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Biophysical cartography of the native and
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quantifies the plasticity of antibody
developability
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Designing effective monoclonal antibody (mAb) therapeutics faces a multi-parameter optimization
challenge known as “developability”, which reflects an antibody’s ability to progress through
development stages based on its physicochemical properties. While natural antibodies may provide
valuable guidance for mAb selection, we lack a comprehensive understanding of natural
developability parameter (DP) plasticity (redundancy, predictability, sensitivity) and how the DP
landscapes of human-engineered and natural antibodies relate to one another. These gaps hinder
fundamental developability profile cartography. To chart natural and engineered DP landscapes, we
computed 40 sequence- and 46 structure-based DPs of over two million native and human-
engineered single-chain antibody sequences. We find lower redundancy among structure-based
compared to sequence-based DPs. Sequence DP sensitivity to single amino acid substitutions varied
by antibody region and DP, and structure DP values varied across the conformational ensemble of
antibody structures. We show that sequence DPs are more predictable than structure-based ones
across different machine-learning tasks and embeddings, indicating a constrained sequence-based
design space. Human-engineered antibodies localize within the developability and sequence
landscapes of natural antibodies, suggesting that human-engineered antibodies explore mere
subspaces of the natural one. Our work quantifies the plasticity of antibody developability, providing a
fundamental resource for multi-parameter therapeutic mAb design.

Monoclonal antibodies (mAbs) are widely used therapeutics against cancer,
autoimmune, and infectious diseases1–5. The global mAb market is fore-
casted to grow to >$ 300 billion in 20256. Despite their commercial success,
mAb discovery remains a resource- and time-consuming process resulting
in a costly and lengthy clinical approval, hindering accessibility and
affordability7,8. A successful mAb molecule should not only show sufficient

affinity in its target binding profile but also exhibit a desirable “develop-
ability” profile9. The term “developability” refers to a combination of
intrinsic physicochemical parameters defined as developability parameters
(DPs) that relate to biophysical aspects of antibodies and their formulations
—including aggregation, solubility, and stability10–14. The feasibility of an
antibody candidate to successfully progress from discovery to development
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is underpinned by specific DPs, which reflect its manufacturability and
druggability10,15. Thus, suboptimal developability is one of the main factors
of mAbs failure in preclinical and clinical development stages16–18. There-
fore, the ability topredict andprospectively designdevelopability properties,
in line with clinical and manufacturing requirements, would help by
reducing the time and resources invested in developing therapeutic mAbs,
thus, boosting their success rate19–21.

Traditionally, developability screening is performed through a series of
laborious in vitro assays17,22,23. Therefore, major efforts have been invested
into developing real-world-relevant in silico tools and machine learning
(ML) algorithms that can computationally quantify or predict DP values
using antibody sequence and/or structure information7,24–36. Given the
current high throughput of antibody structure prediction at the repertoire
scale37–39, tools for computational developability determination have
become available, which can be used to identify potential design shortfalls
during the development and selection of lead mAb candidates40–46.

In contrast to the design and selection of pharmaceutical mAbs, the
natural (or native, used interchangeably) immune systemhas the capacity to
“design” antigen-specific antibodies with physiologically compatible and
optimized biochemical properties within days to weeks47–50. Indeed, it was
previously reported that antibodies obtained via, for example, humanized
mice exhibit far fewer developability risks compared to mAb candidates
obtained from in vitro display campaigns4,17,20,51. In line with these findings,
clinical mAbs have been reported to exhibit high sequence identitymatches
(>70%) with natural antibodies for both heavy and light chains, implying
that artificially developedmAbs are not entirely dissimilar from their native
counterparts, thus, highlighting the relevance of mining the natural anti-
body repertoires for therapeuticmAbdiscovery52,53. Thesefindingsmotivate
the embedding of therapeutic mAb sequences in the developability land-
scape (here defined as the multidimensional distribution of DP parameter
values across DPs and antibodies) of the natural (human and mouse)
antibody repertoires to assess the nativeness of their developability profiles
(DPLs, aDPL is a setofDPvalues for a givenantibody sequence/structure)54.
As such, a mAb candidate with a DPL falling outside the range of its
variation in natural antibodies may be assumed unnatural and, therefore,
more likely to exhibit undesirable in vivo characteristics53. Recent studies
have also pointed to the futility of attempting complete separation between
natural antibodies and therapeutic mAbs based solely on DP values55.
Similar findings continue to emphasize the valuable knowledge that can be
harnessed from interrogating the growing sequence space of naturally
sourced antibody sequences to accelerate the engineering and optimization
of mAb candidates2,52.

So far, the relationship between the developability landscape of the
natural antibody repertoire and that of therapeutic (or, more broadly,
human-engineered) antibodies remains unclear. While not all natural
antibodies may be suitable as therapeutic candidates from a developability
perspective7,55, we lack a large-scale overview of sequence and structure-
based natural antibody developability landscapes stratified by antibody
isotype and species. Furthermore, given previous low-sample size investi-
gations, we are unaware to what extent sequence changes affect a given DP
and which sequence or structure-based design restrictions may limit all-vs-
all DP optimization with a given antibody sequence. Furthermore, many
studies have focused on extracting developability guidelines from a limited
number of successful mAbs, considering them a “gold standard” of desired
developability7,10,17,28,56. In addition, most studies have focused on a small
number of DPs17,57, and apply their hypotheses to limited antibody datasets
comprising of a few 100 s to 1000 s antibody sequences7,10,32,56 or datasets not
including patent-submitted antibodies or antibodies that failed during early
clinical trials7,10,58. So far, the lack of datasets with sufficient sample size has
hindered an in-depth understanding of the plasticity of the antibody
developability space.

Understanding the natural antibody landscape could enable the inte-
gration of both current and prospective antibody therapeutic candidates,
which will improve our interpretation of the disparities in developability
between human-engineered mAbs and natural antibodies (Fig. 1). To this

aim, we have built an atlas of over two million unique native antibody
sequences from human and murine heavy and light chains (≈200,000 per
isotype and chain) annotatedwithDPs.We predicted the 3D structure of all
antibodies and calculated40 sequence-based and46 structure-basedDPs for
each antibody. Using correlation and graph theory, we identified a subset of
DPs that are maximally different from one another, thus delineating a non-
redundant multidimensional antibody developability space. Across all
antibody isotypes, we found lower interdependency among structure-based
DPs in contrast to sequence-based DPs. Notably, distinct developability
landscapes emerged across species (mouse, human) and antibody chains
(heavy, light). In addition, we quantified DP sensitivity by analyzing the DP
value distribution of mutants with single amino acid substitutions. We also
found that the values of DPsmeasured on the conformational ensembles of
antibodies evolve throughout their molecular dynamics (MD). Regarding
predictability, our analysis revealed thatML ismore successful in predicting
the values of sequence-based DPs, indicating a less confined design land-
scape for structure-basedDPs.Our analysis also suggested that the observed
developability spaces of human-engineered antibodies are essentially sub-
sets of the broader natural developability space (in terms of the major
principal components of variation). While our study relies on computa-
tionally predicted developability, in which experimental correspondence
may vary15, it serves as a practical and real-world relevant use case of inte-
grating and charting repertoire-wide developability to guide mAb selection
and development.

Results
Developability parameters
We computed 40 sequence-based and 46 structure-based developability
parameters (SupplementaryData 1) for each antibody (Fv region sequence)
after having predicted their 3D structures usingABodyBuilder (ABB)37. The
choice of these DPs was intended to cover a comprehensive array of the
physicochemical properties of antibodies based on our understanding of the
developability literature and antibody structure. Some developability
parameters included in the therapeutic antibody profiler (TAP, e.g. positive
and negative charge heterogeneity, sequence-based hydrophobicity)7 were
incorporated in our study. All DPs were categorized into groups based on
the main physicochemical property. For instance, the instability index and
the aliphatic index were included within the “stability” group as they reflect
the stability of the antibody (Supplementary Data 1). Other groups include
categorical amino acid composition, electro- and photo-chemical para-
meters, as well as structural interactions and conformational descriptors
(detailed in Supplementary Data 1).

Sequence-based DPs show higher association and redundan-
cies compared to structure-based DPs
The diversity and redundancy of the natural DP landscape of human and
murine antibody repertoires has not been investigated. To address this
knowledge gap, we assembled a dataset of ~2M non-paired VH and VL

native antibody sequences (~170K–200 K sequences for each isotype,
human; IgD, IgM, IgG, IgA, IgK, and IgL, murine; IgM, IgG, IgK—Sup-
plementary Fig. 1A).

Prior to the DP analysis, we controlled for the quality of the compu-
tational data generated along two axes Briefly, (1) given that themajority of
the work was performed on unpaired chain data due to a lack of isotype-
stratified paired-chain data, we verified that structure-based DPsmeasured
on a subset of paired-chain antibodies strongly correlate with the corre-
sponding DP values measured on each of the unpaired (heavy and light)
single chains separately (median Pearson correlation 0.84–0.9, Supple-
mentary Fig. 2, Supplementary Note 1). (2) We also analyzed, using rigid
models and molecular dynamics (MD), the dependence of structure-based
DPs on computational antibody structure prediction methods (such as
IgFold39 and AbodyBuilder238) (Supplementary Fig. 3, Supplementary
Fig. 4, Supplementary Fig. 5) We found that the predominant structure
prediction method used in this study (AbodyBuilder37) faithfully replicated
conformations within the antibody structure conformational ensemble of a
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given antibody sequence as determined by MD (Supplementary Fig. 4,
Supplementary Fig. 5, Supplementary Note 2), thus validating our strategy
to compare antibody developability landscapes.

First, we inquired about the degree of correlation among different DPs
within the native antibody dataset. To address this, we examined the pair-
wise correlation among the values of DPs by isotype and species for the full
native dataset (Fig. 2a). Overall, we found that sequence-based parameters
were significantly more correlated with one another compared to structure
DPs across all isotypes of the native dataset, suggesting greater general
association among sequence DPs (median absolute Pearson correlation
coefficient 0.14–0.21 for sequence-based DPs, 0 for structure-based DPs,
Fig. 2a). Although the degree of correlation for both sequence and structure

DPs was relatively low (median absolute Pearson correlation ≤0.21),
sequence-based parameters formed larger correlation clusters with high
correlation values (>0.6) in the native human IgG dataset (Fig. 2b; boxed in
black). Similar clustering patterns with high correlation values were found
across non-IgG isotypes for the sequence-basedDPs (Supplementary Fig. 6,
Supplementary Fig. 7). As a control measure, we repeated this analysis on
permuted DPs and reported a drastic loss of correlation and a significant
change in the distribution of Pearson correlation coefficient values (Sup-
plementary Fig. 8).

Subsequently, we asked whichDPs are redundant, as quantified by the
previous analysis. To answer this question, we utilized the pairwise Pearson
correlation coefficient values from Fig. 2a, b to construct undirected

Fig. 1 | Redundancy, sensitivity, and predictability of developability parameters
in native and human-engineered antibodies. Introduction: The development of
therapeutic mAbs takes years, andDPs dictate the selection and design of candidates
for (pre-)clinical testing. Here, we analyzed the plasticity of the developability
landscapes of natural antibodies in terms of DP redundancy (extent of DP inter-
correlation), sensitivity (extent of DP change as a function of antibody sequence
change), and predictability (predictability of a given DP based on one or several
DPs).Methods: To analyze the constraints on natural antibody developability and to
relate these to current human-engineered antibody datasets, we assembled a dataset
of over 2 M native antibody sequences (heavy and light chain isotypes, human and
murine) and computed 40 sequence- and 46 structure-based DPs. To reduce
redundancy, we determined the minimum-weight dominating sets (MWDS) of DP
correlation networks. To quantify sensitivity, we analyzed single-amino-acid sub-
stituted variants followed by characterization of the impact of sequence variation on
DP distribution. To compute predictability and assess the interdependence of DPs,
we trained multiple linear regression (MLR) using developability profile (DPL) and

protein language model (PLM) embeddings. These embeddings were used to relate
native antibodies to human-engineered ones via principal component analysis
(PCA). Moreover, we performed classical molecular dynamics simulations to ana-
lyze the distributions of antibody DP values and define how the rigid models fit into
these distributions. Results: Our results address all three research areas (redundancy,
sensitivity, and predictability). Redundancy: We found a lower degree of inter-
dependence among structure DPs than the sequence-based ones for all isotypes of
the native dataset, and higher pairwise antibody sequence similarity was not always
associated with higher pairwise antibody developability similarity. Native antibody
datasets contained species- and chain-specific developability signatures. Sensitivity:
We propose methods to quantify the sensitivity of antibody DPs to minimal
sequence changes. Predictability: We found that structure-based DPs are less pre-
dictable than sequence-based DPs using protein language model (PLM) and mul-
tiple linear regression (MLR) embeddings. The comparison between native and
human-engineered datasets revealed that human-engineered (therapeutic, patented,
and Kymouse) datasets were localized within the native developability landscape.
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weighted network graphs (Supplementary Fig. 9A, B). Additionally, we
employed the hybrid artificial bee colony—estimation of distributionhybrid
algorithm (ABC-EDA59) to identify theminimumweighted dominating set
(MWDS) amongDPs (seeMethods). In this context, theMWDS comprises
themost uncorrelatedDPs that sufficiently reflect the overall developability
for a set of antibodies at a given Pearson correlation threshold59. When we

conducted this analysis on the native IgG repertoire at an absolute corre-
lation threshold of 0.6, we found that the pairwise relationships amongDPs
can formsubnetworks, doublets, and isolatednodes (Fig. 2b, Supplementary
Fig. 9B). At this threshold, subnetworks were largely formed by DPs that
reflect similar physicochemical properties regardless of their level (sequence
or structure—Supplementary Data 1). For instance, sequence- and
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structure-based charge and isoelectric point (electrochemical) DPs (n = 20)
clustered with the acidic and basic amino acid composition DPs (Supple-
mentary Fig. 9B). The largest subnetwork was predominantly occupied by
sequence DPs. Meanwhile, structure-based DPs mainly formed isolated
nodes (n = 17) and smaller subnetworks (Supplementary Fig. 9B).

