 
subsets of interest at the pan-tissue level (Fig. 3b and Extended Data 
Fig. 3a) and within individual tissues (Extended Data Fig. 3b–f). The 
annotation and integration steps were repeated for the scRNA-seq data-
sets from 7 solid tumors (prostate (PRAD), lung (NSCLC), melanoma 
(SKCM), pancreas (PAAD), breast cancer (BRAC), glioblastoma (GBM) 
and osteosarcoma (SARC)) from a total of 427 patients (Supplementary 
Tables 3 and 4), at the pan-cancer level (Fig. 3c,d) and within individual 

tumor types (Extended Data Fig. 4a–g). CellTypist-annotated innate 
lymphoid cells (ILCs) (Extended Data Fig. 5a, b) were further stratified 
into ILC1/2/3 based on previously described scRNA-seq signatures43. 
We could not identify ILC1s in both the tissue and the tumor datasets, 
but, importantly, ILC2- and ILC3-annotated cells scored highly for IL7R 
expression compared with CD56bright- and CD56dim-annotated NK cells, 
excluding contamination by ILC1s (Extended Data Fig. 5c,d).

To assess tissue-residency status in our annotated NK cells in the 
tissue- and tumor-derived datasets (Extended Data Fig. 5a,b), we uti-
lized a literature-derived TR signature as well as our own atlas-derived 
TR (atlas-TR) signature (Fig. 3e). The atlas-TR signature is based on the 
top six genes differentially expressed by both CD56bright and CD56dim 
NK cells across tissue types when comparing with the corresponding 
subset in the blood-derived NK cells (Extended Data Fig. 5e,f). CD56bright 
NK cells scored generally higher for a TR signature compared with 
CD56dim NK cells in both normal tissue and tumors, with a more distinct 
TR signal (compared with PB-NK) achieved with the atlas-TR signature 
(Fig. 3e and Extended Data Fig. 5g). NK cells annotated in a healthy brain 
scored very low for tissue residency and thus we cannot exclude blood 
contamination in these samples (Extended Data Fig. 5g).

CD56bright- and CD56dim-annotated TiNK cells were mapped on to 
the reference map (PB-NK, TrNK) using transfer learning (scArches44) 
to generate the final model (M3), our pan-cancer NK atlas (Fig. 3f). 
CD56bright and CD56dim subsets from PB, tissues and tumors clustered 
together (Fig. 3g,h) and were more tightly connected than to their 
respective tissues/tumor origin, apart from skin-/SKCM-derived NK 
cells (Fig. 3g,h). Thus, differentiation stage had a greater influence on 
the NK cell transcriptome compared with tissue origin. Transfer learn-
ing facilitated incorporation of TiNK cells on to our healthy reference 
map of PB and TrNK cells, allowing for downstream systematic inter-
rogation of cellular states within solid TiNK cells.

Altered NK cell subset frequencies across tissues and tumors
The TME is shaped by its cellular composition, in particular by the 
infiltrating immune cells, which in turn can be modulated by their 
surroundings. A pan-cancer comparison of the healthy tissue and 
tumor-annotated immune subtypes (Fig. 3b,d) identified an increased 
proportion of plasma cells and naive B cells, as well as a decreased 
proportion of CD56dim NK cells, classic monocytes, dendritic cells, NK 
T cells, and effector memory/effector T helper cells (helper TEM/EFF), 
effector memory/effector memory re-expressing CD45RA cytotoxic 
T cells (cytotoxic TEM/EMRA) and resident memory cytotoxic T cells (cyto-
toxic TRM) in the pan-cancer datasets (Fig. 4a). The fraction of CD56bright 
NK cells out of total immune cells was enriched in BRAC, whereas 
CD56dim NK cells were enriched in SKCM, but decreased in NSCLC and 
BRAC (Fig. 4a–c). We further annotated the CellTypist-identified NK 
cells at the subset level using our subset-trained model (M1) (Fig. 4d,e). 
Skewing of the CD56bright:CD56dim ratio between healthy blood or tissue 
and tumor was observed for most tumor types (Fig. 4d,e), including 
non-small cell lung cancer (NSCLC), which was independently vali-
dated by flow cytometry in an NSCLC cohort (Fig. 4f and Extended 
Data Fig. 6a). In line with this, we observed a general decrease in the 
intermediate CD56dim population within the TiNK cells (Fig. 4d,e). 
Protein-based annotation of the CD56dim population in the NSCLC 
cohort also identified a decrease of the early and intermediate CD56dim 
subset and a modest increase of the late CD56dim subsets in the NSCLC 
cohort compared with healthy blood controls (Fig. 4g and Extended 
Data Fig. 6b–e). Solid TiNK cells were enriched for a CD56bright transcrip-
tional phenotype whereas intermediate CD56dim NK cells were reduced 
within the CD56dim compartment in solid tumors, findings that were 
verified at the protein level in an NSCLC cohort45.

Six functionally distinct cellular states of NK cells
TMEs of solid tumors are hostile and often immunosuppressive environ-
ments for immune cells to infiltrate46. Understanding how the TME can 

http://www.nature.com/natureimmunology


Nature Immunology | Volume 25 | August 2024 | 1445–1459 1450

Resource https://doi.org/10.1038/s41590-024-01884-z

modulate NK cells at the transcriptional level can provide important 
insights into understanding the tumor-mediated immunosuppressive 
mechanisms and how to overcome them.

We implemented an unbiased approach (Milo47) to ascertain cel-
lular states in our pan-cancer NK cell atlas by identifying 6,932 indi-
vidual neighborhoods without pre-clustering based on cellular origin. 
Annotating individual neighborhoods as subset specific (>70% of cells 

in the neighborhood) identified TiCD56bright NK cells as having the most 
frequent, but also the most unique (differentially abundant), specific 
neighborhoods (Extended Data Fig. 7a). Notably, most neighborhoods 
were annotated as ‘mixed’, highlighting transcriptional similarities 
among NK cells found in PB, tissues and tumors (Extended Data Fig. 7a). 
The 6,932 neighborhoods were grouped into 6 distinctive neighbor-
hood groups and tested for differential abundance of neighborhoods 
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between TiNK cells and Ref-NK cells (Fig. 5a and Extended Data Fig. 7b). 
Neighborhood groups 1 and 2 consisted of neighborhoods significantly 
enriched for TiNK cells and group 6 included neighborhoods enriched 
for Ref-NK cells (Fig. 5b and Extended Data Fig. 7b).

