Skip to main content
. 2024 Feb 20;14:4206. doi: 10.1038/s41598-024-51438-4

Table 9.

Summarize the performance of the DL models reviewed and the proposed model.

Study Year Dataset Algorithm Activation Function Data Preprocessing Technique Accuracy Metrics
9 2023 PID CNN, DNN, and MLP Sigmoid or Soft max - Data and feature augmentation by replacing missing values with the mean value 98.1%
10 2022 PID SVM, LR, ANN, CNN, RNN, LSTM

Sigmoid and

RELU

- Replace missing values with the mean value 81%
11 2021 PID DT, NN KNN, RF, NB, AB, LR and SVM RELU

-WEKA Analysis Tool

- Replace the missing values with the mean value

- Pearson’s correlation technique

88.6%
12 2021 PID VAE, SAE, MLP and CNN Sigmoid

- Normalization using Max–Min, Mean, and Logarithmic

- Data augmentation using a VAE and feature augmentation using the SAE

92.31%
13 2020 PID MLFFNN SELU and ELU - Imputing the missing values with the Mean value 84.17%
14 2021 PID MLP and SVM Gaussian RBF Imputing the missing values with the Mean value 77.474%
15 2020

PID

and DT

DNN Softmax and linear Bach normalization using the mean value 99.4112%
The Proposed Model MUCHD DNN and MLP ReLU and Sigmoid Imputing the missing values with the Mean value 99.8%