When we repeated this analysis on all the isotypes of the native dataset
(Supplementary Fig. 1A), we found that the proportion of isolated nodes to
the initial DP count was consistently higher among structure-based DPs,
starting from low correlation thresholds (0.1–0.2) across all isotypes, in
comparison to sequence-based DPs (Supplementary Fig. 10A). For exam-
ple, only 12.5%–22.5% of sequence-based DPs (5–9 out of 40) compared to
26.1%–41.3% of structure-based DPs (12–19 out of 46) were classified as
isolated nodes at a Pearson correlation threshold of 0.6 (Supplementary
Fig. 10A). Meanwhile, we found that the proportion of subnetwork domi-
nant DPs was higher among sequence DPs across all isotypes for the higher
correlation thresholds (Pearson correlation > 0.6). For example,
7.5%–12.5% of sequence-based DPs were categorized as dominant nodes at
the strictest correlation threshold (0.9) in comparison to structure-based
DPs (2.2%–6.5%) (Supplementary Fig. 10A). Collectively, these results
emphasize the lower interdependence among structure-based DPs when
compared to the sequence-based counterparts.

The native antibody dataset exhibits chain-type and species-
specific developability signatures
Next, we asked to what extent the isotypes of the native datasets are similar
to one another regarding DP redundancies (MWDS parameters) and
associations (DP pairwise correlations). In relation to these driving ques-
tions, we also asked to what extent natural antibodies harbor chain (VH,VL)
and species-specific (human, mouse) DP differences. To address these
questions, we first investigated the similarities in parameter redundancies
among the native dataset for a given Pearson correlation value (0.6). Spe-
cifically,we explored thepairwise intersection sizeof theMWDSparameters
on both sequence and structure levels for the human and murine antibody
datasets, featuring the common isotypes (IgM and IgG) between the two
species in our dataset (Fig. 3a), and all the isotypes of the human VH

antibodies (Supplementary Fig. 10B).
This analysis revealed that both heavy (IgG and IgM) and light chain

human antibody datasets displayed a larger MWDS intersection size on
both sequence and structure levels than the murine counterparts (Fig. 3a).
For instance, human IgM and IgG datasets shared 18 sequence DPs (86%
overlap) and 29 structure DPs (90% overlap) in their MWDS sets, whereas
the sameheavy chain isotypes of themurinedataset sharedonly 12 sequence
DPs (75% overlap) and 23 structure DPs (77% overlap) (Fig. 3a).Moreover,
the human heavy chain dataset displayed greater or comparative MWDS
intersection size even when considering all five antibody isotypes (71%
overlap on sequence level, 84% overlap on structure level) in comparison to
the murine heavy chain dataset (IgM and IgG only) (Fig. 3a and Supple-
mentary Fig. 10B). Similarly, theMWDSoverlap for the human light chains
(IgK and IgL)was greater on both levels (15DPs—71%overlap on sequence
level and 32 DPs—97% overlap on structure level) in comparison to the
mouse light chain dataset (14 sequence DPs—7% overlap and 29 structure
DPs—88%overlap) (Fig. 3a). Thus, our findings suggest greater consistency
among the isotypes in the human antibody dataset when it comes to DP
redundancies (MWDS overlap), as opposed to the mouse antibody dataset.

Second, we sought to investigate the similarities in DP associations
among the isotypes of the native antibody dataset. To this end, we clustered
the isotype-specific datasets based on the distance of their pairwise DP
correlation matrices (see Methods). This analysis revealed chain-specific
segregation (heavy and light) and, within a given chain, species-specific
segregation (human and mouse) of antibody subsets on the structural level
(Fig. 3b, right panel). Additionally, the human dataset showed a closer
distance among its isotypes within the heavy and light chain clusters (0.03
for heavy chain isotypes, 0.08 for light chain isotypes) than the mouse
dataset (0.15 and 0.12 for heavy and light chain clusters, respectively). An
equivalent sequence-based analysis (Fig. 3b, left panel) drew a similar
conclusion regarding the uniqueness of chain-typedevelopability.However,
interspecies isotype-specific clustering occurred among the light chain
subsets (Fig. 3b). Similarly to the structure-basedDP association clustering,
the human heavy chain isotypes showed a smaller distance among them-
selves (0.08) in comparison to the murine IgM and IgG subsets (0.14)
(Fig. 3b).Thesefindings suggest native (humanandmurine) datasets harbor
chain-type-specificdevelopability signatures. Species-specific developability
differences were less pronounced, especially for the light-chain antibody
subsets.

The aforementioned clustering of antibody datasets based on DP
associations led us to investigate whether the antibody species and chain
type are key sources of variance in DP values. To this end, we performed a
dimensionality reduction analysis on thedevelopability profiles of the native
antibodies using a principal component (PC) analysis (PCA) (Fig. 3c).
Examining the 2D PCA projections of developability profiles of all native
antibodies (~2M) further emphasized differences in antibody develop-
ability by antibody chain type (Fig. 3c). The axes of maximal variance (PC1
and PC2) separated antibody sequences by VH and VL chain (absolute
differences of medians = 5.6 and 1.8, respectively—Supplementary
Fig. 10C). A similar projection of each chain type subset (heavy; ~1.2M,
light; ~0.8M) allowed for (partial) species-based distinction of antibodies
(Fig. 3c). The influence of the antibody species on developability was more
prominent among the heavy chain antibodies (absolute difference of PC1
medians = 4.1) in comparison to the light chain ones (absolute difference of
PC1 medians = 3.2) (Supplementary Fig. 10C).

In summary, the isotypes of the human native dataset exhibit greater
pairwise relatedness regarding their DP associations and redundancies
compared to the murine dataset. Moreover, the antibody chain type and
species of origin considerably influence its overall developability.

The sensitivity of sequence-based developability parameters is
quantifiable by single-amino acid substitution analysis
Future antibody design will be performed in a multi-objective manner3,60,
whichmeans that the design approach optimizesmany parameters at once.
In certain cases, introducing minor changes might be sufficient to improve
the value of a certain developability parameter. However, improving one
parameter may compromise another3,61. Therefore, it is interesting to
understand to what extent minor sequence changes impact DP values. To
address this question,weperformed a single-substitution sensitivity analysis
of DPs by quantifying the changes in DP value induced by every possible
amino acid alteration in the antibody sequence at a time (see Methods,
Fig. 4a). Since there are no established methods and metrics to quantify the
sensitivity of antibody developability parameters62, we employed two proxy

Fig. 2 | Sequence-based developability parameters show higher redundancies
compared to structure-based parameters. aAbsolute pairwise Pearson correlation of
sequence and structure developability parameters within the native antibody dataset.
Numerical values on the figure represent the median of Pearson correlation for the
corresponding subset. Differences were assessed using pairwiseMann-Whitney test with
p-value adjustment (Benjamini-Hochberg method). ****p < 0.0001 (Human; IgD:
2.09e-112, IgM: 6.54e-104, IgG: 5.21e-100, IgA: 8.94e-101, IgE: 1.04e-94, IgK: 4.61e-74, IgL: 7.46e-80,
Mouse; IgM: 1.276e-98, IgG: 4.76e-101, IgK: 6.9e-88, IgL: 6.68e-71). n= 785 sequence and
1035 structure biologically independent pairwise correlation experiments for each iso-
type and species combination. bHierarchical clustering of 40 sequence and 46 structure

developability parameters based on pairwise Pearson correlation for 170,473 IgG human
antibodies (median of absolute Pearson correlation: 0.02+ /-0.003 SEM). As explained
in the inset (top right), each cell within the heatmap reflects the value of Pearson
correlation for a pair of DPs. Developability parameters are color-annotated with their
corresponding level (sequence or structure), physicochemical property (as detailed in
Supplementary Data 1), and dominance status from the ABC-EDA algorithm output at
Pearson correlation coefficient threshold of 0.6 (see Methods). Black boxes highlight
correlation clusters that contain more than three DPs and exhibit pairwise Pearson
correlation coefficient > 0.6. Supplementary Figs. 6–10A.
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measures to estimate DP sensitivity. First, we define the average sensitivity
by the excess kurtosis, and secondly, the potential sensitivity as the range of a
DP distribution of an antibody and all its possible single amino acid sub-
stituted variants (see Methods). Given the inability of current antibody
structure tools, both template-based or de novo deep learning-based, to

resolve differences between structures of antibodies with single amino acid
variations (Supplementary Fig. 11, Supplementary Note 3), we focused our
analysis on sequence-based DPs only.

We linked the dispersion of a given DP value distribution (from
mutated variants and their corresponding sampled wildtype) to its
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sensitivity. We employed two metrics to quantify this dispersion (see
Methods). The first metric, excess kurtosis63, was implemented as a proxy
measure for the average sensitivity. It describes how far the “tailedness” of a
given distribution deviates from that of a Gaussian distribution (i.e., excess
kurtosis = 0, Fig. 4a). In this context, apositive excess kurtosis indicates a low
average sensitivity and a negative excess kurtosis implies a higher sensitivity
with an increased proportion of mutant DP values diverging from the
wildtype. Strictly, this is only valid under the assumption of a Gaussian
distribution and should be considered when estimating sensitivity by excess
kurtosis.

The second metric is the range, which is the absolute difference
between the smallest and largest values of a distribution after normalization.
Itwasused as aproxymeasure for thepotential sensitivityofDPs as it reflects
the potential extreme changes that can be introduced on DP values as a
factor of amino acid sequence change (Fig. 4a). Since only single amino acid
substitutions were analyzed, we removed all DPs describing categorical
aminoacid composition (SupplementaryData 1)where it is trivial topredict

the changes in DP values, as well as the length of the sequence
(AbChain_length) since it is not affected by substitutions. Because DPs
denoting a sequence’s charge at a given pH were clustered in three highly
correlated clusters (Fig. 2b), we chose to retain only three of them, which
represent acidic, neutral and basic pH (AbChain_4_charge,
AbChain_7_charge andAbChain_12_charge respectively).Additionally, all
DPs with ‘_percentextcoef’-suffix were analyzed instead of their highly
correlated counterparts with ‘_molextcoef’-suffix (Supplementary Data 1).

We found themedian excess kurtosis ofmost sequence-basedDPswas
>0 and that most DPs exhibit an average sensitivity close to that of a normal
distribution (excess kurtosis of a normal distribution = 0, Fig. 4a, Supple-
mentary Fig. 12A). In fact, some parameters, such as the molar extinction
coefficient (of cysteine bridges) and the hydrophobic moment, were
insensitive on average to substitutions as indicated by their high kurtosis
(median excess kurtosis: 6.7, 49.02, and 29.49, respectively; Supplementary
Fig. 12). Notably, none of the tested DPs displayed high average sensitivity
(median excess kurtosis « 0, Fig. 4a, Supplementary Fig. 12), suggesting that

Fig. 3 | The native (human and murine) antibody datasets exhibit chain-specific
and species-specific developability signatures. aMWDS intersection size for the
human andmouse native datasets. Numerical values on the figure reflect theMWDS
count (for an individual subset) and intersection size (formore than one subset). The
MWDS for the respective isotypes was identified using theABC-EDA algorithm (see
Methods) at a threshold of absolute Pearson correlation of 0.6. For MWDS inter-
section size among all human heavy chain subsets, please refer to Supplementary Fig.
10B. b Distance-based hierarchical clustering of isotype-specific pairwise DP cor-
relation matrices (sequence and structure levels). The height of the dendrograms

(shown to the left of the dendrograms) represents the correlation distance among the
dendrogram tips. c Repertoire-wide principal component analysis (PCA) of the
native antibody developability profiles. We performed this analysis for the complete
native dataset (left pane; ~2 M sequences) and for the chain-specific datasets (right
panels; ~1.2 M sequences in the top panel, ~0.8 M sequences in the bottom panel).
The dimensionality of complex developability profiles was reduced to 2D PCA
projections. The full value distribution of the corresponding PCs associated with
each projection is shown in Supplementary Fig. 10C. Supplementary Fig. 10B, C.