Next, we visualized the distribution of NK cell subsets within each 
group using our annotation model (M1). Groups 1 and 2 were enriched 
for, but not exclusive to, CD56bright cells, whereas groups 3–6 were domi-
nated by CD56dim NK cell subsets (Fig. 5c). The dominant TF regulons 
of PB-NK cell differentiation previously identified (Fig. 2f) confirmed 
groups 1 and 2 as two CD56bright states and groups 3–6 as four CD56dim 
NK cell states (Fig. 5d).

Cell-state-specific GRNs, DEGs, gene set enrichment analysis 
(GSEA) and signature scoring informed our annotation of the states 
as stressed CD56bright (group 1), typical CD56bright (group 2), effector 
CD56dim (group 3), adaptive CD56dim (group 4), activated CD56dim 
(group 5) and typical CD56dim (group 6) (Fig. 5e–n and Extended Data 
Fig. 7c–i). Comparing the stressed with the typical CD56bright state 

(group 1 versus group 2) identified increased expression of the cel-
lular stress response ATF3 regulon, the hypoxia-induced MAFF regu-
lon and numerous heat shock proteins (Fig. 5e,g and Extended Data 
Fig. 7f). The stressed CD56bright cell state scored highly for immuno-
suppressive pathways (transforming growth factor (TGF)-β signal-
ing, hypoxia, reactive oxygen species (ROS)) and exhibited increased 
metabolic activation (glycolysis, cholesterol homeostasis, fatty acid 
metabolism and mTORC1 (mammalian target of rapamycin complex 1)) 
(Fig. 5g,j–l). Furthermore, a low NK cell cytotoxicity score, exemplified 
by reduced effector and activating signaling molecules, was suggestive 
of reduced functionality in this stressed CD56bright cellular state, which 
was uniquely enriched across all seven tumor types (Fig. 5i,m,o). In 
line with increased infiltration of CD56bright cells in the TME, the typical 
CD56bright cellular state was also enriched in five of seven tumor types 
compared with healthy tissue, with both CD56bright groups exhibiting 
higher expression of immunomodulatory molecules, including XCL1, 
XCL2 and IFNG (Fig. 5n–o).
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Of the CD56dim states, the effector state was most frequently 
enriched across tumor types (SARC, PAAD), characterized by an enrich-
ment for apical junction, actin and cytoskeleton-related genes as well as 
effector molecules (Fig. 5h and Extended Data Fig. 7g). This state, phe-
notypically enriched for intermediate and late CD56dim NK cell subsets, 
scored highly for NK cytotoxicity and oxidative phosphorylation and, 
importantly, low for immune suppression (Fig. 5i,k–m). The adaptive 
CD56dim state was uniquely enriched for adaptive NK cells, in line with 
adaptive-associated genes (CD52, IL32, GZMH, CD3E) being upregulated 
in this state (Fig. 5c and Extended Data Fig. 7c). The activated CD56dim 
state was distinguished by increased hypoxia, upregulated nutrient 
transporters and the mTORC1–Myc axis (Fig. 5i,k and Extended Data 
Fig. 7d,h). Last, the PB-enriched typical CD56dim state exhibited a low 
stress score and a high cytotoxicity score and was associated with IFN, 
tumor necrosis factor (TNF) and JAK/STAT signaling (Fig. 5i–j,m and 
Extended Data Fig. 7e,i). Notably, although we observed enrichment 
of individual cellular states in the TME, including the two CD56bright and 
the effector CD56dim states, all states were represented in healthy blood 
and tissue samples, albeit at different frequencies.

State-specific signaling in the TME links to functionality
To elucidate any TME-based influence on the six functional states iden-
tified, we employed CellChat48 to infer intercellular communication, 
focusing on commonly enriched signaling pathways across all seven 
tumor types. Group 1 and 2 NK cell states were enriched for incom-
ing signaling across tumor type from four dominant communication 
pathways (Fig. 6a). Increased expression of CD44, CXCR4 and CD74 on 
group 1 and 2 NK cells, on which numerous signals from fibroblasts, 
endothelial cells, tumor cells and macrophages converged (COLLA-
GEN, MIF, LAMININ), facilitated the augmented incoming signaling 
in NSCLC (Fig. 6b,c). Notably, the fibroblasts, endothelial cells, tumor 
cells and cancer-associated fibroblasts (CAFs) also exhibited the strong-
est outgoing interaction strength across tumor types (Extended Data 
Fig. 8a–g). Furthermore, group 1 and 2 NK cells preferentially received 
inhibitory input via the major histocompatibility complex I (MHC-I) 
(HLA-E/KLRC1) pathway owing to high KLRC1 expression in these cel-
lular states (Fig. 6a,d). Hence, group 1 and 2 cellular states were more 
receptive to TME-induced immunosuppressive signals via upregulated 
expression of CD44, CXCR4, CD74 and KLRC1.

To understand how NK cells contribute to shaping the TME via 
an immunomodulatory role, we focused our analysis on outgoing 
signaling largely restricted to NK cells. We identified three signaling 
pathways (CC chemokine ligand (CCL), protease-activated inhibitors 
(PARs), IFN-II) through which NK cells predominantly communicated 
with dendritic cells, macrophages, fibroblasts and endothelial cells 
(Fig. 6e,f). CCL3 and CCL5, expressed across all states, can lead to the 
recruitment of cells expressing ACKR1, CCR1 and CCR4 (Extended Data 
Fig. 6h). Release of granzyme A, highly expressed at the transcriptional 
level by the effector NK cell state (group 3), can induce apoptosis of 
F2R-expressing cells in the TME, such as fibroblasts (Fig. 6g). Granzyme 
A expression was reduced in both frequency and intensity in CD56dim NK 
cells from central tumor samples from patients with NSCLC compared 
with healthy blood controls, hinting at a release of granzyme A by NK 

cells within the tumor (Fig. 6h,i). Release of IFN-γ, predominantly by 
the stressed CD56bright (group 1) state, can induce surrounding cells to 
upregulate MHC-I expression, including HLA-E (Fig. 6g and Extended 
Data Fig. 9a–d). Inhibitory signaling via the HLA-E axis significantly 
inhibits degranulation and granzyme B release of both CD56bright and 
CD56dim NK cells, as demonstrated by co-culturing NK cells with A549 
(NSCLC) targets cells pre-stimulated with IFN-γ to upregulate HLA-E 
expression (Fig. 6j,k and Extended Data Fig. 9a–e). Blockade of the 
NKG2A–HLA-E axis, using an anti-NKG2A antibody, resulted in signifi-
cant recovery of function, both degranulation and granzyme B release 
(Fig. 6j,k and Extended Data Fig. 9e). CD56bright cellular states exhibited 
increased inhibitory signaling (MHC-I) and augmented susceptibility 
to TME-induced suppression (MIF, COLLAGEN, LAMININ) whereas 
CD56dim states, particularly the effector state, exhibited high GZMA 
signaling, which was confirmed in samples of CD56dim from patients 
with NSCLC.

