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A new model for determining risk 
of male infertility from serum 
hormone levels, without semen 
analysis
Hideyuki Kobayashi *, Masato Uetani , Fumito Yamabe , Yozo Mitsui , Koichi Nakajima  & 
Koichi Nagao 

We investigated a screening method using only serum hormone levels and AI (artificial intelligence) 
predictive analysis. Among 3662 patients, numbers for NOA (non-obstructive azoospermia), OA 
(obstructive azoospermia), cryptozoospermia, oligozoospermia and/or asthenozoospermia, normal, 
and ejaculation disorder were 448, 210, 46, 1619, 1333, and 6, respectively. “Normal” was defined as 
semen findings normal according to the WHO (World Health Organization) Manual for Human Semen 
Testing of 2021. We extracted age, LH (luteinizing hormone), FSH (follicle stimulating hormone), PRL 
(prolactin), testosterone, E2 (estradiol), and T (testosterone)/E2 from medical records. A total motility 
sperm count of 9.408 × 106 (1.4 ml × 16 × 106/ml × 42%) was defined as the lower limit of normal. The 
Prediction One-based AI model had an AUC (area under the curve) of 74.42%. For the AutoML Tables-
based model, AUC ROC (receiver operating characteristic) was 74.2% and AUC PR (precision–recall) 
77.2%. In a ranking of feature importance from 1st to 3rd, FSH came a clear 1st. T/E2 and LH ranked 
2nd and 3rd for both Prediction One and AutoML Tables. Using data from 2021 and 2022 to verify the 
Prediction One-based AI model, the predicted and actual results for NOA were 100% matched in both 
years.
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Infertility is a problem estimated to affect 72.4 million females and males worldwide. The WHO estimates that 
9% of couples worldwide struggle with fertility problems and that male factors are involved in 50% of them1,2.

Conventional semen analysis is the first step in the diagnosis of male infertility. The results of semen analysis 
reflect spermatogenesis in the testes, the patency of seminal ducts, and the glandular secretory activity3. The 
evaluation of semen parameters is currently based on the standards defined in the Laboratory Manual for the 
Examination and Processing of Human Semen created by WHO4.

In addition to the semen analysis, serum hormonal levels are measured when investigating for male infertil-
ity. LH, FSH, total testosterone, E2, PRL, and T/E2 are measured in male infertility testing in the clinical setting.

Semen analysis and serum hormone levels indicate testicular function and the endocrine status of the hypo-
thalamic-pituitary–testicular axis. Pulsatile secretion of GnRH stimulates FSH and LH secretion from the anterior 
pituitary. FSH stimulates Sertoli cells to induce spermatogenesis5. Sertoli cells secrete inhibin B and Leydig cells 
secrete testosterone. Testosterone is metabolized to E2 by aromatase. Inhibin B and E2 have negative feedback 
effects at the hypothalamic and pituitary levels. Both FSH and testosterone are required for spermatogenesis6. 
FSH is often elevated in spermatogenic dysfunction, but LH and testosterone secretion may be preserved7,8.

Significant relationships between semen analysis results and serum hormone levels were reported some time 
ago9. A later study also found associations of FSH, LH and testosterone levels with semen analysis results10.

However, since conventional sperm analysis methods involve complex, manual inspection with a micro-
scope, they are labor intensive. In addition, many men are unwilling to be tested due to social stigma in certain 
parts of the world11. Although there are at-home sperm analysis kits for people to examine sperm condition by 
themselves, they are not a substitute for laboratory analysis12. Therefore, to address these issues, we believe that 
searching for a new method to determine the risk of male infertility is a valid research question.
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Since semen analysis results and serum hormone levels are correlated, we examined whether machine learn-
ing could be used to predict potential male infertility from serum hormone levels alone.