Fig. 4 | Developability parameter sensitivity can be quantified by analyzing
mutated variants of wildtype antibodies. aDP values were computed for all possible
single amino acid substituted mutants of 500 sampled wildtype human VH antibody
sequences (100 sequences sampled per isotype; n = 301,777 independent mutants in
total). Values of each DP were scaled and mean-centered. The sensitivity was quantified
for each DP by analyzing the DP dispersion of the mutants from their corresponding

wildtype. Average sensitivity was measured by excess kurtosis (small kurtosis = high
average sensitivity), while potential sensitivity wasmeasured by the range (seeMethods).
b Average and potential sensitivity of selected sequence-based DPs. c Average and
potential sensitivity of DPs from (B) grouped by antibody region in which the mutation
occurred. In both (b) and (c), numerical values on the x-axis represent themedian of the
corresponding sensitivity metric. Supplementary Figs. 11 and 12.
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developability is relatively stable to the average single amino acid mutation
with few outliers. Nevertheless, since DP values were normalized, small
relative shifts induced by amutationmay still have a large effect in practice.

Next, we show that the median range in sequence-based DPs varied
between 0.38 for the molecular weight DP (AbChain_mw) and 3.82 for the
hydrophobic moment DP (AbChain_hmom—Supplementary Fig. 12B).
Notably, some DPs (such as AbChain_4_charge—Fig. 4b first column
second row) have a constant or close to constant range, likely due to the fact
that the set of all possible single amino acid substitutions covers the entire
range of possibleDPvalues. For example,when considering the charge of an
antibody, the lowest possible charge results from substituting the most
positively charged amino acid with the most negatively charged amino acid
and vice versa. Since all amino acids are present in close to all sampled
wildtype sequences, their ranges are almost identical as well. In DPs that
depend on non-linear amino acid interactions, such as solubility
(AbChain_solubility), the range was more diverse (2.33, Fig. 4b).

To investigate the impact of substitutions across antibody regions, we
grouped DP values of human heavy chain mutants by the region in which
the substitution occurred and calculated their sensitivity metrics separately.
We observed that electrochemical DPs such as charge and hydrophobicity
(AbChain_4_charge and AbChain_hydrophobicity) exhibited higher
potential sensitivity (range) in CDR3 and framework regions (median
ranges AbChain_4_charge and AbChain_hydrophobicity respectively;
CDR3: 1.65, 1.39, FR1: 1.31, 1.27, FR2: 1.49, 1.4 and FR3: 1.65, 1.43) com-
pared to CDR1 (0.83, 1.06) and CDR2 (1.16, 1.11) and FR4 (0.83, 1.06;
Fig. 4c). Althoughwe found the average sensitivity (excess kurtosis) to differ
by antibody region (Fig. 4c), there was no apparent general rule that clearly
separates framework regions from CDRs. Since short sequences have a
higher probability of missing the most charged or polar residues, the
potential sensitivities of a given region tend to be lower for shorter regions.
The stark differences in range between heavy chain framework regions 1–3
and CDRHs 1–2 may thus be explained by the shorter sequence length of
CDRH regions (with the exception of CDRH3).

In summary, our sensitivity analysis suggests that most DPs are
comparably ‘normally’ sensitive (close to 0 excess kurtosis: mutant DP
distribution as ‘tailed’ as a Gaussian distribution), and some parameters are
especially insensitive to the average substitution. Additionally, although
average and potential sensitivity differ by antibody region in which a
mutation occurs, the differences are not generalizable across DPs.

Antibody sequence similarity does not imply antibody develop-
ability similarity
Given that the values of DPs were prone to change with minor sequence
changes, we asked to what extent pairwise sequence similarity is related to
pairwise developability profile similarity, where the developability profile
(DPL) was defined as a numerical vector that carries (sequence and/or
structure) DP values in a fixed order for a given antibody sequence (see
Methods).

To this end, we first examined the pairwise correlation of antibody
developability profiles (developability profile correlation: DPC) alongside
the pairwise sequence similarity score (seeMethods) for a randomsample of
100 natural antibodies from the human IgM dataset that share the IGHV
gene family annotation (Fig. 5a). This is to eliminate the role of theV-gene as
a factor of variance inour analysis, as up to80%of sequence similarity canbe
expected among antibodies that belong to the same IGHV gene family64,65.
Sequence-level DPC clusters were often, but not always, accompanied by
sequence similarity clusters, while structure-level DPC clusters were inde-
pendent regarding sequence similarity clusters (Fig. 5a, Supplementary
Fig. 13, Supplementary Fig. 14 and Supplementary Fig. 15). To quantify the
association between the two metrics (DPC and sequence similarity), we
computed the Pearson correlation coefficient between the pairwise DPC
matrices and the pairwise sequence similarity matrices (Fig. 5b, Supple-
mentary Fig. 16A).We repeated this analysis for 100 randomly sampled sets
of 100 sequences each (within the same IGHV gene family). Samples were
taken from all isotypes of the native dataset to account for variation of

associations among batches. We restricted the single set (batch) size to 100
antibodies to ensure correlation matrix regularization66. We examined the
resulting Pearson correlation values alongside the average sequence simi-
larity score (100values for eachmetric for the 100 sampled sets per isotype—
Fig. 5b). We found that Pearson correlation coefficients (between DPC and
average sequence similarity) tended to be higher on the sequence level
(0.2–0.7) than on the structure level (0.1–0.4) across all antibody isotypes
(Fig. 5b). For instance, the mean Pearson correlation coefficient for the
human IgD dataset was 0.5 on the sequence level and 0.2 on the structure
level (Fig. 5b). This finding suggested that similar sequences exhibit higher
sequence-based developability similarity compared to structure-based
developability similarity. However, higher sequence similarity was not
always accompanied by higher Pearson correlation values of DP profiles.
For example, although the average sequence similarity of the murine IgL
dataset was as high as 0.9, the mean value of Pearson correlation coefficient
was only 0.5 (Fig. 5b). We reported a similar Pearson correlation average
(0.5) for the human IgE dataset, even though its mean sequence similarity
was less than the IgL murine dataset (0.7, Fig. 5b).

Next, we investigated the relationship between antibody developability
and sequence similarity using a geometric approach to test the finding that
developability profile similarity and sequence similarity are not necessarily
associated (Fig. 5a, b). We leveraged the fact that antibody developability
profiles are numerical vectors in the developability space (RN), where N
represents the number of DPs that compose a single developability profile
(see Methods). This space (RN) offers a natural notion of antibody devel-
opability diversity. However, it is challenging to inspect due to its high
dimensionality. Thus, we applied a dimensionality reduction technique
(principal component analysis: PCA) on the developability profile space of
the human heavy-chain antibody dataset (Fig. 5c) as it is the largest data
subset that belongs to a single species and chain type (~0.8M antibodies,
Supplementary Fig. 1A). Within this subset, we identified seven sequence
similarity groups (1–7). Each group encapsulates at least 10 K antibodies
and group members exhibit at least 75% pairwise sequence similarity
(Supplementary Fig. 16B—seeMethods).We found that antibodymembers
that belong to the same sequence similarity groupdidnot occupya restricted
space on the PCA projection plane, suggesting that antibody developability
and sequence similarity are not correlated (Fig. 5c). To quantify this
observation, we studied the correlation between the pairwise Euclidean
distances in the developability space (RN) and the pairwise (normalized)
Levenshtein distances for 5000 antibody sequences from the human IgM
dataset that share the same IGHV gene family annotation (IGHV1) and
belong to the same sequence similarity group (group 1—Supplementary
Fig. 16B,C).We found that the twodistancemeasures showedonlyminimal
correlation (Pearson correlation coefficient = 0.18, Supplementary
Fig. 16C). As Fv sequences belonging to the same IGHV gene family share
high (up to 80%) sequence similarity64,65, most of which is attributed to
conserved sequences in the frameworks, CDRH1 and CDRH2 regions67,68,
the majority of sequence variation is credited to the CDRH3. As such, the
lack of correlation between the pairwise Normalised Levenshtein distance
and the pairwise Euclidean distance in the developability space for these
antibodies (Supplementary Fig. 16C) indicates an independence of devel-
opability profile and CDRH3 sequence similarity among antibodies of the
native dataset.

In conclusion, our analysis demonstrated that antibody developability
and sequence similarity were largely independent, suggesting that
improving the developability profile for a certain therapeutic mAb candi-
date with a desirable target binding profile may be possible by introducing
small changes in its amino acid sequence.

DP predictability implies interdependence and antibody design
space restriction
Building on the prior finding that no significant association exists between
antibody sequence similarity and developability similarity, we inquired
whether missing values of given DPs can be predicted based on the
knowledgeof the values of otherDPs.This is to investigate towhat extent the
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developability space is amenable to orthogonal DP design (Fig. 6a). In this
context, high predictability of a givenDP would indicate a restriction of the
antibody design space, while low predictability could signify a more plastic
space with a higher degree of freedom for the values of this DP. Answering
the above questionwould also provide insights intowhichDPs can be better
predicted (with the provided knowledge of the remaining DPs), whichmay
accelerate antibody developability screening. Also, we evaluated the pre-
dictability of missing DP values depending on the sole knowledge of the
amino acid sequences of antibodies (through their protein language model
representations, Fig. 6a). This aims to investigate the feasibility of DP pre-
dictability in the absence of other DP data.

Importantly, the primary objective of this analysis is to evaluate how
various factors (type of ML input, type of predicted DP, the redundancy
state of the predicted DPs) affect the predictability of DPs rather than
achieving absolute predictive precision given that we did not perform a
comprehensive benchmarking of encoding or ML approaches69,70. Ulti-
mately, when comprehensive benchmarking and fine-tuning of multitask
ML models is performed on developability data, it might be possible to

depend on these models for DP value predictability rather than relying on
several in silico tools to achieve the same task.

We initially used MWDS DPs to eliminate collinear dependence that
may increaseMLprediction accuracy in a non-interesting or trivialmanner.
To this end, we investigated two scenarios where the missing (deleted) DP
values were either all from a single DP (ML Task 1), or randomly missing
from several DPs (ML Task 2) (Fig. 6a). In practical terms, ML Task 1
replicates a use case where the values of a single DP—that might be chal-
lenging to compute or measure—are missing from all antibodies in the
dataset. Meanwhile, as “spotted” (i.e., missing-at-random) data is a real-
world problem in biomedical research71–73,MLTask 2 replicates the use case
of obtaining a developability dataset where the values of several DPs are
sporadically missing from the antibodies (Fig. 6a).

ForMLTask 1, we compared the predictive accuracy of two types of
(input) embeddings to predict the missing DP values via multiple linear
regression (MLR) models after defining training and test (sub)sets from
the native human VH antibody dataset (Fig. 6a, see Methods). (i) The
first embedding is the single-DP-wise incomplete developability profiles

Fig. 5 | Developability profile similarity is not necessarily associated with
sequence similarity. a Pairwise developability profile Pearson correlation (DPC—
left panels) alongside the pairwise Levenshtein distance (LD) based-sequence
similarity score (right panels—see Methods) for a random sample of n = 100 anti-
bodies from the human IgM dataset (100 × 100 matrices) that share the same IGHV
gene family (IGHV1) annotation (shown both for sequence and structure DPLs).
Each row and each column represent a single antibody sequence. Rows and columns
in the left panels were hierarchically clustered. In the right panels (sequence simi-
larity), rows and columns were ordered in the same order as the corresponding left
panel (DPC) for ease of comparison. The distribution of DPC and sequence simi-
larity is shown in Supplementary Fig. 16A. b Pearson correlation between DPC and
sequence similarity matrices for 100 sets of randomly sampled non-overlapping 100
antibody sequences (within the same IGHV gene family per batch) from all isotypes
of the native dataset (total n = 100 independent experiments of 100 antibodies per

experiment). Pearson correlation coefficient values (shown in beige) are presented
alongside the corresponding mean sequence similarity values (shown in green) for
the same 100 sets. The height of the bars and the numerical values on the figure
reflect the mean of the corresponding metric (mean Pearson correlation and the
mean sequence similarity). The error bars represent the standard deviation.
c Principal component analysis (PCA) of the developability profiles of the native
human heavy-chain dataset (n = ~0.8 M antibodies). The developability profiles
(DPLs) were utilized as embeddings for this analysis (see Methods). Antibody
clusters (1–7)were created for the groups of antibodies that are at least 75% similar in
sequence (as determined by USEARCH) and contain at least 10 K antibodies.
Antibodies that did not satisfy the clustering conditions were labeled as “non-
clustered” (727861 sequences) and sent to the back layer of the figure. For antibody
counts per cluster, please refer to Supplementary Fig. 16B. Supplementary
Figs. 13–16.
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(DPLs) which depend on the knowledge of all other DP values included
in the training set (low-dimensional embedding—order of
magnitude ≈ 101—Fig. 6a). (ii) The second embedding is an amino acid
sequence encoding output produced by the protein language model
(PLM) ESM-1v, which generates large semantically-rich digital

representations of antibodies (high-dimensional embedding—order of
magnitude ≈ 103)74–76. Unlike DPL-based embedding, PLM-based
embedding is entirely unaware of antibody DP values (Fig. 6a) and we
aim to test whether these biochemical properties are implicitly
contained in it.
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We found that the predictive accuracy of MLR models increased with
increasing training set size for both embeddings. However, DPL-based
models reached their saturation point earlier than PLM-based ones for both
sequence and structure DPs (1000 antibodies for DPLs, 20000 for PLM—
Fig. 6b). This is also (partly) attributable to the fact that higher dimensional
inputs (PLM embeddings) correspond to additional degrees of freedom
when training the model. Overall, both embeddings achieved higher pre-
diction accuracy for sequence DPs compared to structure DPs at their
saturation points (Fig. 6b). However, the disparity in prediction accuracy
between the two embeddingswasmore pronounced for sequenceDPs, with
PLM-based embeddings achieving a mean prediction accuracy of 0.92
compared to 0.34 forDPL-based ones (Fig. 6b). Thus, the highpredictability
enabled by PLM-based embedding on sequence level highlighted its capa-
city to capture the biophysical properties of antibodies based on amino acid
sequence77.