Ratio of cellular states is predictive of patient outcome
Having identified 6 functionally distinct cellular states of NK cells 
within our pan-cancer NK cell atlas comprising 89,850 scRNA-seq 
transcriptomes, we validated our findings in spatial RNA-seq data-
sets (Supplementary Table 5). Spatial RNA-seq tissue sections from 
SKCM, NSCLC and GBM were deconvoluted using Tangram49 combined 
with our established scRNA-seq references for the tumor types being 
analyzed to identify the cell types in these datasets (Fig. 7a). Compo-
sitional analysis of the main immune subtypes in SKCM, NSCLC and 
GBM varied greatly across tumor type, but was highly consistent across 
sequencing technique (scRNA-seq versus spatial-seq) (Fig. 7b). Focus-
ing on SKCM, harboring the highest proportion of NK cells (Fig. 7b), 
we could further stratify the annotated NK cells into CD56bright and 
CD56dim subsets (Fig. 7c) and cellular states (Fig. 7d). Importantly, con-
firming previous results (Fig. 5i,m), the effector (group 3) and typical 
(group 6) CD56dim states scored highly for genes associated with NK 
cell cytotoxicity. Similarly, stress response-related genes, as well as 
immunosuppressive-related genes (ROS, hypoxia) scored highest in 
the stressed CD56bright (group 1) state (Fig. 7f,g), in line with results in 
the scRNA-seq data (Fig. 5i–k).

The clinical benefit of NK cell infiltration in solid tumors has previ-
ously been assessed through a general NK cell signature score50,51. Hav-
ing identified six functional states of NK cells in blood, tissue and solid 
tumors, in both scRNA-seq and spatial-seq datasets, we proceeded to 
test clinical relevance of these cellular states by using BayesPrism52 to 
deconvoluted TCGA (The Cancer Genome Atlas) RNA-seq data where 
we also had survival data53,54 (Extended Data Fig. 10). A higher ratio of 
effector CD56dim:stressed CD56bright NK state signatures was predictive 
of improved survival in SARC and SKCM (Fig. 7h). We hereby confirm 
that the six functional states identified in our pan-cancer NK cell atlas, 
and confirmed in spatial RNA-seq datasets, are also predictive of out-
come in patients with osteosarcoma and melanoma.

Discussion
In the present study, we report a compact description of the transcrip-
tional diversification encompassing human NK cell differentiation at 

Fig. 5 | Distinct cellular states of NK cells identified in pan-cancer atlas.  
a, UMAP depicting neighborhood (Nhood) groups identified by Milo and 
computed using the scVI representation. b, Beeswarm plot depicting differential 
abundance of neighborhoods (TiNK versus Ref-NK enriched). Colored 
neighborhoods are differentially abundant at a false recovery rate (FDR) of 0.1. 
c, Pie charts showing distribution of NK subsets across neighborhood groups 
annotated using our annotation model (Fig. 1). d, Expression of dominant 
TF regulons of NK cell differentiation across NK cell states (neighborhood 
groups). e, Expression of TF regulons uniquely expressed across cellular 
states. f, Graphic representation of cellular states. g,h, Volcano plots depicting 
DEGs between group 1 versus group 2 (g) and group 3 versus group 4/5/6 

(h) cellular states. Differential expression analysis was performed using the 
findNhoodGroupMarkers method within the miloR package. Counts were 
aggregated per sample; groups were compared using edgeR and the adjusted  
P values were used for the plots. i, Scoring of pathway gene signatures in NK cell 
states. Func., function; homeo., homeostasis. j–n, Dot plots depicting selected 
genes belonging to stress response (j), immune suppression (k), metabolism (l), 
cytotoxicity (m) and chemokine/cytokine secretion (n). o, Pie charts depicting 
distribution of NK cell states in blood, tissues and tumors. Volcano plots: 
log(fold-change) cutoff at 0.5, P < 0.05. The scale represents regulon activity  
(d and e) or gene set activity (i) computed by AUCell.
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a, Selected predicted incoming signaling pathways involving TiNK cells common 
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All bar graphs represent the mean ± s.d, with the actual P values indicated.
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the single-cell level. By enriching for less frequent, but phenotypi-
cally well-defined, functionally distinct NK cell subsets, we could first 
train a model to correctly annotate five transcriptional subsets from 
bulk NK cell populations. By applying probabilistic models imple-
mented in scvi-tools, we created a transcriptional reference map of 
human blood and TrNK cells from normal tissues, including blood, 
pancreas, lung, breast, skin, prostate and brain. Transfer learning using 
scArches facilitated integration of query datasets comprising a total 
of 2,176,214 transcriptomes from 427 patients spanning 7 solid tumor 
types. By extracting, annotating and mapping the TiNK cells on to our 
reference map of healthy donors, we could systematically interrogate 
TME-induced perturbations of GRNs and functional states of TiNK cells 
(Supplementary Fig. 1). Our pan-cancer atlas revealed six functionally 
distinct NK cell states with varying abundance across blood, tissues 
and tumor types, which we could confirm in spatial RNA-seq datasets 
(SKCM, NSCLC, GBM). Two states commonly enriched for across tumor 
types included a dysfunctional CD56bright cellular state susceptible 
to TME-induced immunosuppression and a cytotoxic TME-resistant 
CD56dim state, the ratio of which was predictive of patient outcome.