Machine learning is an applied technology for data that supports AI. A definition of machine learning is 
the field of study that gives computers the ability to learn without being explicitly programmed. Statistics and 
machine learning are quite different. Statistics was born out of statistical research, while machine learning was 
born out of computer science. They are very different in terms of data acquisition. Statistics is based on process-
ing the data collected for a purpose. Machine learning does not necessarily involve data obtained with a purpose 
from the beginning. In other words, statistics focuses on collecting and analyzing data to confirm hypotheses 
and estimates, whereas machine learning starts from the data, searches for regularities and features in it, and 
applies them as AI. The advantage of machine learning is that it can deal with the huge amounts of big data.

If a successful screening system applying this became commercially available, the risk of male infertility could 
be determined without the need for semen analysis.

Results
The mean age of the 3662 patients who underwent sperm analysis and serum hormone level measurement for 
male infertility from 2011 to 2020 was 36.271 years old (95% CI (confidence interval)) 36.038–36.505). The means 
of LH, FSH, PRL, testosterone, E2, and T/E2 were 5.681 mIU/mL (95% CI 5.545–5.817), 8.845 mIU/mL (95% 
CI 8.535–9.155), 10.540 ng/mL (95% CI 9.865–11.214), 4.741 ng/mL (95% CI 4.672–4.810), 26.166 pg/mL (95% 
CI 25.802–26.530), and 19.917 (95% CI 19.544–20.290), respectively. The detailed data are shown in Table 1.

The means of sperm volume, concentration, motility, and total sperm motility count were 2.849 ml (95% CI 
2.795–2.903), 41.830 X 106/ml (95% CI 28.858–54.801), 33.809% (95% CI 33.002–34.616), and 41.859 × 106 (95% 
CI 39.011–44.706), respectively. The detailed data are shown in Table 2.

Regarding male infertility, the 3662 patients were classified according to the results of semen analysis. Rates 
for NOA, OA, cryptozoospermia, oligozoospermia and/or asthenozoospermia, normal, and ejaculation disorder 
were 12.23% (n = 448), 5.73% (n = 210), 1.26% (n = 46), 44.21% (n = 1619), 36.40% (n = 1333), and 0.16% (n = 6), 
respectively. Table 3 shows the means for age, LH, FSH, PRL, testosterone, E2, T/E2, and sperm analyses (volume, 
concentration, motility, and total sperm motility count) for NOA, OA, cryptozoospermia, oligozoospermia or/
and asthenozoospermia, normal, and ejaculation disorder.

Figure 1 shows the AI prediction model for risk of male infertility generated using Prediction One software. 
The ROC curve is a “guess curve”. It is drawn by plotting sensitivity (true positive rate) on the vertical axis and 
specificity (false positive rate) on the horizontal axis. Generally, the larger the AUC, the better the machine learn-
ing performance. When determining normality or abnormality in a binary classification (0: normal, 1: abnormal) 
the machine learning model asks the question, “What is the probability of abnormality?” For example, when 
the threshold is 0.3, if the probability is greater than 0.3, this is determined as abnormal, and if it is less than 
0.3, it is determined as normal. Increasing the threshold value increases “Precision”, which indicates accuracy, 
but decreases “Recall”, which indicates comprehensiveness. Precision and Recall are in a trade-off relationship.

In the accuracy evaluation of the AI prediction model, AUC was 74.42%. In a ranking of the contribution 
of variables from 1st to 7th, FSH came a clear 1st. The ranking order for 2nd and below was T/E2, LH, age, 
testosterone, E2 and PRL. The values for Accuracy, Precision and Recall, and the F-value were 63.39%, 56.61%, 
82.53%, and 67.16%, respectively, when the threshold was 0.30. In addition, when the threshold was 0.49, the 
values for Accuracy, Precision and Recall, and the F-value were 69.67%, 76.19%, 48.19%, and 59.04%, respectively.