When conducting an analogous analysis including non-MWDS
(redundant) DPs, we found notable improvement in DPL-based MLR
models to predictmissingDP values (meanR2 of 0.88 for sequenceDPs and
0.36 for structureDPs) (SupplementaryFig. 17A).This is due to the inherent
collinearity among non-MWDs DPs (Fig. 2b) that simplifies DPL-based
prediction, resulting in higher prediction accuracy78. In contrast, PLM-
based embeddings showed far lesser to no distinct improvements when
predicting non-MWDSDPs (meanR2 of 0.96 for sequenceDPs and 0.38 for
structure DPs) (Supplementary Fig. 17A).

For ML Task 2, we implemented the multivariate imputation by
chained random forests (MICRF) algorithm72,79 to evaluate its prediction
accuracy to recover randomly missing (deleted) DP values from the
developability dataset (Fig. 6A—see Methods). We investigated two cases
where either 2% or 4% of DP values are missing from either sequence or
structure MWDS parameters (Fig. 6C), as implementing the MICRF
algorithm with a greater fraction of missing data could compromise the
accuracy and reliability of the imputed (predicted) DP values79. Overall, and
similarly to the observations reported from ML Task 1 (Fig. 6b), structure
DPs were more challenging to predict, and a larger number of data inputs
(antibodies) aided the achievement of higher prediction accuracies (Fig. 6c).
However, we noticed (only) subtle differences in the prediction accuracy
(mean R2) when comparing the algorithm capacity to restore 2% or 4% of
missing DP values (Fig. 6c), outlining its robustness within the advised data
loss limits for its application80,81. For example, we reported mean R2 of 0.64
(sequenceDPs) and0.42 (structureDPs)with 2%data loss compared to 0.59
(sequence DPs) and 0.4 (structure DPs) with 4% data loss, at a saturation
point of 20000 antibodies (Fig. 6c).

Similarly to ML Task 1, non-MWDS DPs were shown to be easier to
predict (Supplementary Fig. 17B). However, the disparity in prediction
accuracy between the two classes ofDPs (MWDSandnon-MWDS)was less
pronounced in comparison to DPL-based predictions in ML Task 1. For
instance, at 2% data loss, the improvement in prediction accuracy of

sequenceDPswas (only) ~0.2higher (0.85 fornon-MWDS, 0.64 forMWDS
—Supplementary Fig. 17B) compared to ~0.6 in DPL-based predictions in
MLTask1 (0.88 fornon-MWDS, 0.34 forMWDSSupplementaryFig. 17A).

Of note, we performed ablation studies82 on both ML tasks, by ran-
domly permuting the values ofDPs at the columns in the input data (feature
shuffling), and confirmed that the prediction accuracy was diminished
(R2 ≤ 0, Fig. 6b, c, see Methods).

In summary, for the ML methods and embeddings applied in this
analysis, we found that the structural developability space is less restricted.
Additional analyses suggested that variations in structure prediction alone
cannot explain this (Supplementary Notes 2–3). Additionally, this analysis
highlighted the potential of PLMs to reflect the sequence-based aspects of
antibodydevelopability, if providedwith sufficient trainingdata.Wewant to
emphasize that ourmain goal was not obtaining perfect prediction accuracy
of DPs but rather measuring the amount of readily available biological
information contained in the two representations examined, i.e. DPL- and
PLM-based representations. Finally, we also addressed the presence of
potential gaps in developability information in practical settings by showing
howtwodifferentMLalgorithms canbeutilized in twodifferent scenarios of
missing data.

Patent-submitted, humanizedmouse (Kymouse) and therapeutic
monoclonal antibodies represent a subset of the natural
developability atlas
Previously, clinically approved therapeutic antibodies were used to build
classifiers for optimal developability7,36. However, the higher abundance of
native antibody data incentivizes the investigation of how human-
engineered antibodies relate to their native counterparts. Thus, we investi-
gated to what extent we can detect differences between native and human-
engineered antibodies (therapeuticmAbs, Kymouse andPAD). To this end,
we examined the proportional abundance of liability sequence motifs and
the representation of developable germlines across the native and human-
engineered datasets (Supplementary Fig. 18). Liability motifs are short
amino acid sequences, which may negatively impact various aspects of
antibody developability when present in their CDRs83. Developable germ-
lines represent a group of human immunoglobulin genes (VH and VL),
which have been suggested to harbor favorable biophysical properties84,85.

The native dataset was comparable to the human-engineered ones
regarding the proportion of antibodies that exhibit liability motifs, and no
consistent increased or decreased representation (trend) of thesemotifs was
reported (Supplementary Fig. 18A). For instance, while the native human
VL dataset exhibited a higher abundance of the asparagine deamidation
motif “NS” (17.8%) compared to PAD and mAbs (15.7%, 16.6%), it
exhibited a lower abundance of the proteolysis motif “DP” (0.5%, 2%, 3.8%
—Supplementary Fig. 18A). Similarly, the native dataset harbored a com-
parable representation of the developable germline geneswith the exception
of IGHV1members (5.2% in native, 3.1% in Kymouse, 16.6% in PAD, and

Fig. 6 | Sequence-based developability parameters are more predictable than
structure-based parameters. a Graphical representation of machine learning (ML)
approaches used to assess the predictability of DPs. We investigated two scenarios
where themissing (deleted) DP values were either all from one (single) DP (MLTask
1) or were randomly missing from several DPs (ML Task 2). For ML Task 1, we
compared the predictive accuracy of two different embeddings; single-DP-wise
incomplete developability profiles (DPLs) (embedding 1; order of magnitude 101)
and PLMvectors (embedding 2; order ofmagnitude 103).We used these embeddings
to train multiple linear regression (MLR) models (separately) to predict the missing
DP values in the test set. To enable the comparison between these two embeddings,
we used identical training subsamples (in regards to size and antibody identity, see
Methods). ForMLTask 2, we used cross-DP-wise incomplete developability profiles
as input for the multivariate imputation by chained random forests (MICRF)
algorithm to predict missing DP values. For both ML tasks, we estimated the pre-
diction accuracy by computing the coefficient of determination (R2) using observed
and predicted DP values171. b Comparison of the predictive accuracy of incomplete
developability profiles (single-DP-wise incomplete DPLs) and PLM vectors as
embeddings for MLRmodels to predict the values of missing DPs in the test set (ML

Task 1). The x-axis reflects the number of antibody sequences (sample size) used for
the embedding. For each sample size, we repeated the prediction of missing DPs
20 times (n = 20 independent experiments). The y-axis represents the mean R2 for
sequence DPs (left facet) and structure DPs (right facet). Error bars represent the
standard deviation of R2. Missing DPs tested in this analysis belonged to theMWDS
exclusively, as determined at a Pearson correlation coefficient threshold of 0.6, for
the human IgG dataset, summing to 13 sequence DPs and 28 structure DPs (after
removing a single element from each doublet and immunogenicity DPs, Supple-
mentary Table 2). c Evaluating the predictability of randomly missing DP values
using theMICRF algorithmwhere cross-DP-wise incomplete developability profiles
are used as embeddings. The x-axis reflects the number of antibodies (sample size)
used for the embedding. For each sample size, we repeated the prediction of missing
DPs 20 times (n = 20 independent experiments). The y-axis represents the mean R2

for sequence DPs (left facet) and structure DPs (right facet) when the proportion of
the missing data is either 2% (light blue line) or 4% (dark blue line). Missing DPs
tested in this analysis belonged to the MWDS, analogously to (b). Numbers on the
x-axis in both (b) and (c) reflect the average values of mean R2. Supplementary
Fig. 17.
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21.6% inmAbs) and IGK1members (13.3% innative, 20.8 inPAD, and 25.9
in mAbs—Supplementary Fig. 18B). These findings suggest a notable
resemblance between the native and human-engineered antibody datasets
with regard to potential developability-related liability sequence motifs and
germline annotations.

Thus, we asked how the native antibody dataset relates to the human-
engineered ones in terms of DP values. To this end, we first conducted a
distance-based clustering (similar to Fig. 3b) starting from the pairwise DP
correlationmatrices of the native and human-engineered antibody datasets
(Fig. 7a). On the sequence level, we found that the general species-specific

Fig. 7 | Human-engineered antibodies are
contained in the developability landscape of
natural antibodies. a Distance-based hier-
archical clustering of isotype-specific pairwise
DP correlation matrices (sequence and structure
levels—similar to the analysis shown in Fig. 3a).
The height of the dendrograms (shown to the left
of the figure) represents the correlation distance
among the dendrogram tips. The dashed square
in the right (structure-based) panel highlights the
native-only dataset. b Top three panels: The
positioning of the human-aligned human-engi-
neered VH antibodies (Kymouse; 209,452, PAD;
99,213 and therapeutic mAbs; 329) in the
developability profile space of the native human
VH dataset (854,418 antibodies) based on a
principal component analysis (PCA, see Meth-
ods). Bottom two panels: The positioning of the
human-aligned human-engineered VL anti-
bodies (PAD; 78,921 and therapeutic mAbs; 320)
in the developability space of the native human
VL dataset (385,633 antibodies). The hexagonal
bins (shown in the back layer) represent the
count of native antibodies (scale shown on the
top right of the panels), and the human-
engineered antibodies are represented as data
points. c Evaluating the predictability of
sequence (left panel) and structure DPs of the
human-aligned human-engineered VH anti-
bodies (Kymouse; 209,452, PAD; 99,213 and
therapeutic mAbs; 329), using multiple linear
regression (MLR) models trained on native
human VH antibodies. As explained in Fig. 6a
(ML Task 1), the predictive accuracy of two types
of embeddings was tested, including single-DP-
wise incomplete developability profiles (DPLs)
and ESM-1v protein language model encoding
vectors (PLM). MLR models were trained using
1000 antibodies for DPL-based predictions and
20000 antibodies for PLM-based predictions
(respective saturation points). Missing DPs tes-
ted in this analysis belonged to the MWDS
exclusively as determined at a Pearson correla-
tion coefficient threshold of 0.6, for the native
human IgG dataset, summing to 13 sequence
DPs and 28 structure DPs (Supplementary Table
2). The y-axis represents the mean coefficient of
determination (R2) across 20 repetitions (n = 20
independent experiments). Numerical values
shown represent the average values of mean R2

across (sequence or structure) DPs. Supplemen-
tary Figs. 18–21.
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(human and mouse) and chain-specific (light and heavy) clustering, as
previously reported in our investigation of the native dataset (Fig. 3b; left
panel), remained consistent when integrating native with human-
engineered antibody datasets (Fig. 7a; top panel). Specifically, the human
antibodies (light and heavy chains) from the PAD and mAbs datasets
localized within the native human clusters of the same chain type (corre-
lation distance ≤ 0.1—Fig. 7a; top panel). Similarly, the light-chain human-
engineered murine antibodies (PAD and mAbs) clustered with the IgK
native mouse dataset (correlation distance ≈ 0.1—Fig. 7a; top panel).
Kymouse antibodies were the most distant subset, which may be explained
by their unique intermediate diversity between mice and humans86.

On the structure level, we found that the original clustering pattern
among the native antibody isotypes is preserved from the analysis con-
ducted on the native-only dataset (Fig. 3b, Fig. 7a; “Native only” zone).
Human-engineered subsets clustered apart from the “Native only” zone,
maintaining either species-specific or chain-specific clustering. Although
suggestive, the results of this analysis should be interpretedwith caution due
to the imbalance of dataset sizes (number of antibodies) (Supplementary
Fig. 1A, B). Indeed, a correlation matrix stabilization study suggested that a
dataset size of at least 50 K antibodies is required to stabilize association
values amongDPs (Supplementary Fig. 19A,C) and the distribution of their
pairwise Pearson correlation values (Supplementary Fig. 19A, B, D). This
threshold (50 K antibodies) is higher than the count of antibodies included
in the murine subsets of the PAD dataset (≈ 24 K for heavy chains, ≈ 21 K
for light chains) and all the species-specific and chain-specific subsetswithin
themAbs dataset (329 for human heavy chains, 320 for human light chains,
62 for murine heavy chains, 71 for murine light chains) (Supplemen-
tary Fig. 1B).

Next, we leveraged the principal component analysis (PCA) that we
conducted on the developability profiles of native antibodies (Fig. 5c—see
Methods) to examinehowhuman-engineered antibodies relate to the native
ones in the developability spaces (VH;Fig. 7b: top panels, VL; Fig. 7b: bottom
panels). In addition to comparing native and human-engineered antibodies
in the developability profile space (dimensionality: 101), we also used
sequence embeddings provided by the ESM-1v75 protein language model
(PLM, dimensionality: 103) (Supplementary Fig. 20B, Supplementary
Fig. 21B). PLM embedding is an alternative to biologically motivated fea-
tures (such as DPL), learned without supervision from a large pool of
proteins87. Protein language modeling enables capturing longer-distance
relationships within protein sequences88–90. We focused our analysis on
human antibodies as they represent the largest species-specific subset
among our datasets (≈0.8M for native VH antibodies, ≈ 0.4M for native VL

antibodies, 99213 forPADVHantibodies, 78921 forPADVLantibodies, 329
for VH mAbs and 320 VL mAbs—Fig. 7B, Supplementary Fig. 1A, B).