The view that NK cells, like T cells and other immune cells, undergo 
a continuous process of NK cell differentiation is relatively recent and 
was originally based on phenotypic and functional classification of 
discrete subsets7,55. There is abundant evidence to suggest that the 
CD56bright NK cell subset is the most naive, giving rise to the more dif-
ferentiated CD56dim NK cells which can further differentiate toward 
terminal stages, a process accelerated by CMV infection8,56,57. Instead 
of forcing individual NK cells into arbitrary clusters representing a 
snapshot of a given time point of differentiation, we clustered TFs 
and their target genes into five distinct gene expression trends as a 
function of pseudotime, reflecting continuous differentiation. The 
dominant TF regulons within these five gene trends correlated with 
functional traits of NK cells along the differentiation axis, such as 
cytokine responsiveness, as well as proliferative and cytotoxic capac-
ity. By retaining fate-specific expression profiles, conventional versus 
adaptive fate in donors with CMV-induced clonal NK cell expansions, 
we could observe clear divergence of regulon expression (for example, 
BATF, MAF) during terminal differentiation. BATF belongs to the AP-1 
TF family which have been identified as potential drivers in shaping 
adaptive NK cell chromatin accessibility and thus dictating the unique 
functional features of this subset, including enhanced IFN-γ response 
to receptor stimulation15. Establishing dominant regulons defining 
NK cell differentiation in PB provided a vital reference for downstream 
interrogation of both TrNK and solid TiNK cells.

Utilizing CellTypist, we harmonized annotations of individual 
cell subtypes across multiple datasets from six different healthy 
tissues, extracting and integrating CD56bright and CD56dim NK cells 
using scVI19 to expand our transcriptional reference map. Impor-
tantly, tissue-, as well as tumor-annotated, NK cells, did not express 
human ILC signature genes (IL7R), instead expressing both EOMES and 
TBX21. Literature-derived tissue-residency genes (for example, CD69, 
ITGAE, ITGA1, CXCR6, ZNF683 and IKZF3), originally extrapolated from 
tissue-resident T cell signatures58–61, were more highly expressed in 
tissue-derived NK cells, particularly in CD56bright NK cells62. Using our 
extensive pan-cancer NK cell atlas, we were able to generate a solely 
NK cell-derived, tissue-residency signature (atlas-TR: PSMA2, SLC5A3, 
CCL4L2, CLN3, SCGB1A1, AREG), which outperformed the conven-
tional literature-derived TR signature across tissue and tumor type. 
CD56bright and CD56dim NK cells from healthy brain tissue exhibited 
a low TR- score, indicative of potential blood contamination in this 
specific dataset. Importantly, GBM-derived CD56bright and CD56dim 
NK cells scored highly for tissue residency, supporting their infiltra-
tion into the tumor. Expression of CCL4L2, encoding a chemokine 
that induces chemotaxis of CCR5- and CCR1-expressing cells, such as 
T cells, dendritic cells and macrophages, has previously been described 
in NK cells isolated from melanoma samples63. This represents an 

independent verification, because this dataset was not included in 
our study. These melanoma-infiltrating NK cells also exhibited high 
AREG expression, an epidermal growth factor (EGF) receptor ligand. 
Notably, upregulation of AREG has also been described in the setting of 
healthy and cirrhotic liver-resident NK cells64, a tissue type not included 
in our pan-cancer atlas. Intriguingly, SCGB1A1, a member of the secre-
toglobin family, functions as a potent inhibitor of phospholipase A2 
(ref. 65), a well-described immunosuppressive molecule contributing 
to the development of the TME. Hence, it is tempting to speculate that 
secretion of the SCGB1A1-encoded protein could be another effector 
mechanism through which TiNK cells can positively contribute to 
remodeling of the TME.

The presence and abundance of NK cells that reside in the tumor 
bed vary across tumor types and treatments and between patients, and 
appears to be associated with the chemokine profiles in the different tis-
sues/TMEs66–69. In agreement with previous studies45,67,70, we observed 
a predominance of CD56bright NK cells in tumors compared with the cor-
responding normal tissue. TrNK cells are probably a mixed population 
including naturally residing TrNK cells and TiNK cells. Compositional 
differences between normal and tumor tissues suggests some degree 
of active recruitment, particularly in SKCM where NK cell frequencies 
starkly increased, albeit expansion from tissue-resident pools cannot 
be excluded. Migration into the TME is regulated by a broad family of 
integrins, selectins and chemokine receptors that are differentially 
expressed during NK cell differentiation. CXCR3, primarily expressed 
on CD56bright NK cells, has been implicated in homing to several solid 
tumors based on CXCL10 gradients71,72, and thus may contribute to 
the predominance of this subset in tumors. CCL2, CCL3, CCL5, CXCL8, 
CXCL9, CXCL10 and CXCL12 have similarly been implicated in medi-
ating predominantly CD56bright NK cell trafficking into solid tumors 
based on chemokine receptor expression69. Release of CCL3 and CCL5 
by NK cells can also recruit CCR1-expressing immune cells, such as 
macrophages. We observed increased CXCR4 expression in group 1 
and 2 cellular states, corresponding to CD56bright TrNK and TiNK cells. 
Previous reports73,74 have demonstrated CD44-induced CXCR4 upregu-
lation resulting in increased migration and invasiveness of malignant 
cells. Notably, CD44 was highly expressed on the tumor-enriched 
stressed CD56bright state, alongside CXCR4 and CD74, possibly sensitiz-
ing this population to TME-mediated immunosuppression from CAFs, 
fibroblasts, endothelial and tumor cells, as noted by high scores for 
TGF-β signaling, hypoxia and ROS. High immunosuppression of this 
state is in line with the increased stressed response noted, as exempli-
fied by high expression of the cellular stress response-associated TF 
ATF3, the HSP70 co-chaperone BAG3, the stressful growth arrest gene 
GADD45B and DUSP1, which is associated with cellular response to  
environmental stress.

Transcriptional stress response programs, including heat shock 
proteins, have previously been reported as a potential artefact down-
stream of digestion of tissues75. We therefore took several measures to 
rule out digestion artefacts when compiling the present resource. In 
addition to implementing upstream data-processing steps, including 
removal of ambient RNA using decontX76, we found no evidence for 
systematic artefactual stress signal coming from a particular study 
or tumor type. Perhaps most importantly, the stress signature defin-
ing the group 1 NK cell state was also found in spatial transcriptomics 
data directly on tissue sample sections that have not undergone any 
upstream tissue dissociation/digestion.