Table 1.   Means of age and serum hormone levels (LH, FSH, PRL, testosterone, E2, and T/E2).

n Mean 95% confidence interval

Age (y) LH 3662 36.271 36.038–36.505

(mIU/mL) 3652 5.681 5.545–5.817

FSH (mIU/mL) 3653 8.845 8.535–9.155

PRL (ng/mL) 3652 10.54 9.865–11.214

Testosterone (ng/mL) 3655 4.741 4.672–4.810

E2 (pg/mL) 3645 26.166 25.802–26.530

T (ng/dL)/E2 (pg/mL) 3642 19.917 19.544–20.290

Table 2.   Means of sperm analysis (volume, concentration, motility, and total sperm motility count).

Total:3662 n Mean 95% confidence interval

Sperm volume (mL) 3655 2.849 2.795–2.903

Concentration (X10A6/mL) 3656 41.83 28.858–54.801

Motility (%) 3656 33.809 33.002–34.616

Total sperm motility count (X10A6/mL) 3662 41.859 39.011–44.706
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n Mean 95% confidence interval

Age (y)

NOA 448 35.433 34.802–36.064

OA 210 35.81 34.846–36.773

Cryptozoospermia 46 37.044 34.659–39.428

Oligoasthenozoospermia 1619 37.473 37.11–37.836

Normal 1333 35.139 34.776–35.502

Ejaculation disorder 6 36.5 19.543–53.457

LH (miU/mL)

NOA 446 11.923 11.274–12.571

OA 210 4.758 4.407–5.108

Cryptozoospermia 46 6.793 5.555–8.032

Oligoasthenozoospermia 1614 5.169 5.021–5.317

Normal 1330 4.317 4.211–4.422

Ejaculation disorder 6 5.5 1.688–9.312

FSH (miU/mL)

NOA 446 26.991 25.757–28.226

OA 210 5.182 4.876–5.488

Cryptozoospermia 46 14.693 10.891–18.496

Oligoasthenozoospermia 1615 7.479 7.175–7.783

Normal 1330 4.786 4.654–4.917

Ejaculation disorder 6 10.85 -3.149–24.849

PRL (ng/mL)

NOA 446 10.474 9.987–10.961

OA 210 9.893 9.163–10.623

Cryptozoospermia 46 10.135 8.428–11.842

Oligoasthenozoospermia 1614 10.271 9.762–10.780

Normal 1330 10.997 9.262–12.732

Ejaculation disorder 6 12.15 6.881–17.419

Testosterone (ng/mL)

NOA 447 4.021 3.716–4.325

OA 210 4.53 4.277–4.783

Cryptozoospermia 46 4.552 3.813–5.291

Oligoasthenozoospermia 1616 4.804 4.711–4.896

Normal 1330 4.937 4.843–5.031

Ejaculation disorder 6 6.902 -2.815–16.618

E2 (pg/mL)

NOA 445 25.518 24.481–26.555

OA 207 25.865 24.538–27.191

Cryptozoospermia 46 28.615 23.575–33.655

Oligoasthenozoospermia 1611 26.391 25.774–27.007

Normal 1330 26.033 25.546–26.520

Ejaculation disorder 6 35.217 5.199–65.235

T (ng/dL)/E2 (pg/mL)

NOA 444 16.6 15.651–17.548

OA 207 19.288 17.913–20.663

Cryptozoospermia 46 17.83 14.063–21.597

Oligoasthenozoospermia 1611 20.237 19.671–20.805

Normal 1328 20.823 20.191–21.454

Ejaculation disorder 6 16.744 6.855–26.633

Sperm volume (mL)

NOA 445 2.877 2.705–3.048

OA 209 2.107 1.9–2.325

Cryptozoospermia 46 2.748 2.276–3.22

Oligoasthenozoospermia 1618 2.808 2.725–2.89

Normal 1333 3.017 2.933–3.1

Ejaculation disorder 4 0.075 -0.005–0.155

Concentration (× 106/mL)