Overall, we found that human-engineered antibodies (both VH and
VL) are majorly contained within both the developability and PLM land-
scapes of the native antibodies (Fig. 7b, Supplementary Fig. 20B, Supple-
mentaryFig. 21B), suggesting that—for theDPs included inouranalysis (see
Methods)—the developability and sequence landscapes of human-
engineered antibodies merely occupy subspaces of the natural space (in
terms of the two main axes of variation studied).

From the native repertoire perspective, VH antibodies coalesced into a
single cluster in the VH developability space, and the positioning of the
antibodies in this space was independent of both their isotype and IGHV
gene family annotation (Supplementary Fig. 20A). In contrast to VH anti-
bodies, native VL antibodies clustered in two distinct clusters in the VL

developability spacewhere themajorityof IgKantibodies (99.999%) and IgL
antibodies (95.6%) occupied the bottom cluster, and a small proportion of
IgL antibodies (4.4%) predominantly occupied the top cluster (Supple-
mentary Fig. 21A). This finding suggests that, except for a minor subset of
native IgL antibodies, VL sequences (both IgK and IgL) are homogeneous
with respect to their developability. This aligns with a recent report where,
using the therapeutic antibody profiler (TAP), it was found that native IgL
antibodies exhibited comparable structural developability characteristics to
those of native IgK antibodies36. Among the human-engineered antibodies,

only two (out of 320VL) therapeuticmAbs (Erenumab andBentracimab) of
the isotype IgL, and only 1345 (1342 IgL and3 IgK, out of 78,291VL) patent-
submitted antibodies were found to be contained in the top cluster (Fig. 7b),
displaying a similar distribution trend between the two clusters as the native
VL dataset. It is worth noting that previous studies (including TAP) have
previously reported Erenumab to exhibit developability risk factors7,10,
whichmay explain its localization in the top cluster of the VL developability
space (Fig. 7b). Bentracimabwas not included in these studies as it is not yet
clinically approved (Phase III of clinical development as of September
2023)91.

As the human-engineered antibodies were shown to harbor compar-
able developability and sequence properties to those of the native ones
(Fig. 7b, Supplementary Fig. 20B, Supplementary Fig. 21B), we investigated
the generalizability of the native-trained multiple linear regression (MLR)
models to predict the values of singlemissingDPs of the human-engineered
datasets (Fig. 7c). Specifically, we implemented the MLR models from ML
Task 1 (Fig. 6a and b) at the training sample size,which achieved the highest
prediction accuracy before plateauing (1000 antibodies for DPL-based
predictions, 20 K antibodies for PLM-based predictions) to predict the
values of MWDS DPs (sequence and structure) on the human-engineered
antibody datasets (Fig. 7c).

We found that the predictability of DP values for the human-
engineered antibodies was similar to that of the native antibodies (Fig. 6b,
Fig. 7c). For instance, the mean prediction accuracy (mean R2) of sequence
DPs was between 0.25–0.33 for DPL-based predictions, and between
0.80–0.87 for PLM-based predictions among human-engineered datasets
(Fig. 7c) in comparison to 0.34 and 0.92 (DPL and PLM respectively) for
native antibodies (Fig. 6b). Similarly, when considering human-engineered
datasets, themean prediction accuracy of structureDPs ranged from0.10 to
0.12 for DPL-based predictions and from 0.15 to 0.24 for PLM-based pre-
dictions (Fig. 7c). In comparison, the native antibodies exhibited prediction
accuracies of 0.12 and 0.27 (respectively—Fig. 7c).

Collectively, our results suggest that the knowledge learned from the
native antibodies in regards to their developability and sequence properties
is, in part, generalizable to the human-engineered antibody datasets.
Nevertheless, it is worth reiterating that the predictability analysis per-
formed on the native and human-engineered datasets aims to inform
experimental design and investigate factors of generalizability rather than
improving predictability.

Discussion
Previous studies have shown that several experimental DPs may be com-
putationally inferred7,12,32,56,60, which supports the real-world relevance of
computer-based developability screening of large antibody sequence
libraries. However, discrepancies between computational and experimental
DPprofiling remain18,30. Furthermore, previous studies using computational
profiling varied in the number of DPs, ranging from <10 to >50010,55,57. In
this study, we used 86 sequence and structure-based DPs, many of which
were pairwise lowly or uncorrelated to one another (Fig. 2a and b,, Sup-
plementary Fig. 6, Supplementary Fig. 7, Supplementary Fig. 9), thus cap-
turing at least a subspace of the multidimensional developability space. So
far, the relevant dimensionality of the antibody developability space remains
unclear. That said, our analysis can be replicated with any other set of
computationally or experimentally determined DPs. While most previous
studies focus on small antibody datasets and mostly on the comparison
between experimental and computational DPs, this study explores the
plasticity of the in silico DP space on large-scale antibody datasets. While
ourfindingsmaypartly dependon theDPs studied, our conclusions derived
from DP profiling (Fig. 7b) are consistent with those from PLM-based
profiling (SupplementaryFig. 20B, SupplementaryFig. 21B). Specifically,we
observe that in both representations, human-engineered antibodies are
predominantly localized within regions occupied by natural antibodies and
display a tendency to cluster in specific areas rather than dispersing uni-
formly throughout the space. In other words, our study should be under-
stood as forecasting the types of analyses possible once large-scale
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experimental or highly validated computational DPs exist, allowing for
routine repertoire-scale DP profiling and prediction. In summary, the real-
world relevance of our systems approach is grounded in (i) the profiling of a
large number of pairwise-independent DP parameters, (ii) sequence and
rigid and dynamic structure-based DP analysis (Supplementary Note 2),
(iii) diverse experimental datasets ranging from native to human-engi-
neered, and (iv) parameter-independent computational and machine
learning analysis. In the future, it would be of interest to adddisplay libraries
for comparison92–94 as well as a larger number of paired datasets with broad
and deep isotype information95,96.

Intercorrelation analysis revealed that structure-based DPs show
higher independence (lower pairwise correlation) than sequence-basedDPs
(Fig. 2). These findings emphasize the significance of structural considera-
tion for therapeutic antibody design3,8,25,97,98. Due to the scarcity of antibody
structural information, structure-based developability estimation has pre-
viously presented a substantial challenge in developability screening3,20.
However, in silicohigh-throughput antibody structure prediction tools have
evolved in speed and accuracy with machine learning algorithms, permit-
ting the screening of structural parameters in large datasets9,38,39,99.

The scale of this work’s analysis facilitated the discovery of parameter
redundancies that could accelerate future antibody developability screening
processes. For instance, while Chen and colleagues included both themolar
extinction coefficient and the extinction coefficient of the variable region
sequence (AbChain_molextcoef, AbChain_percentextcoef) and the
cysteine bridges (AbChain_cysbridges_molextcoef, AbChain_cys-
bridges_percenextcoef) as important developability predictors57, we found
that one of these coefficients could likely be sufficient to replace the other.
Similarly, although Ahmed and colleagues highlighted the importance of
structure-based isoelectric point (pI) as an essential developability para-
meter on a limited-size therapeutic antibody dataset (77 clinical-stage
antibodies)10, our analysis suggested that sequence-based pI (AbChain_pI)
could potentially replace structure-based pI. We further highlighted the
importance of large-scale antibody developability data to stabilize the
associations among DPs (Supplementary Fig. 19), and, thus, to reveal such
redundancies. Additionally, most developability studies emphasize the
relevance of antibody charge in the physiological pH (7.4)7. However,mAbs
are usually exposed to a wider range of solution pH (4.8-9) during pro-
duction and formulation10,100. Also, antibody variable region charge in acidic
pHhas proven tobe a critical factor in IgGmAbpharmacokinetics101–103 and
product formulation28. Therefore, we included the sequence-based variable
region charge measures in 14 pH points (1-14) in our analysis. We found
that the charge measures of native IgG sequences formed three correlation
clusters with intermediate (0.4–0.7) pairwise correlations, emphasizing the
importance of antibody charge considerations on a wider spectrum of pH
values (Fig. 2b). Other pairs of potential parameter redundancies are the
sequence content of polar and non-polar amino acids (AbChain_po-
lar_content Vs AbChain_nonpolar_content), the sequence content of ali-
phatic amino acids and the sequence aliphatic index
(AbChain_aliphatic_content Vs AbChain_aliphatic_index), the average
atomic interactiondistanceof the antibody structure and thenumberofVan
der Waals clashes (AbStruc_mean_interaction_distance Vs
AbStruc_vdw_clashes) and the sequence length and the sequencemolecular
weight (AbChain_mw Vs AbChain_length) (Fig. 2A). Redundancy-based
parameter reduction, analogous to feature selection for ML models, would
accelerate future antibody developability investigations by screening for a
more comprehensive and sufficiently representative set of parameters.

Our analyses revealed chain-specific developability signatures in rela-
tion toDPvaluesandpairwise associations (Fig. 3b, c), emphasizingpossible
differences in developability design considerations for therapeutic antibody
development. Within each chain type, we found that murine and human
antibodies occupy distinguishable developability spaces (Fig. 3c), high-
lighting the importance of transgenic mice for antibody screening and the
challenges of antibody humanization efforts104–107. Interestingly, our find-
ings suggest that the Kymouse (humanized mice) dataset under investiga-
tion undersampled the human dataset, both with respect to developability

(Fig. 7b) and sequence spaces (Supplementary Fig. 20B), even though lower-
level features such as VDJ gene usage and CDR3 length were previously
found to overlap86.

In addition to chain type and species, we found that human heavy
chain (VH) isotypes harbor high similarities in regard to their pairwise DP
associations (Fig. 3b) and redundancies (Supplementary Fig. 10B, Fig. 3a).
We found that they aggregated homogeneously in the developability space
regardless of their isotype (Supplementary Fig. 20A). Thus, although all
currently approved therapeutic mAbs belong to the IgG isotype108, our
findings provide the incentive to explore the available native antibody Fv
sequence space beyond the isotype annotation for novel mAb discovery. In
regards to VL isotypes, human IgK and the majority of IgL antibodies
clustered together in the developability space (Supplementary Fig. 21A),
questioning the previous association of IgL antibodies with poor develop-
ability, in line with recent findings by Raybould and colleagues36, and pro-
viding an incentive to re-include IgL sequences in future antibody discovery
libraries. Nevertheless, we are aware that our findings involve only the Fv
regions of antibody sequences as current antibody-specific structure pre-
dictionmodels donot take into account theFc region anddonot account for
the impact of the Fc region on developability103,109.

When examining the impact of sequence similarity on developability
similarity, we found that antibodies that are highly similar in sequence can
possess dissimilar developability profiles (Fig. 5), which is in line with
previousfindings110. This suggests that there aredegrees of freedomavailable
for therapeutic antibody candidate engineering to optimize developability
with minimal changes in antibody sequence.

For instance, if an antibody candidate exhibited optimal antigen
binding propertieswith a suboptimal developability profile,minor sequence
changes could result in a substantial improvement (or deterioration) of this
profile without major changes to its antigen binding properties. In this
context, Petersen and colleagues showed that the native human antibody
repertoire can aid the identification of advantageous (or disadvantageous)
“universal” (native) framework mutations that could facilitate therapeutic
mAbdevelopment54. Furthermore, small changes in antibody sequencewith
large effects on function have been observed for both developability and
antibody binding properties3,111, underscoring the importance of simulta-
neous optimization of multiple design parameters. Since optimization of a
specific property often comes with undesirable trade-offs for other
properties29,61, studying the effect of substitutions can help with designing
antibodies that exhibit improved developability with comparable efficacy.

To directly probe the relationship of sequence to developability, we
performed a single amino acid substitution analysis (see Methods).
Althoughchangingoneaminoacid at a timeonly explores a small fractionof
the input factor space62, it allows for the definitive attribution of the change
in output to a specific amino acid substitution. Although including all
possible variants with two or more substituted amino acids could account
for epistatic mutation effects, it would geometrically inflate the combina-
torial space beyond current computational feasibility. Because exhaustively
mapping the DPs of such large sequence spaces is (currently) computa-
tionally infeasible, to exploremore than single amino acid substitutions, one
must findways to efficiently and uniformly sample the input space, possibly
through latin hypercube sampling or low-discrepancy sequences112,113.
Briefly, we found that across all possible single amino acid substituted
variants of a sample of 500 human heavy chain antibodies some parameters
were especially insensitive to the average mutation. Furthermore, to quan-
tify the sensitivity of a parameter, we measured the dispersion of parameter
values of all possible single amino acid substituted variants of an antibody.
We used “tailedness” (measured by excess kurtosis) and the range of the
distributions as proxy measures for average and maximum potential sen-
sitivity, respectively. Since excess kurtosis is, strictly speaking, defined for
normal distributions, its interpretive power depends on the nature of the
observed parameter. It may be beneficial in future work to consider addi-
tional properties of distributions, such as skewness or diversity (asmeasured
by Shannon entropy). Despite the apparent low sensitivity of charge and
hydrophobicity DPs, they have been shown to impact the developability of
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monoclonal antibodies greatly100. This is, in fact, not contradictory since the
“tailedness” does not describe absolute DP shifts, but the proportion of
outliers of a DP distribution (average sensitivity) or the range proportional
to the original wildtype (WT) sequences (potential sensitivity). Since the
sensitivity metrics are an aggregate score averaged over all variants of the
sampled antibodies, they serve as a rough global characterization of DPs.
Drastic property changes still require more comprehensive sequence- and
structure-based local approaches in individual antibodies to model114.
Prospectively, although we only studied general trends in sensitivity from
the perspective of individual developability parameters, it would be inter-
esting to explore how a mutation impacts values across all DP of an indi-
vidual antibody.