We also found high KLRC1 expression on the group 1 and 2 states, 
which, alongside high IFNG expression, can induce an inhibitory feed-
back loop, whereby local IFN-γ secretion leads to HLA-E upregulation 
resulting in inhibitory input through CD94/NKG2A. Conversely, the 
effector CD56dim state, associated with improved patient outcome, 
lacked CD44 expression and highly expressed GZMA. Notably, this 
state exhibited high expression of the KLF2, PRDM1, BATF, TBX21 and 
IKZF1 regulons, indicative of high effector function, regulation of 
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Fig. 7 | Distinct cellular states in spatial RNA-seq and association with patient 
outcome. a, Deconvoluted spatial RNA-seq images from SKCM, NSCLC and 
GBM at the level of immune populations. b, Pie charts depicting compositional 
analysis of major immune populations from scRNA-seq datasets and spatial-seq 
datasets for SKCM, NSCLC and GBM samples. c,d, Annotation of CD56bright and 
CD56dim NK cell subsets (c) and the six cellular states of NK cells (d) in SKCM. 

e–g, Dot plots depicting selected genes belonging to NK cytotoxicity (e), stress 
response (f) and immunosuppression (g) scored across NK cell states in spatial-
seq data from SKCM. h, Kaplan–Meier survival curves showing association of 
high/low group 1/3 gene signatures with patient outcome across tumor types. 
Survival analysis was performed using Cox’s proportional hazards model;  
P values were computed using the log(rank) test.
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homeostatic proliferation and survival, but also cell migration and 
tissue residency. Unique TiNK cell-specific regulons in this state con-
sisted of NFYC, CTBP1, POLE4 and CEBPA, which are involved in DNA 
repair, monitoring of proliferation, regulating MHC expression and 
maintaining structural homeostasis in the Golgi complex77–80. Con-
versely, TiNK cell-specific regulons in the stressed CD56bright state 
included hypoxia-induced MAFF, cellular stress response regulon 
ATF3 and EGR3 (ref. 81) which induce negative regulators in response 
to activation. Metabolically, the effector CD56dim state scored highly 
for oxidative phosphorylation, compared with the stressed CD56bright 
state which favored glycolysis, mTORC1 activation and exhib-
ited upregulated nutrient transporters and genes associated with  
cholesterol homeostasis.

Contrary to Tang et al.16, increased gene signature scoring of the 
tumor-enriched states stressed that the CD56bright state did not con-
sistently associate with reduced survival across tumor types. Instead, 
we observed increased survival in patients exhibiting a high effector 
CD56dim state, which was further augmented with a low signature for 
the stressed CD56bright state. Of the four CD56dim states, the effector 
CD56dim state was enriched across two tumor types, painting a promis-
ing picture for the role of solid TiNK cells.

This resource provides a transcriptional reference map of human 
NK cells across healthy blood and tissues with harmonized annota-
tions of transcriptional NK cell subsets. Uncovering the dominant 
gene-regulatory circuits during NK cell differentiation enabled identi-
fication of TME-induced perturbations in solid TiNK cells across tumor 
type. We identified functionally distinct NK cell states across healthy 
and malignant tissues, including tumor-enriched states predictive of 
patient outcome. Modeling of the intercellular communication path-
ways of outcome predicting NK cell states with the surrounding TME 
identified potential pathways of TME-induced NK cell suppression. 
Thus, our analysis has the potential to design more potent NK cell 
therapy products able to resist suppressive factors operating within 
the TME of solid tumors. Ultimately, this resource can be extended 
endlessly through transfer learning to interrogate new datasets from 
experimental perturbations or different tumor types.
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Methods
Cell processing
Peripheral mononuclear cells (PBMCs) were isolated using density 
gradient centrifugation from anonymized healthy blood donors (Oslo 
University Hospital; Karolinska University Hospital) with informed 
consent. The study was approved by the regional ethics committee 
in Norway (Regional etisk komité (REK): protocol no. 2018/2482) and 
Sweden (Regionala etikprövningsnämnden i Stockholm: protocol no. 
2016/1415-32; Etikprövningsmyndigheten: protocol no. 2020-05289). 
Donor-derived PBMCs were screened for KIR education and adaptive 
status using flow cytometry. NK cells were purified using an AutoMACS 
(DepleteS program, Miltenyi Biotec) and before overnight resting in 
complete Roswell Park Memorial Institute (RPMI) 1640 (Cytiva) (10% 
fetal bovine serum (FBS; GE Healthcare), 2 mM l-glutamine (GE Health-
care)) at 37 °C and 5% CO2.

Flow cytometry screening
PBMCs were stained for surface antigens and viability in a 96 
V-bottomed plate, followed by fixation/permeabilization and intra-
cellular staining at 4 °C. The following antibodies were used in the 
screening panel: CD3-V500 (clone UCHT1), CD14-V500 (clone MφP9), 
CD19-V500 (clone HIB19) and Granzyme B-AF700 (clone GB11) from 
Beckton Dickinson; CD57-FITC (clone HNK-1), CD38-BV650 (clone HB-7) 
and CD158e1-BV421 (clone DX9) from BioLegend; CD158a-APC-Vio770 
(clone REA284) and CD158a/h-PE-Vio770 (clone 11PB6) from Miltenyi 
Biotec; and CD158b1/b2,j-PE-Cy5.5 (clone GL183), CD159a-APC (clone 
Z199) and CD56-ECD (clone N901) from Beckman Coulter. LIVE/DEAD 
Fixable Aqua Dead Stain kit for 405-nM excitation (Life Technolo-
gies) was used to determine viability. Samples were acquired on an 
LSR-Fortessa equipped with a blue, red and violet laser and analyzed 
in FlowJo v.9 (TreeStar, Inc.).

FACS sorting
Cells were harvested and surface stained with the following antibodies: 
CD57-FITC (HNK-1) from BioLegend; CD158e1/e2-APC (clone Z27.3.7), 
CD56-ECD (clone N901) and CD158b1/b2,j-PE-Cy5.5 (clone GL183) from 
Beckman Coulter; and CD158a-APC-Vio770 (clone REA284), CD159c-PE 
(clone REA205) and CD159a-PE Vio770 (clone REA110) from Miltenyi 
Biotec. Cells, 12,000, were directly sorted into Eppendorf tubes at 
4 °C for each sample using a FACSAriaII (Beckton Dickinson). Sorting 
strategies for scRNA-seq for the donor with and without an adaptive 
NK cell expansion are depicted in Extended Data Fig. 1c,d.

ScRNA-seq
After sorting, cells were kept on ice during the washing (phosphate- 
buffered saline (PBS) + 0.05% bovine serum albumin (BSA)) and count-
ing steps. Cells, 10,000, were resuspended in 35 μl of PBS + 0.05% 
BSA and immediately processed at the Genomics Core Facility  
(Oslo University Hospital) using the Chromium Single Cell 3′ Library & 
Gel Bead Kit v.2 (Chromium Controller System, 10x Genomics). The rec-
ommended 10x Genomics protocol was used to generate the sequenc-
ing libraries, which was performed on a NextSeq500 (Illumina) with 
~5% PhiX as spike-in. Sequencing raw data were converted into fastq 
files by running Illumina’s bcl2fastq v.2.