NOA 448 0 0–0

OA 210 0 0–0

Cryptozoospermia 46 0.01 0.01–0.01

Oligoasthenozoospermia 1619 29.102 26.365–31.839

Normal 1333 79.379 44.032–114.727

Ejaculation disorder 0 * *

Continued
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Figure 2 shows the AI prediction model for the risk of male infertility generated by AutoML Tables. In its 
accuracy evaluation, AUC ROC and AUC PR were 74.2% and 77.2%, respectively. In a ranking of the contribution 
of variables from 1st to 7th, FSH came a clear 1st. The ranking order for 2nd and below was T/E2, LH, testos-
terone, age, E2 and PRL. The feature importance percentages for FSH, T/E2, and LH were 92.24%, 3.37%, and 
1.81%, respectively. The values for Accuracy, Precision, and Recall, and the F-value were 52.2%, 49.1%, 95.8%, 
and 64.9%, respectively, when the threshold was 0.30. In addition, when the threshold was 0.50, the values for 
Accuracy, Precision and Recall, and the F-value were 71.2%, 83.0%, 47.3%, and 60.2%, respectively.

In addition, the semen analysis data from 2011 to 2020 was evaluated based on the relevant standards in the 
fifth edition of the WHO Manual for Human Semen Testing of 201013. We defined a total motility sperm count 
of 9.0 × 106 (1.5 ml × 15 × 106/ml × 40%) as the lower limit of normal, assigning a value of “0” if the total motility 
sperm count calculated for an individual patient was above 9.0 × 106 and a value of “1” when it was below. The 
AI prediction models for risk of male infertility were generated using Prediction One and AutoML Tables. In the 
accuracy evaluation of the AI prediction model based on Prediction One, AUC was 75.75%. In a ranking of the 
contribution of variables from 1st to 7th, FSH came a clear 1st. The ranking order for 2nd and below was T/E2, 
LH, age, testosterone, E2 and PRL. The values for Accuracy, Precision and Recall, and the F-value were 63.39%, 
56.28%, 84.24%, and 67.48%, respectively, when the threshold was 0.30. In addition, when the threshold was 
0.48, the values for Accuracy, Precision and Recall, and the F-value were 70.77%, 74.17%, 53.94%, and 62.46%, 
respectively (See Supplementary Fig. S1 online).

In the accuracy evaluation of the AutoML Tables-based model, AUC ROC and AUC PR were 82.1% and 
82.3%. In a ranking of the contribution of variables from 1st to 7th, FSH came a clear 1st. The ranking order for 
2nd and below was LH, T/E2, age, testosterone, E2 and PRL. The feature importance percentages for FSH, LH, 
and T/E2 were 73.67%, 8.63%, and 6.06%, respectively. The values for Precision, and Recall, and the F-value 
were 60.6%, 94.0%, and 73.7%, respectively, when the threshold was 0.30. In addition, when the threshold was 
0.50, the values for Precision and Recall, and the F-value were 73.1%, 73.1%, and 73.1%, respectively (See Sup-
plementary Fig S2 online).

We investigated the sperm analysis and serum hormone level data from 2021 and 2022 to verify the AI 
prediction model generated with Prediction One for the risk of male infertility. Figure 3 shows the confusion 
matrix in 2021 when the threshold was 0.30. The values for Accuracy, Precision, and Recall, and the F-value 
were 57.98%, 51.09%, 85.37%, and 63.90%, respectively. Figure 3 also shows the confusion matrix in 2022 when 
the threshold was 0.30. The values for Accuracy, Precision, and Recall, and the F-value were 68.07%, 70.73%, 
83.65%, and 76.65%, respectively.

In 2021, thirty-five (18.62%) of the 188 cases overall were azoospermia. There were 10 cases of OA, 24 cases 
of NOA, and 1 case of male MHH (hypogonadotropic hypogonadism). When validated using the AI prediction 
model for risk of male infertility, the result for OA was 70% correct (7 cases) while the results for NOA and MHH 
were 100% correct (24 cases). In 2022, fifty-three (31.93%) of the 166 cases overall were azoospermia. There were 
25 cases of OA and 28 cases of NOA. When validated using the AI prediction model for the risk of male infertility, 
the results for OA and NOA were 72% (18 cases) and 100% (28 cases) correct, respectively.