In this work, we did not perform structure-based substitution analysis.
Specifically, given that there is a lack of experimentally determined struc-
tures of antibody variants, it remains unclear how accurately antibody
structure prediction tools can resolve single amino acid structural differ-
ences and reflect them in models (Supplementary Fig. 11, Supplementary
Note 3)115.

More generally, in the context of classical MD simulations of anti-
bodies, the conformational landscape typically exhibits minor variations
compared to the initial rigid structure116. In MD simulations of five
experimentally determined antibodies without antigen (Supplementary
Note 2), we found that the structural fluctuations in the CDRH3 loop
regions were generally minimal (on the order of 0.1 Å) throughout 100 ns
simulations (as determined by RMSD)117. However, the structural variance
between the initial (rigid) antibody conformation and the relaxed version
was between 1.2 Å and 1.7 Å on average (Supplementary Fig. 4A, Supple-
mentary Note 2). Given the relatively small magnitude of CDRH3 fluc-
tuations and the current limitations of structure prediction methods, it is
challenging to detect and accurately represent these small conformational
changes in rigid antibody models. The accuracy of current structure pre-
diction tools typically is below the range of these small fluctuations118.
However, when it comes to studies involving antibody variants, we cannot
overlook these fluctuations, as they reflect the effects of mutations. These
computational structure analyses should be combined with experimentally
determined antibody structures, such as X-ray or cryo-EM data. While
experimental structures contain variations due to differences in crystal-
lization conditions, resolution levels, and inherent protein dynamics,
making the same structure slightly different in various studies, computa-
tionally predicted structures lack the experimental-related noise found in
real structures, causing all models to appear identical outside the mutation
site. Given these limitations, we anticipate that the differences in distances
between variants, specifically at the mutation site, will be lower than
expected in experimental variants and greater than expected in computa-
tional models. Our findings suggest that the reality of variant effects lies
between the generated models and structures observed experimentally.
Furthermore, due to the dynamic nature of proteins, simulated or experi-
mentally determined structural differences of the same protein can over-
shadow differences caused by mutations, especially in highly flexible
antibody loops like CDRH3.

ML models have been shown to be able to predict the biophysical
characteristics of proteins29,31,119,120.While their usemaynotbewidespread in
the pharmaceutical industry, the emergence of AI/MLmay become routine
as part of initial in silico efforts to screen andassessmolecular properties and
interactions before any experimental efforts23. To efficiently determine
biological (and, possibly, clinical) properties of antibodies using machine
learning-based methods, it is important first to identify a suitable repre-
sentation. In our study, we compare two alternative embedding types, one
(DPL),whichcollects (a subset of)DPs into anumerical vector and theother
(PLM) obtained by encoding the antibody sequence using a pre-trained
neural network (NNs). The former representationmirrors feature-selection
approaches toDPprediction,while the latter embraces the latest advances in
deep NNs and, in particular, transformer-based models. We compute DP
predictions by passing DPL and PLM embedding through linear regressor
heads. As shown inFig. 6b, the predictive power of ourmodels is limitedand

this holds especially for DPL predictors, even on sequence DPs, which are
insteadwell predicted using the PLM representation. The stark difference in
performance is not surprising and can be understood as the combination of
two facts. First, we observe that our use of linear heads is a restrictive
architectural choice, which is likely over-simplistic: it is natural to expect
that most—even though not all—DPs cannot be written as a linear com-
bination of the remaining ones. This limitation is exacerbated by multiple
collinear features (as in the full developability profile, Fig. 2) and by a
reduced number of dimensions (the number of coordinates of DPLs vs
PLMs span two orders of magnitude). Second, as visible in Supplementary
Fig. 20C (right), PLMrepresentations retain considerable informationabout
sequence identity and they can be thought of as a learned map from
sequences to a latent space. They are, therefore, clearly more suitable to
derive sequence DPs and, as our experiments find, also structure DPs,
although to a lesser extent. Overall, PLM-based DP predictions generalize
well across human-engineered datasets, hinting at a modest amount of
overfitting. This, pairedwith the observation that regressor quality improves
with bigger train set sizes (no clear plateaus found for the cardinalities tested
in Fig. 6b), indicates a healthy learning trend and suggests that predictions
may benefit from more advanced head architectures.

DP predictors also shed light on the relationship between different
groups of DPs, e.g., between sequence and structure DPs, and MWDS vs.
non-MWDS ones. Both DPL- and PLM-based regressors fail in inferring
most structure-based parameters and, with few exceptions (notably
AbStruc_psi_angle and AbStruc_unfolded_pI), succeed on the same DPs
(e.g., AbStruc_loops, AbStruc_beta_strands, AbStruc_sasa, AbStru-
c_unfolded_pI,AbStruc_pcharge_hetrgen,AbStruc_psi_angle). This seems
to suggest the failure of both representations to capture the complex rela-
tions between sequences in linear subspaces of the latent space. We also
remark that although the lower correlation between structure DPs seen in
Fig. 2Amay suggest that noise introduced by structure prediction tools also
contributes to the weak prediction outcomes, we were unable to obtain
better scoreswhenpredicting structureDPs computedon the (few) available
solved antibody structures.

Of note, the ML methods employed in this work are by no means
exhaustive and only represent a first step toward ML-based DP predict-
ability. It is of interest that already relatively simple ML approaches achieve
good prediction accuracy. More generally, our ML approach is to be
understood as an example of potential studies thatmaybe performedonce it
is clearer which DPs are causally linked to downstream antibody candidate
success.

When examining the role of structure prediction tool on DP value
computation, we reported that structure-based DPs calculated on different
antibody structure prediction models correlate overall poorly (Supple-
mentary Fig. 3A, Supplementary Note 2). These observations align with
recent reports by others32,36,118. Importantly, we found that although ABB238

and IgFold39 have been found to be superior to ABB37,38,121 (which was used
in this work for the majority of the results), the correlation of ABB with all
other tools (experimental) in terms of structure-based DPs was low and did
not differ to the aforementioned tools. Strikingly, we found that structures
obtained by computational structure prediction methods belonged to a
common underlying ensemble structural distribution as revealed by MD
(Supplementary Fig. 4, SupplementaryNote 2). Therefore, the usage ofABB
did not considerably bias the results in this paper.

However, it remains challenging to predict the antibody CDRH3 loop
regions, which are of great interest due to their involvement in antibody-
antigenbinding97 aswell as developability20. These loop regions are generally
more flexible and less structurally conserved compared to stable secondary
structure elements like beta sheets118. Consequently, predicting the specific
conformations of these loops accurately can be difficult, and it becomes even
more challenging to determine when a prediction is correct without com-
bining experimental validation and MD simulations32,118,122.

MD is important for a fuller understanding of antibody systems as it
provides insight into the flexibility and fluctuations of antibody structure
and developability parameters28,32,36,121,123,124. Specifically, Park and Izadi

https://doi.org/10.1038/s42003-024-06561-3 Article

Communications Biology |           (2024) 7:922 15



found that antibody developability surface descriptor parameters (e.g.,
positive electrostatic potential on the surface of the CDR region125) vary
extensively as a function of the structure predictionmethodused,which is in
line with the findings in thismanuscript (SupplementaryNote 2). However,
after Gaussian-accelerated MD (GaMD) simulations and averaging the
values of the descriptors through MD frames, the consistency between the
descriptors improved32. Similarly, Raybould and colleagues36 evaluated
variations in four structure-based Therapeutic Antibody Profiler (TAP)7

scores using molecular dynamics (MD). The mean values of the TAP
properties observed during the simulations closely matched an ensemble
generated from three TAP predictions based on static Fv models directly
generated by ABodyBuilder2. Furthermore, certain structure prediction
tools, such as IgFold39, refine the final model using short relaxation using
OpenMM126 or PyRosetta127.

In the future, generating multiple models with various refinements
could yield a conformational ensemble similar to what is obtained from a
full-fledged long MD simulation118,122. Training on dynamic data, such as
MD simulation-based conformations, enables the model to capture loop
flexibility and variability, resulting in more robust and realistic predictions
that can improve currently challenging CDRH3 structure prediction. An
ideal ML model trained on dynamic data could streamline antibody
structure prediction by eliminating the need for additionalMD simulations,
saving computational resources, and providing a higher level of confidence
in predicted structures and insights into hidden antibody characteristics and
developability properties.

Since the development of therapeutic antibodies involves human-
directed sequence engineering to attain desirable developability properties,
there have been efforts to separate natural from therapeutic antibodies7,55.
However, we showed that human-engineered (including therapeutic)
antibodies fallwithin the developability space of natural antibodies (Fig. 7b).
Although this could simply be due to the particular selection of DPs and the
(major) principal components of variations, we showed that human-
engineered antibodies also fall within the sequence space of natural anti-
bodies (Supplementary Fig. 21B). Here, we discuss several possible
explanations:

(1) Our findings are consistent with52, who have shown considerable
sequence overlap between therapeutic antibodies and NGS-derived natural
repertoires, indicating that therapeutic antibody sequences are largely
derived from natural sequences with few modifications. This could also
explain why MLR models trained on natural DPs predict DPs of human-
engineered antibodies with similar accuracy (Fig. 7c). (2) Although the
development and formulation of therapeutic antibodies involve distinct
challenges from natural antibody generation, both might be subject to
converging primary restrictions. As shown by ref. 54, certain framework
mutations regularly occurring in clinical-stage therapeutic antibodies are
also frequently observed in natural repertoires, indicating converging
selection towards common characteristics such as stability. It is conceivable
that the sequence space of stable (and non-immunogenic) antibodies is
restricted so that natural and human-engineered sequences occupy over-
lapping subspaces within. (3) There might be considerable engineering of
the Fc region128, which is not included in our study, that could separate
human-engineered from natural antibodies in sequence space. (4) Lastly,
the number of patent-submitted58,129 and therapeutic antibody sequences
available is relatively small, which means that there may be potential ther-
apeutics in yet unexplored regions of the sequence space. However, given
that sample sizes differ across the human-engineered datasets, more data is
needed to study how cross-transferable conclusions are.

Despite being globally similar to the native dataset, DPLs of human-
engineered antibodies showdistinctive traits.Most notably, theydiffer in the
patterns of correlation found amongDPs. This is best seen in Fig. 7b, which
is obtained by projecting native DPLs along two axes which are determined
in order to be uncorrelated. In this subspace, the cluster originated by native
antibodies has a circular shape, i.e., it is isotropic, meaning that the
knowledgeof oneof the twocoordinates gives limited information about the
other. This property, however, does not hold for the set of engineered

antibodies, which form an elongated shape, stretching along a diagonal. A
similar cluster shape implies that growing x-values tend to correspond to
bigger y-values or, in other terms, that there is a (weak) positive correlation
between the two axes. Among human-engineered antibodies, then, altera-
tions to the two parts of DPL, which are projected on each axis, do not
happen independently anymore, likely signaling the artificial effect on DPs
of the antibody optimization process. In the future, it would be of interest to
study how this potential signal of the antibody optimization process is
represented in different PLMembeddings, for example, in antibody-specific
PLM embeddings, for which evidence is conflicting as to whether general
protein or antibody-specific PLM more faithfully represent inter-sequence
functional similarity77,130,131

Furthermore, it is interesting to note that human-engineered DPLs do
not cover entirely the native DPL cluster (Fig. 7b). Among human-
engineered antibodies, it is hence less probable to find some types of DPLs,
which appear instead frequently among native ones: this suggests the
existence of an unexplored region of DP space. Our conclusion is
strengthenedby thepresenceof a similar low-density zoneon the right of the
cluster of PLM embedding (Supplementary Fig. 20B), whichmay constitute
evidence of under-investigated classes of antibody sequences.

Finally, computational developability profiling, similar to computa-
tional antigen binding profiling3,98, will be increasingly useful once the real-
world relevance of computational DPs has been further established30–32,100.
To this end, multiple avenues require further development: (i) insight into
differences of paired vs single-chain developability95,96, (ii) faster computa-
tion of structural and MD-based DPs132, (iii) negative controls for clinical
stage antibodies that have not progressed due to developability issues, (iv)
large-scale data wheremultiple properties for a given antibody are captured
to start exploring multiparameter generative design29,61,106,133, and (v) open
and unbiased competitions with agreed-upon quality experimental (and
simulated69,134) data to quantify the current state-of-the-art in DP predict-
ability, causal relationships and importance ranking vis-a-vis DP impact on
antibody developability.