ScRNA-seq data collection and processing
Previously published scRNA-seq data were collected mostly in the form 
of count matrices already aligned to GRCh38; the rest were collected as 
fastq files. For the datasets where we collected fastq files, the data were 
aligned to GRCh38 using Cell Ranger (10x Genomics Cell Ranger 7.0.0).

Quality control and normalization of scRNA-seq data
Data-cleaning steps were first carried out whereby cells not express-
ing a minimum of 1,000 molecules and genes expressed by <10 cells 
were filtered out. Doublets were removed using the SOLO algorithm82. 

The count matrices for all the tumor and tissue types were corrected 
for ambient RNA using decontX76. The data were normalized using 
log(transformation) for some of the downstream analysis as well as for 
visualization of gene expression-like dot plots. Quality control, trans-
formation and most of the visualization of the gene expression data 
were performed using Scanpy83. For analysis using scVI and scANVI, 
the raw count data were used.

Integration of scRNA-seq data
The probabilistic models scVI and scANVI, as implemented in 
scvi-tools19, were used for integration of scRNA-seq data. These meth-
ods have been shown to perform well for integration of scRNA-seq 
data, especially when dealing with complex batch effects and integrat-
ing atlas-level data84. For cell-type and -subset annotations and predic-
tion, scANVI was used to capture annotation of single-cell profiles. 
For the analysis of PB-NK subsets, the sorted subsets provided labels 
for training the scANVI model. The subset prediction provided by the 
model was tested on a held-out set of cells (15%) from the sorted subset 
data, giving us a confusion matrix summarizing the performance of 
the prediction.

Dimensionality reduction, clustering and visualization of 
scRNA-seq data
We computed the Uniform Manifold Approximation and Projection 
(UMAP) embeddings for visualization using the embedding learned 
from scVI and scANVI. Unsupervised clustering was also carried out 
using this learned embedding with Phenograph and the Leiden algo-
rithm as implemented in Scanpy. PAGA29 was used to quantify the 
connectivity of different groups of cells, thereby providing a repre-
sentation of the data as a simpler graph. The various plots were mostly 
generated using the plotting functions in Scanpy.

Cell-type annotations and harmonization
For many of the publicly available datasets, cell-type annotations were 
readily available and used as seed labels when training the scANVI 
model for that particular tissue/tumor type to annotate the nonim-
mune cells. The scANVI model allowed us to harmonize annotations 
that were needed for analysis across datasets. All immune cells for all tis-
sue types were integrated using scVI and annotated using CellTypist42.  
The same was done for all immune cells across all tumor types. The 
CD16− and CD16+ NK cells identified by CellTypist were annotated as 
CD56bright and CD56dim, respectively. Where CITE-seq data were avail-
able, the surface expression of key markers also helped validate the 
cell-type annotations. For the identified NK cells, the cells were also 
scored using NK1/NK2 (CD56bright/CD56dim) signatures to validate the 
annotation of CD56bright and CD56dim NK cells. We also performed our 
own unsupervised Leiden clustering, which identified two dominating 
clusters corresponding to CD56bright and CD56dim NK cells.

Calculation of signature scores
Signature scores were computed using AUCell21, allowing for explo-
ration of the relative expression of the signatures of interest in the 
datasets. Various gene sets were taken from the MSigDB Hallmark 
gene set collection85.

Pseudotime and RNA velocity analysis
Pseudotime was computed using Palantir26, which captures the con-
tinuous nature of differentiation, and cell fate, which allowed us to 
explore two terminal states and the gene expression changes seen 
along these trajectories. For this analysis, the starting cell was defined 
as the cell that was the least CD56dim (the lowest score for the NK1 
signature). GAMs fitted on cells ordered by pseudotime were used to 
calculate gene trends, where the contribution of cells was weighted by 
their probability to end up in the given terminal state as calculated by 
Palantir. The gene trends indicate how gene expression levels develop 
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over the differentiation timeline. These trends were clustered using 
the Leiden clustering algorithm to give us five clusters of gene trends. 
RNA velocity28 was also used to take advantage of splicing kinetics to 
identify directed dynamic information. We used velocyto28 and scVelo27 
for this analysis, specifically the dynamic model implemented in the 
scVelo toolkit. The RNA velocity analysis was run on the 2 donors where 
sorted subsets were sequenced separately, as well as on the integrated 
data from 12 blood donors.

GRN analysis
SCENIC21 was used to infer TFs and GRNs from the scRNA-seq data. 
The SCENIC workflow86 was followed and the pySCENIC implemen-
tation was used. TF–gene associations were inferred by GRNBoost87 
and motif–TF associations were downloaded from Aerts’s lab website 
and used for pruning the inferred associations. The inferred regula-
tory networks were also further pruned by removing lowly expressed 
TFs based on the bulk RNA-seq data. AUCell was used to compute the 
activity of the final regulons. The regulon activity was visualized using 
matrix plots, as implemented in Scanpy, to look at the activity across 
different groups of cells.

Bulk RNA-seq for TF and target validation
For validation of the TF and targets, we checked their expression in 
bulk RNA-seq data from four sorted NK cell populations (CD56bright, 
NKG2A−KIR-CD56dim, NKG2A−KIR+CD56dim and NKG2A−KIR+NKG2C+C
D56dim). Sequencing was performed using single-cell tagged reverse 
transcription88.

Reference mapping
The TiNK cells were added after the model for a healthy NK cell refer-
ence was trained. Then, scArches44 as implemented in scvi-tools19 was 
used to map these new data on to the established reference.

Cell–cell communication inference using CellChat
To infer the communication between the various cell types in the tumor 
datasets we used CellChat48. Based on gene expression of receptors 
and ligands in the data and a curated database of pathways, CellChat 
computes the communication probability between various receptor–
ligand pairs. CellChat also provided ways to aggregate this information 
and for us to visualize the inferred cell–cell communication networks. 
CellChat was computed separately for each of the tumor types included 
in the analysis.

Differential gene expression analysis
To perform differential gene expression analysis we used pseudobulk 
because this has shown good results when analyzing scRNA-seq data 
in various studies89. This allowed us to aggregate up counts for each 
sample and consider the samples instead of the cells as replicates. We 
then used edgeR90 on the pseudobulk data. We could then identify 
DEGs between healthy reference NK cells and TiNK cells within and 
across subsets.