Discussion
Semen analysis is important for evaluating male infertility, and often the first test ordered when a couple presents 
for a fertility check or when a man is interested in permanent contraception14–16. Sperm motility, morphology, 
velocity, and concentration are investigated using microscopes and counting chambers by skilled embryologists. 
Other methods, such as CASA (computer-assisted semen analysis), which uses algorithms to automatically 
track spermatozoa, are also effective and are able to present qualitative information on sperm motility. However, 
semen analysis can only be done at a fertility clinic in most cases. In addition, many men feel uncomfortable 
about having semen analysis11.

Table 3.   Means of age, serum hormone levels, and semen analysis by disease state (NOA, OA, 
Cryptozoospermia, Oligoasthenozoospermia, Normal, and Ejaculation disorder).

n Mean 95% confidence interval

Motility (%)

NOA 448 0 0–0

OA 209 0 0–0

Cryptozoospermia 46 15.063 8.096–22.030

Oligoasthenozoospermia 1619 28.549 27.676–29.422

Normal 1333 57.533 56.95–58.116

Ejaculation disorder 1 2 *

Total sperm motility count (× 106/mL))

NOA 448 0 0–0

OA 210 0 0–0

Cryptozoospermia 46 0.004 0.002–0.006

Oligoasthenozoospermia 1619 17.014 15.55–18.479

Normal 1333 94.328 87.598–101.059

Ejaculation disorder 6 0 0–0
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Recently, the application of AI in medicine has been remarkable. Machine learning methods may improve 
prediction models17,18. We give examples of disease prediction using AI based on serum hormone levels in the 
following.

Although no accurate predictive models had previously been identified for hormonal prognosis in NFPA 
(non-functioning pituitary adenoma), Fang et al. demonstrated that machine learning models could accurately 
predict postoperative pituitary outcomes based on preoperative anterior pituitary hormones in NFPA19. In addi-
tion, it had been reported that elevated PTH (parathyroid hormone) levels are associated with higher mortality 
risks, and Kato et al. found that an AI model could predict elevated PTH levels among US adults. Their results 
suggest that even without serum calcium, phosphatase, and vitamin D levels, the model could predict elevated 
PTH levels20.

We could make an AI model for evaluating male infertility using serum hormone levels, without conventional 
sperm analysis, and the Prediction One-based model had high accuracy as indicated by an AUC of 74.42%. An 

Figure 1.   AI predictive analysis model using Prediction One.
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AI prediction model with similar accuracy was created with AutoML Tables. Prediction One and AutoML Tables 
are both tools for automatically generating machine learning AI models, but Prediction One is designed for 
companies in Japan and only supports Japanese. AutoML Tables is global and supports a wide range of industries. 
However, it requires a minimum of 1,000 data to create an AI model. The reason for using Prediction One and 
AutoML Tables is that they use different machine learning algorithms and methods, so different approaches 
can be tried by using them. In addition, we consider that a detailed comparison of the AI models generated by 
Prediction One and AutoML Tables would allow us to select the AI model with the better performance. Since 
we also believe that Prediction One and AutoML Tables would produce AI models with comparable accuracy, 
this should help ensure model reliability.

The feature importance ranking of the AI models indicated that FSH had the highest importance level among 
all features. Its importance was significantly higher than that of “T/E2” and “LH” in the second and third 

Figure 2.   AI predictive analysis model using AutoML Tables.



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17079  | https://doi.org/10.1038/s41598-024-67910-0

www.nature.com/scientificreports/

positions. Because the machine learning algorithms and methods used by Prediction One and AutoML Tables 
are different, there will be some differences in feature values. However, the feature rankings from first to third 
were the same for both, suggesting that the AI models generated are highly reliable.