Methods
Antibody datasets
The native antibody dataset. We collected 2,036,789 native human and
murine antibody sequences (Supplementary Fig. 1A). Briefly, we
assembled non-redundant sequences of human (heavy chains: IgD
173,342, IgM 173,437, IgG 170,473, IgA 171,174, IgE 165,992, and light
chains: IgK 198,255, IgL 187,378) and murine (heavy chains: IgM
198,967, IgG 199,326, and light chains: IgK 198,795, IgL 199,650) native
antibody variable region sequences (Supplementary Fig. 1A). Antibody
sequences were majorly sourced from Observed Antibody Space
(1,738,091 sequences)135 in addition to including our own
experimentally-generated sequences (total of 298,698 sequences with the
IgD, IgK and IgL human datasets) to provide balanced antibody count
among all isotypes. Experimental sequences were generated following a
protocol inspired by ref. 136, starting from human blood (see Methods),
and exported as VDJ clones from raw sequencing files using MiXCR
(version 3.0.1)137. OAS sequences were aligned and IMGT-numbered
using the IMGT/High V-QUEST138. The kappa and lambda light chain
types (IgK and IgL) were often referred to as isotypes in this manuscript
to provide a cohesive reading experience.

The human-engineered antibody datasets
(1) The therapeutic antibody dataset (mAb). A total of 782 therapeutic
antibody sequences belonging to the “whole mAb” format were obtained
from TheraSAbDAb as per July 2021139. First, all mAb sequences were
aligned to both murine and human germlines (species of interest) with the
antigen receptor alignment and annotation tool ANARCI140. We used the
same IMGT-numbering scheme as implemented in the native dataset
sequences numbering to ensure consistentmethodology. For each chain, we
kept the alignment with the highest germline certainty (human or mouse)
by selecting for the highest V gene identity (the sequence identity over the
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V-region to the most sequence-identical germline). In case V gene identity
was equal for murine and human alignments, we kept the alignment with
the highest J gene identity (the sequence identity over the J-region to the
most sequence-identical germline). To ensure the accuracy of annotations,
we excluded sequences withV gene identities <0.7 (Supplementary Fig. 1B).

(2) The patented antibody database (PAD). Under a non-commercial
agreement with NaturalAntibody, we obtained a total of ≈ 240 K unpaired
variable region antibody sequences (Supplementary Fig. 1B). Sequences
were originally extracted from patent documents from intellectual property
organizations and bioinformatic databases (WIPO: world intellectual
property organization,USPTO:United States Patent andTrademarkOffice,
EBI: European Bioinformatics Institute, DDBJ: DNAData Bank of Japan),
andminedas explainedby ref. 58. Sequenceswereprovidedwith species and
V-gene annotationmetadata and IMGT-numbered.We selected for human
and murine sequences and classified them into heavy (IgH) and light (IgK
and IgL) chains based on the corresponding V-gene annotation resulting in
a final count of 223,613 PAD sequences (Supplementary Fig. 1B).

(3) Humanized mouse dataset (Kymouse). We obtained 209,452 IgM VH

sequences from humanized transgenic mice (Kymouse)86. Sequences were
downloaded from OAS135, and their structures were predicted with ABB as
explained above. Finally, we also measured their sequence and
structure DPs.

The in silicomutated antibody dataset. We first sampled 500 wildtype
(WT) antibodies from the human native VH dataset (100 samples per
isotype for IgM, IgD, IgG, IgA and IgE). We generated all possible acid
substitutions for each antibody, resulting in a total of 301,777 sequences
for which we predicted/computed their sequence-based developability
parameters as detailed above. We used this data to perform the sequence
DP sensitivity analysis described in Fig. 4.

Antibody structure prediction
WeusedABodyBuilder (ABB) to predict the structures of antibody variable
regions37. The high-throughput version of ABB is provided as an image for
Vagrant VirtualBox (version 2.2.16), known as SabBox.We ran this version
with default parameters using unpaired single chain input (heavyor light) to
predict all structures in all datasets, unless mentioned otherwise. The ABB
pipeline includes a relaxation with MODELLER after the initial antibody
structure prediction.

In silico calculation of developability parameters
Calculation of sequence-based developability parameters. Mole-
cular parameters: the molecular weight of an antibody variable region
sequence was calculated using the Peptides R package version 2.4.4141,142.
We calculated the antibody length and the average residue weight using
custom R scripts143. Amino acid categorical composition: Using the
Peptides R package and a customR script, we calculated the proportional
(%) content of amino acid categories142 (Supplementary Table 1) by
dividing the occurrences of the amino acids in one group by the length of
the antibody variable region sequence. pI and charge: To compute the pI
and charge of a given sequence, we used the Peptides R package141 using
the “Lehninger” scale between pH = 1 and pH = 14 with step size = 1 (14
data points). Extinction coefficient and molar extinction coefficient (for
all and for cysteine bridges): Calculations were performed as mentioned
in refs. 144,145 using custom R scripts. Hydrophobicity and hydro-
phobic moment: To compute hydrophobicity and the hydrophobic
moment, we used the Peptides R package142, the scale of choice was
Eisenberg. For hydrophobic moment calculation, we selected ten amino
acids for the length of the sliding window size based on our under-
standing of the antibody secondary structure and as explained by ref. 146.
We also specified the angle value as 160 as recommended by ref. 147.
Instability index and aliphatic index: The aliphatic index is defined as
the relative volume occupied by aliphatic side chains (Alanine, Valine,

Isoleucine, and Leucine—Supplementary Table 1). It may be regarded as
a positive factor for the increase of thermostability of globular proteins148.
The instability index was first developed by ref. 149 to reflect the stability
of proteins based on their content of certain dipeptides that were found to
be associated with degradation tendency. We calculated the instability
and aliphatic indices using the Peptides R package141. Protein solubility
prediction:We used SoluProt (version 1.0) to predict the solubility index
for antibody variable region sequences150. We chose this tool as it allows
the consideration of protein expressibility into its solubility score pre-
diction while proving comparable performance compared to other state-
of-the-art solubility prediction tools150. Sequences with solubility scores
above 0.5were predicted to be solublewhen expressed inEscherichia Coli.
Immunogenicity prediction: We used netMHCIIpan version 4.040 to
estimate the immunogenicity of the antibody variable region sequences.
Briefly, we examined the global immunogenicity of the antibody
sequences by predicting their affinities for HLA II supertypes that are
found in 98% of the global population111. We obtained the following
numerical values from these calculations including (i) minimum rank,
(ii) number ofweak binders (percentage rank >2 and<10), (iii) number of
strong binders (percentage rank < 2), (iv) full average percentage rank
and (v) the number of antibody regionswhere themaximal immunogenic
peptide stretches (maximal_immunogenicity_region_span). As these
calculations are computationally intensive, we computed the immuno-
genicity DPs on 10% only of the native, Kymouse and PAD datasets.

Calculation of structure-based developability parameters. First, we
added hydrogen atoms to each antibody variable region structure that we
previously built with ABodyBuilder using the Reduce software (version
3.24.130724)151. Hydrogenated structures were used as an input (pdb
format) to calculate structure-based developability parameters as they
were reported to provide a closer chemical representation of their
potential in vivo structures152. As detailed in Supplementary Data 1, we
used BioPython (version 1.79) to compute secondary structure
parameters153, FreeSASA (version 2.1.0) for solvent accessibility
predictions154, PROPKA (version 3.4.0) for the calculation of thermo-
dynamic and electrochemical parameters155 and ProDy (version 2.0) to
count free and bridged cysteines156. We used custom Python scripts for
the calculation of developability index (DI) and spatial aggregation
propensity (SAP) following the work of Lauer and colleagues56,157. We
used the original Black-Mold hydrophobicity scale as suggested by
ref. 124. Finally, we usedArpeggio (version 1.4.1) to calculate interatomic
interactions after converting antibody hydrogenated structures to cif
format158.

Parameter correlation calculation and visualization
For the analysis in Fig. 2b, Supplementary Fig. 9A, Supplementary Fig. 6 and
Supplementary Fig. 7, we computed pairwise developability parameter
correlations (Pearson) matrices using the ‘cor()‘ function from the ‘base’
package in R (version 4.0.3). for each isotype/species combination to
investigate parameter associations and redundancies. Missing data was
accounted for by choosing the argumentuse.pairwise.obs= completeoption
in the function. We visualized the correlation matrices using Complex-
Heatmap R package version 2.9.4159 and annotated the heatmaps with the
threshold-specific ABC-EDA/MWDS algorithm output160.

Determination of the minimum weight dominating set of devel-
opability parameters
To investigate the redundancy of developability parameters (DPs), we first
constructed undirected weighted network graphs for each species and iso-
type where the nodes represent DPs and the edge weights represent the
pairwise Pearson correlation values (as in Supplementary Fig. 9B). For this
purpose, we constructed and visualized networks with Cytoscape 3.9.1161,162.
The constructed networks could include up to three distinct classes of
pairwise relationships for a given correlation threshold (from 0.1 and 0.9 in
intervals of 0.1): (1) isolated nodes representing DPs that have correlation
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values below the given threshold with all other DPs, (2) doublets (exclusive
pairs) where two DPs are solely correlated with each other (above the given
threshold), and (3) correlation subnetworkswheremore than twoDPs form
correlation clusters.

Secondly, the minimumweight dominating set (MWDS) for a specific

network at a given correlation thresholdwas defined as the set of parameters
for which the sum of the associated edge weights is minimal59. Thus, the
MWDS is a subset of nodes where each node in the network is either in the
MWDS or connected to a member of it by an edge59. Based on this defi-
nition, we included all DPs from classes (1) and (2) in theMWDS,where no
meaningful selection based only on correlation can be made. However,
finding the dominating parameters among class (3) DPs is an NP-hard
problem. Thus, we implemented an algorithm described by Shetgaonkar
and Singh, which leverages the local optimization of an artificial bee colony
algorithm guided by iterative global estimations of distribution (ABC-EDA
algorithm) to approximate optimal solutions59. Ultimately, this algorithm
classifies class 3 DPs as either “dominant” or “redundant”. The dominant
DPs were added to the final MWDS.

Correlation distance dendrograms
This analysis aims to examine the similarities in the pairwise associations of
developability parameters among isotypes and species of the native and
human-engineered antibody datasets (Fig. 3b and Fig. 7a). For this analysis,
we transformed the isotype- and species-specific parameter correlation
matrices (sequence and structure parameters separately) into numerical
vectors. Subsequently, we quantified the pairwise Pearson correlation dis-
tance for these numerical vectors using the ‘get_dist‘ function from the R
package factoextra version 1.0.7163. We finally clustered the resulting dis-
tancematrices using the hierarchical clustering ‘hclust‘ command following
the complete linkage method from the stats package, version 4.0.3164, where
the height of the dendrogram represents the Pearson distance (0–1).

Analysis of parameter sensitivity to single amino acid substitu-
tion: excess kurtosis and range
Excess kurtosis: To investigate the impact of changes in the amino acid
sequence on DP values (sensitivity—analysis in Fig. 4 and Supplementary
Fig. 12), we normalized (mean-centered) the DP values of the mutated
antibody dataset by subtracting their mean and then dividing by their
standard deviation. TheDPdistributions of allmutants of eachwt-antibody
were analyzed by calculating and comparing two metrics First, the excess
kurtosis, defined as Excess kurtosis ¼ μ4

σ4 � 3, where μ4 is the fourth central
moment and σ the standard deviation of the normalized DP values. An
excess kurtosis of 0 represents that of a normal distribution. It increaseswith
peakedness and decreases with uniformity of the distribution, under the
assumption that it is bell-shaped.Thus,while ahigh excess kurtosis indicates
a small change induced by single amino acid substitutions on average or low
average sensitivity, low excess kurtosis suggests high average sensitivity. The
secondmetric is the range of a distribution, defined as the distance between
the highest and lowest DP values and represents the maximum normalized
shift that is inducible by a single amino acid substitution.

Pairwise developability profile correlations and pairwise
sequence similarity studies
We define the antibody developability profile (DPL) as a numerical vector
that carries the values of developability parameters in a fixed order for a
given antibody sequence. Developability parameter values were mean-
centered and scaled to unit variance (normalized)165. Of note, scaling for a
givengroupof antibody sequenceswasperformedafter accounting for chain
type and species.

For the analysis in Fig. 5a, b, we defined the pairwise developability
profile correlation (DPC) as the Pearson correlation value between a pair of
sequence developability profiles. We computed the amino acid-based
sequence similarity between two antibody variable region sequences (A and
B) as follows:

Where LD(A,B) represents the Levenshtein distance between A and B. We
used the stringdist R package version 0.9.8166 and the Levenshtein python
package version 0.20.8 to calculate LD167.

In Fig. 5c we inspected the relationship between sequence similarity
and normalized developability profile (DPL) similarity by first examining
the proximity of human heavy chain antibodies that belong to the same
sequence similarity cluster on the 2D PCA projection plane of the devel-
opability space (RN), where N is the number of DPs that makes a develop-
ability profile. In this analysis, we used the MWDS DPs (which have full
values for all antibodies) as identified by the ABC-EDA algorithm for the
human IgG dataset at an absolute Pearson correlation coefficient threshold
of 0.6, accounting for 46 DPs (N = 43, Supplementary Table 2). The PCA
was computed using the Python packages scikit-learn version 1.1168 and
dask-ml version 2022.5.27169. Sequence similarity groups were identified
using USEARCH version 11.0170 as groups of 10000 (or more) antibodies
that share at least 0.75 sequence similarity as defined by Levenshtein dis-
tance (Supplementary Fig. 16B).