Differential abundance analysis using Milo
We used Milo47 to assign cells to neighborhoods on the k-nearest neigh-
bors graph (k-NNG). The scVI representation of the cells was used 
for building the k-NNG. This allowed us to have a batch-corrected 
representation of the cells as input to this analysis. The differential 
abundance of the neighborhoods between the healthy reference and 
the TiNK cells was then computed. The neighborhoods were grouped 
into six groups using the groupNhoods function in Milo. These groups 
were considered as different NK cell states and further characterized 
using the functions in Milo for identification of DEGs. The differential 
expression analysis was done using pseudobulk by aggregating gene 
expression per sample. The single cells were then annotated using 
these groups for downstream analysis.

GSEA
GSEA was performed using the GSEA software91 and the MSigDB col-
lection of gene sets. Genes were first ordered based on the differential 
expression analysis based on either the pseudobulk approach or the 
Milo analysis.

Spatial transcriptomics
Spatial transcriptomics datasets from lung tumor, glioblastoma and 
melanoma were collected from the 10x Genomics website (https://
www.10xgenomics.com/datasets). Squidpy92 was used for preproc-
essing and segmentation and Tangram49 was used for deconvolution 
using our annotated scRNA-seq data for each of the tumor types as 
reference. The deconvolution was performed with the NK cells anno-
tated as CD56bright and CD56dim, as well using the group annotations 
established in this paper.

Clinical and bulk RNA-seq data from TCGA and TARGET
Bulk RNA-seq data and clinical data were downloaded from TCGA and 
TARGET using TCGAbiolinks53 and curated survival data were down-
loaded from Xena54.

Deconvolution of bulk RNA-seq
Deconvolution of the bulk RNA-seq data was performed for each of 
the tumor types using BayesPrism52. BayesPrism has been shown to 
work well for deconvolution of data from tumors and especially well 
in dealing with high cell-type granularity93. The annotated reference 
datasets for each of the tumor types were used as prior information 
in the deconvolution. BayesPrism then computed both an expression 
matrix for each cell type and the cell-type fraction for each sample.

Survival analysis
The NK expression matrix inferred by BayesPrism for the various tumor 
types was used to score the signature genes for each of the identified 
NK cell states. The patients were then assigned as high and low for a 
group/state based on belonging to the highest or lowest half in terms 
of expression of these signature genes within the group of patients 
with a specific tumor type. The high and low designations could then 
be combined in an approach where a patient could be assigned as high 
or low in multiple groups. Survival analysis was conducted using Cox’s 
proportional hazards model from the R package survival94, adjusting 
for confounding clinical factors such as tumor stage, gender and age. 
Subsequently, survival curves were derived using the Kaplan–Meier 
method within the same package. For visualization, the ggsurvplot 
function of the survminer package in R was utilized.

Samples from patients with primary NSCLC
The patient cohort, processing of tissue specimens and flow cytometry 
staining were collected and performed as previously described45.

Functional assay using A549 cells
A549 cells were cultured in Dulbecco’s modified Eagle’s medium/
high glucose with l-glutamine, sodium pyruvate (Cytiva) + 10% 
heat-inactivated FBS (Sigma-Aldrich) at 37 °C in 5% CO2. A549 
cells, 20,000, were seeded per well in a 96-well F-bottom plate and 
pre-treated with and without 50 ng ml−1 of IFN-γ (PeptroTech) for 24 h 
before addition of NK cells. HLA-E expression after IFN-γ stimulation 
was evaluated using HLA-E–PE antibody (BioLegend, clone 3D12). 
NK cells were isolated using negative selection (NK cell isolation kit, 
Miltenyi Biotec) from previously cryopreserved PBMCs from healthy 
individuals. Cells were activated overnight with 5 ng ml−1 of IL-15 
(R&D) in RPMI 1640 (Cytiva) + 10% heat-inactivated FBS at 37 °C in 
5% CO2. NK cells were washed, resuspended in RPMI 1640 + 10% FBS 
and pre-incubated with and without α-NKG2A (a monalizumab bio-
similar: immunoglobulin (Ig)G1 with PGLALA mutation, Merck) for 
20 min prior. Target cells were washed in PBS before the addition of 

http://www.nature.com/natureimmunology
https://www.10xgenomics.com/datasets
https://www.10xgenomics.com/datasets


Nature Immunology

Resource https://doi.org/10.1038/s41590-024-01884-z

NK cells at a 1:1 effector:target (E:T) ratio in the presence of brefeldin 
A (GolgiPlug, 1:1,000, BD Biosciences), monensin (GolgiStop, 1:1,500, 
BD Biosciences) and anti-CD107a-BUV394 (BD Horizon, clone H4A3). 
After a 4-h incubation, the cells were stained with anti-IgG Fc–PE (Inv-
itrogen), followed by surface, fixation and permeabilization (Cytofix/
Cytoperm, BD) and finally intracellular staining using the following 
antibodies: CD159a-VioBright FITC (Miltenyi Biotec, clone REA110), 
Granzyme B-AF700 (BD, clone GB11), CD16-Pacific Blue (BD, clone 
3G8), CD3-V500 (BD, clone UCHT1), TNF-α-BV650 (BioLegend, clone 
Mab11), IFN-γ-BV785 (BioLegend, clone 4S.B3), CD56-ECD (Beckman 
Coulter, clone N901) and perforin–PE-Cy7 (eBioscience, clone dG9), 
LIVE/DEAD Fixable Aqua Dead Cell Stain kit (Thermo Fisher Scientific).

Reagents and antibodies
A full list containing company information, catalog nos and antibody 
clones for all reagents can be found in Supplementary Data.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The gene expression data generated for this paper are available at the 
National Center for Biotechnology Information’s Gene Expression 
Omnibus with accession no. GSE245690 and raw sequencing data are 
available at the European Genome–Phenome Archive with accession 
no. EGAS50000000014. The details about the publicly available data 
included in the analysis are available in Supplementary Tables 1, 2 and 
3. For GSEA the Molecular Signature Database (v.2023.2.Hs), available 
at https://www.gsea-msigdb.org/gsea/msigdb, was used. Relevant 
gene sets for scoring were also retrieved from this database. Bulk 
RNA-seq data were downloaded from TCGA and TARGET. Curated 
survival data were downloaded from Xena. Processed data and models 
have also been made available via Zenodo at https://doi.org/10.5281/ 
zenodo.8434223 (ref. 95) and as an online resource at http://nk-scrna. 
malmberglab.com. Source data are provided with this paper.