Then, to quantify the relationship between sequence similarity and
developability profile similarity, we studied the correlation between the
pairwise Euclidean distance (ED) in the developability space (RN) and the
pairwise normalized LD for a sample of 5000 human IgM antibodies as in
Supplementary Fig. 16C (computationally intensive process; 12,500,000
data points for eachEDandLDcalculation).Weensured that these sampled
antibodies belong to the same IGHV gene family to exclude the effect of
IGHV family variance on the LD computations64,65. Antibody pairs with
ED ≥ 15 were considered outliers and were excluded from this analysis
(forming 0.8% of total data points).

Of note, the PCAs from this analysis were used to examine the posi-
tioning of the human human-engineered antibody datasets within the
developability space of the human native antibodies (Fig. 7b) and the role of
native antibody isotype and germline gene annotation in the positioning
within the developability space (Supplementary Fig. 20A, Supplementary
Fig. 21A).

Predictability of developability parameters
We used the human VH antibody sequences (854,418 antibodies) and their
computed DP values (normalized; mean-centered) to assess the predict-
ability of developability parameters in twomachine-learning tasks (ML task
1 andML task 2). Of note, we excludedmouse antibodies andVL sequences
to avoid species- and chain-specific biases, ensuring greater data homo-
geneity. In both tasks, the predictability of DPs was assessed by computing
the coefficient of determination (R2) between observed and predicted DP
values171.

ML task 1; predicting the values of the same (single) missing DP. For
this task (Fig. 6a, b, and Supplementary Fig. 17A), we randomly split the
human VH antibody sequences into two subsets: (i) training set; con-
taining ~80% of sequences (683,534), which was further subsampled to
derive training sets of variable sizes (50, 100, 500, 1000, 10000, 20000).
Specifically, for each size, we defined 20 independent training subsets (ii)
test set; containing the remaining (~20%) sequences (170,884). Then, we
used two types of embeddings to train multiple linear regression (MLR)
models: (1) single-DP-wise incomplete developability profiles (low-
dimensionality embeddings—order of 10 s) and (2) antibody sequence

Normalized Levenshtein distance ¼ LDðA; BÞ
MaxðlengthðAÞ; lengthðBÞÞ Sequence similarity ¼ 1� Normalised Levenshtein distance
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encodings obtained from the protein language model (PLM) ESM-1v
(high dimensionality embeddings—order of 1000 s74–76). Beginning-of-
sentence (BOS) processing was used to compress the vectors produced by
the PLM to avoid biases that might occur by averaging the entire vectors
(as detailed below in “Antibody sequence encoding with PLM”). Finally,
we compared the predictive power of both embeddings to predict the
values of DPs in the test set after deleting single-DP column values at a
time. For each type of embedding, we predicted the missing DP using
linear regressors, trained with the MSE loss. We did not opt for more
complex types of regressors to contrast the occurrence of overfitting. The
DP value prediction was repeated 20 times (using the 20 independently
trainedMLRmodels per training set size) and the mean R2 was reported.

The native-trained MLR models from this task were then utilized to
predict the values of MWDS DPs (Supplementary Table 2) in the human-
engineered datasets (shown in Fig. 7c). Models were trained using the
training set size, which achieved the highest prediction accuracy before
plateauing (1000 antibodies for DPL-based predictions 20 K antibodies for
PLM-based predictions).

ML task 2; predicting the values of randomly missing DPs. For this
task (Fig. 6a, c and Supplementary Fig. 17B), we randomly deleted (either
2% or 4% of) DP values from subsamples of the human VH antibody
sequences (683,534 sequences defined as training set in ML Task 1). We
then predicted the deleted (missing) data using the multivariate impu-
tation by chained random forests (MICRF) algorithm79 via the mis-
sRanger R package172. We repeated this step 20 times for each subsample
size (50, 100, 500, 1000, 10000, 20000 antibodies) and reported the
mean R2.

For both ML tasks—and both embedding types implemented in ML
Task 1—weperformed ablation studies by randomly permuting the column
values in the input datasets for the ML models, and confirmed that the
prediction accuracy was abolished (R2 ≤ 0).

Antibody sequence encoding with PLM
Antibody sequences were encoded using a Protein LanguageModel (PLM).
PLMs are deep neural networks designed to transform protein sequences
into contextual embedding vectors depending on the entirety of the protein
sequence. In our experiments, we use the PLM ESM-1v since this model is
optimized to predict the effects of mutations on the function of proteins75.

To extract a global, fixed-size representation from PLM embeddings,
we use a compression scheme based on the Beginning-Of-Sequence (BOS)
token, as is customary for LLMs, e.g., for the [CLS] token in ref. 173. BOS
tokens are trained to provide a summarized representation of the entire
protein sequence and are, therefore, a natural choice to represent antibodies.

Graphical illustrations
We used BioRender.com to create the illustrations in Fig. 1, Fig. 4a, and
Fig. 6a. Antibody structural images were produced in PyMOL v2.5.5174. We
generated the remaining figures in RStudio142 using the ‘ggplot2’ package175

and figure panels were aggregated with Adobe Illustrator176.

Statistics and reproducibility
All statistics were calculated using the rstatix R package (version 0.7.2). The
suitable statistical test used in each analysis is reported accordingly when
applicable. The sample size, the number of iterations, replications and data
shuffling are also reported for all experiments included. Bias in develop-
ability parameter value prediction was avoided by including only non-
redundant MWAS DPs in the predictability experiments.

Experimentally generated native antibody sequences (human
IgD, IgK and IgL)
Human subjects, B-cell isolation and RNA extraction. Human per-
ipheral blood was obtained from one healthy volunteer. Sample acqui-
sition was approved by the Regional Ethics Committee of South-Eastern
Norway (project 6544) and informed consent was obtained. All ethical

regulations relevant to human research participants were followed.
Samples were collected in BD Vacutainer® K2 EDTA tubes, and pan B
cells were isolated by negative selection using MACSxpress® Whole
Blood B Cell Isolation Kit (Miltenyi Biotec). The cells were washed with
PBS and remaining erythrocytes were lysed using Red Blood Cell Lysis
Solution (Miltenyi Biotec). RNA was extracted using RNeasy Kit (Qia-
gen). RNA quality and concentration were measured using a Nanodrop
spectrophotometer (Thermo Fisher Scientific).

cDNA synthesis. 200 ng of RNA was used for cDNA synthesis with 1 µl
of 100 µM isotype-specific reverse primers, 1 µl of 10 mM dNTP Mix
(Thermo Fisher Scientific) and nuclease-free water up to 14.5 µl. Mixture
was incubated for 5 min at 65 °C, briefly placed on ice and centrifuged.
Subsequently, 4 µl of 5X RT buffer (Thermo Fisher Scientific), 0.5 µl of
RiboLock RNase Inhibitor (Thermo Fisher Scientific), and 1 µl Maxima
RT (Thermo Fisher Scientific) were added and cDNA synthesis was
performed at 50 °C for 30 min with reaction termination at 85 °C for
5 min. The obtained cDNA was purified using MinElute PCR Purifica-
tion Kit (Qiagen) and eluted in 20 µl of EB buffer.

5’Multiplexing (MPTX) PCR. 4 µl of cDNAwere amplified with 0.5 µl of
100 µM Read2U primer, 1 µl of chain-specific 5′ forward leader primer
mix (Supplementary Data 2), 10 µl of KAPA HiFi HotStart ReadyMix
(Roche Molecular Systems), and 4.5 µl of nuclease-free water at the fol-
lowing conditions: 96 °C—5 min; 25 cycles of 95 °C—20 s, 68 °C—20 s,
72 °C—20 s; 72 °C—5 min; 4 °C—hold. Amplified product was run in a
1.2% agarose gel in TBE buffer. Bands corresponding to the amplified
regions of interest (~480 bp) were cut and purified using QIAquick Gel
Extraction Kit (Qiagen) with elution in 20 µl of EB buffer.

NGS library generation. For indexing PCR, 10 ng of the 5’ MTPX
product were mixed with 0.5 µl of 100 µM P5_R1 forward indexing
primer, 0.5 µl of 100 µM P7_R2 reverse indexing primer containing
Illumina index sequence, 12 µl of KAPA HiFi HotStart ReadyMix, and
nuclease-free water up to 24 µl and reaction was performed at the fol-
lowing conditions: 96 °C—5 min; 10 cycles of 95 °C—30 s, 68 °C—30 s,
72 °C—30 s; 72 °C—10 min; 4 °C—hold. The resulting libraries were
bead-purified with AMPure XP (Beckman Coulter) using a 1:1 beads
ratio. The molarity of the libraries was determined using Qubit™ 4
Fluorometer. The final libraries were inspected with BioAnalyzer (aver-
age product length 550 bp) and sequenced on the Illumina MiSeq plat-
form (V3 chemistry 300×2 bp). The raw sequencing data is available on
the Sequence Read Archive (BioProject number PRJNA1043047).

Validation datasets
The crystal structures dataset. We obtained 859 crystal structures of
paired-chain antibodies (Fv regions) from the antibody structure data-
base (AbDb)177. We extracted the amino acid sequences for both (heavy
and light) chains and utilized them to further predict the structure of
paired and unpaired antibody chains in silico. We used several tools to
benchmark our analysis including ABodyBuilder37, ABodyBuilder238,
IgFold39, AlphaFold2178, and AlphaFold-multimer179. Both ABB and
ABB2 pipelines include a relaxation step after the initial antibody
structure prediction. Of note, the alignment process and regional
sequence definition (CDRs and FRs) was performed similarly to the
processing steps mentioned for the therapeutic antibodies dataset (see
Methods). We finally computed the values of structure-based DPs on
these structures to perform the rigid model analysis described in Sup-
plementary Fig. 3.

The in silico mutated antibody dataset at CDRs. We subsampled 10
WT antibodies per isotype, except 9 for IgD, and all their corresponding
CDR mutants (a total of 30,015 antibody sequences) from the in silico
mutated dataset (seeMethods), and predicted their structures (includingWT
antibodies) using IgFold version 0.1.039. We used IgFold for this task as
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template search-based tools (including ABB) tend to utilize an identical
template for antibodies that are within the distance of a single amino acid
substitution from their wildtype antibody180. We used this dataset to conduct
the structural variance study described in Supplementary Fig. 11A.

The AbDb antibody pairs. To study the structural variance of antibody
mutants with a single aa difference, we sourced 10 pairs of antibodies
(Supplementary Table 3) from the public AbDb database177. We ensured
that each pair of antibodies (1) has the same sequence length and (2) the
different (single) amino acid is located in the loops. This dataset was used
in the structural variance study described in Supplementary Fig. 11B, C.

Molecular dynamics simulations
We selected five paired-chain (VH and VL) antibody structures from the
crystal structures dataset with the best resolutions (Supplementary Table 4)
to perform classical MD simulations. Two antibody structures (4TRP and
5WCA) contained missing atoms, which were corrected with the MOD-
ELLER’s function “complete_pdb”181. Hydrogens were added to initial
antibody structures using Reduce (151). All MD steps were performed in
Gromacs v.2022.4182. We used AMBER99SB-ILDN183 force field and
transferable intermolecular potential with 3 points184 water model for MD
system preparation185. The simulation box was defined as a cube centered
around the antibody placed at the 1 nmdistance between the solute and the
box. All systems contained both Na and Cl ions at 0.1mol/liter salt con-
centration.Weminimized the energy of each initial systemwith the steepest
descent algorithm186 for 20000 steps. For the equilibration187, we first con-
sidered constant volume simulations at 300 K for 100 ps and followed up by
constant pressure simulations at 1 bar for another 10 ns. During these
equilibration simulations,where applicable, we used theParrinello-Rahman
barostat188 and V-rescale thermostat189 with velocity rescaling using 0.1 ps
and 0.1 ps time constants, respectively. During all the simulations, we
constrained the length of all bonds using the linear constraint solver
(LINCS) algorithm190 and kept the water molecules rigid via the SETTLE
algorithm191. We used particle mesh Ewald (PME)192 for treating the elec-
trostatic interactions with a real-space cutoff of 1.0 nm192. We simulated a
100 ns independent production run with 2 fs time step for each system, all
continued from the last stepof theNPTsimulations at 300 Kand1 barusing
a 2 fs time step. Further details of the parameter specifications can be found
in .mdp files. MD simulations were performed starting from crystal struc-
tures and ABB-predicted models for the five selected antibodies (Supple-
mentary Table 4), followed by the computation of structure-based DPs on
the convergent frames (4001 frames per antibody per structure origin). This
data was used to perform the molecular dynamics analysis described in
Supplementary Fig. 4.

Computation of the overlap index (η)
For the analysis in Supplementary Fig. 4C, we used the ‘overlapping’ R
package193 to quantify the overlap between the distributions of DP values
when measured on the MD-simulated crystal structures and the MD-
simulated ABB-predicted structures.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Datasets are available on GitHub: https://github.com/csi-greifflab/
developability_profiling. Structural data, such as predicted models and
MD trajectories, are stored on Zenodo194. The raw sequencing data for the
human donor is available on the Sequence Read Archive (BioProject
number PRJNA1043047).

Code availability
Codes are available on GitHub from: https://github.com/csi-greifflab/
developability_profiling.
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