Code availability
The code generated for our analysis is available on GitHub at https:// 
github.com/hernet/transcriptional-map-nk.
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Extended Data Fig. 1 | Peripheral blood NK cell subsets and sorting strategy. 
(a, b) AUCell scores of gene signatures for CD56bright and CD56dim NK regulones (a) 
and proteomes (b). (c, d) Sorting strategy for phenotypically defined functional 
PB-NK cell subsets sequenced in one donor with (c) and one without (d) an 

adaptive expansion. (e) Heatmap depicting similarity between our five annotated 
transcriptional NK cell subsets (y-axis) and the Meta-NK defined NK subsets 
(x-axis). The scale represent gene set activity calculated by AUCell (a-b, e).
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Extended Data Fig. 2 | RNA velocity. (a) Graphical depiction of inferring RNA velocity based on spliced vs unspliced transcripts. (b) RNA velocity plots for ZEB2 and 
BCL11B transcripts stratified by subset annotation in donors with an adaptive expansion.
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Extended Data Fig. 3 | Healthy tissue dataset annotation using CellTypist. 
(a) Heatmap depicting expression of signature genes of the main immune 
populations annotated by CellTypist across all tissue samples. (b-f) UMAP 

representation showing integration of all healthy tissue datasets, prostate (b), 
lung (c), pancreas (d), skin (e), breast (f), with individual cell subtypes annotated 
using CellTypist.
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Extended Data Fig. 4 | Solid tumor dataset annotation using CellTypist. (a-g) UMAP representation showing integration of all solid tumor datasets, PRAD (a), 
NSCLC (b), SKCM (c), PAAD (d), BRAC (e), GBM (f), SARC (g), with individual cell subtypes annotated using CellTypist.
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Extended Data Fig. 5 | Tissue-residency scoring of NK cells. (a, b) UMAP 
representation showing integration of all healthy tissue (a) and solid tumor 
(b) datasets, with lymphocytes populations visualized. (c, d) IL7R expression 
in annotated NK cells (CD56bright, CD56dim) and ILCs (ILC2, ILC3) in tissues (c) 
and tumors (d). (e, f) Dotplots depicting expression of genes defining the 

literature-TR and atlas-TR signatures in CD56bright and CD56dim subsets in healthy 
blood and across all tissue types (e) and stratified by individual tissues (f). (g) 
Tissue-residency scoring (atlas-TR) of CD56bright and CD56dim annotated NK 
cells in individual tissue and tumor types. The scale represents gene set activity 
calculated by AUCell (g).
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Extended Data Fig. 6 | Phenotyping of NK cells in NSCLC patient samples.  
(a) Gating strategy for CD56bright and CD56dim NK cells in healthy donor (PBMC) 
and NSCLC samples (Tumor). (b-e) Representative plots of CD56dim NK cells (b) 
and quantification of NGK2A (c), KIR (d) and CD57 (e) expression in PBMC (n = 19) 

and NSCLC samples (n = 25), from 23 independent experiments. Data were 
analyzed using two-tailed Mann-Whitney test (c-e). All bar graphs represent the 
mean ± s.d. Actual p values are indicated.
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Extended Data Fig. 7 | Characterization of cellular states of NK cells identified 
in pan-cancer cell atlas. (a) Beaswarm plot depicting differential abundance 
of TiNK or Ref-NK (PB-NK, TrNK) enriched neighborhoods, clustered based 
on subset annotation of individual neighborhoods. (b) TiNK fraction of cells 
in neighborhoods within each neighborhood group. The boxplot indicates 
the median with the interquartile range (IQR), whiskers extend to the farthest 
point within 1.5 times the IQR from the box. n is the number of neighborhoods 
in each group: group 1, n = 382; group 2, n = 1261; group 3, n = 1239; group 
4, n = 871; group 5, n = 1427; group 6, n = 1752. (c-e) Volcano plots depicting 

differentially expressed genes (DEGs) between Group 4 vs. Group 3/5/6 (c), 
Group 5 vs. Group 3/4/6 (d), Group 6 vs. Group 3/4/5 (e). Differential expression 
analysis was performed using the findNhoodGroupMarkers method within the 
miloR package. Counts were aggregated per sample; groups were compared 
using edgeR and the adjusted p-values were used for the plots. (f-i) Gene set 
enrichment analysis (GSEA) for DEGs identified between Group 1 vs Group 2 (f), 
Group 3 vs Group 4/5/6 (g), Group 5 vs Group 3/4/6 (h) and Group 6 vs Group 
3/4/5 (i). Volcano plots: log fold change cutoff at 0.5, p < 0.05. GSEA plots: p value 
cutoff 0.5 (red line).
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Extended Data Fig. 8 | Intercellular communication in TME. (a-g) Scatterplot depicting incoming and outgoing interaction strength of individual cell types in BRAC 
(a), PAAD (b), PRAD (c), NSCLC (d), SARC (e), SKCM (f), GBM (g) as identified by CellChat. (h) Violin plots showing expression of ligands for the CCL (CCL3, CCL5) 
communication pathway in NSCLC.

http://www.nature.com/natureimmunology


Nature Immunology

Resource https://doi.org/10.1038/s41590-024-01884-z

Extended Data Fig. 9 | In vitro validation of IFNG-HLA-E-KLRC1 axis in NSCLC. 
(a) Representative histogram of HLA-E expression of A549 cells pre-treated 
(24 h) with and without IFNγ. (b-d) Viability (b), frequency (c) and geometric 
MFI (d) of HLA-E + A549 cells (n = 4, biological replicates from two independent 
experiments). (e) Gating strategy and representative contour plots for functional 

readout of CD56bright and CD56dim NK cells against A549 target cells pre-treated 
with and without IFNγ (24 h) in presence and absence of α-NKG2A antibody  
(E:T 1:1, 4 h). Data were analyzed using two-tailed Mann-Whitney test (b-d). All bar 
graphs represent the mean ± s.d. Actual p values are indicated.
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Extended Data Fig. 10 | Deconvolution of TCGA datasets. Distribution of 
CD56bright and CD56dim NK cells in deconvoluted TCGA datasets. The boxplots 
indicates the median with the interquartile range (IQR), whiskers extend to the 

farthest point within 1.5 times the IQR from the box. For each plot and each subset 
n is the number of patients for each tumor type: SARC, n = 88; PAAD, n = 183; 
NSCLC, n = 600; BRAC, n = 1231; SKCM, n = 473; PRAD, n = 554; GBM, n = 175.
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