Tradewell et al. reported a quadratic model that predicts probability of azoospermia from serum FSH levels21. 
They concluded that being able to predict the probability of azoospermia without semen analysis would be useful 
to urologists when counseling patients, especially when there are logistical hurdles in obtaining a formal semen 
analysis or for reevaluation prior to surgical sperm extraction. However, they stated that while predicting the 
probability of azoospermia from serum hormones will not replace semen analysis, the role of hormonal evalu-
ation may expand with the rise of at-home diagnosis. This is also our opinion. We would like to position our AI 
model as a convenient means of screening for male infertility prior to semen analysis. Thus, a limitation of this 
study is that the AI model created is not a substitute for semen testing.

Currently, at-home diagnostics for male infertility allow men to test their semen without the bother of going 
to a clinic and paying a higher charge. DTC (Direct-to-consumer) home sperm kits are available from numer-
ous companies and their use seems to be increasing at present. However, although at-home diagnostic kits for 
male infertility have advantages over traditional methods for semen analysis in terms of convenience and cost, 
they still have many limitations. First, current non-conventional sperm analysis methods are best used only for 
indicating whether a user should pursue further testing or not. In addition, because there is a lot of variability in 

Figure 3.   Validation of AI prediction model generated by Prediction One using data from 2021 and 2022.
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semen analysis, a single parameter does not define whether an individual is fertile or infertile. Second, at-home 
diagnostics for male infertility are not yet a replacement for laboratory analysis. We consider our AI model for 
determining risk of male infertility in patients from serum hormone levels to be superior to at-home diagnostics, 
since serum hormone levels are less variable than semen analysis parameters.

Meeker et al. characterized the relationship between serum hormone levels and semen quality among 388 
infertile men. They defined abnormal semen concentration as < 20 × 106/mL and found an adjusted odds ratio of 
1.0 for abnormal semen concentration in men with low serum FSH levels as compared with normal serum FSH 
levels and a 4.6 increased odds of semen concentration < 20 × 106/mL in men with elevated FSH levels compared 
to those with low FSH levels10. They reported that an FSH concentration greater than 10 IU/L was predictive of 
a sperm concentration of less than 20 × 106/mL, with a sensitivity of 0.55 (specificity = 0.79; positive predictive 
value = 28%)10.

In contrast to FSH, T/E2 and LH have not received much attention regarding feature importance. When 
predicting the risk of male infertility using an AI model, if it is not a case of determining the likelihood of azoo-
spermia, it would be important to evaluate not only FSH but also other features, such as T/E2 and LH. Regarding 
the difference between the models in predicting the two types of azoospermia, obstructive and non-obstructive, 
this may be related to the feature importance of T/E2 and LH, as well as that of FSH. However, we have insufficient 
information at present to determine a means by which AI could distinguish oligozoospermia, asthenozoospermia, 
teratozoospermia, and normozoospermia from obstructive azoospermia without semen analysis. Aromatase 
catalyzes the conversion of testosterone to E2. Aromatase inhibitors have been offered historically to patients 
with a T/E2 ratio < 1022–24 and have been shown to decrease serum E2 levels and improve semen parameters in 
men with a low T/E2 ratio24–26. Therefore, it is no coincidence that T/E2 was the second largest contributor to 
the AI model, since T/E2 is clearly related to sperm concentration and motility.

A potential limitation of this study was the collection of a single semen sample to assess semen parameters, 
and the collection of a single blood sample to measure serum hormone levels, from each patient. Also, the 
accuracy of the AI model may be compromised because it only considers hormone levels and semen analysis 
but does not take history into account; for example, of varicoceles. Plymate et al. examined three groups of men: 
normal fertile men, fertile men with a varicocele, and infertile men with a varicocele. They found that in normal 
men, there was a positive correlation between serum inhibition measurements and sperm concentration and 
testicular volume, whereas neither group of men with varicoceles exhibited these relationships9,27. However, 
since we consider our AI model to be a preliminary screening tool in semen analysis, high accuracy would not 
be required. Also, since our AI model is intended for screening purposes, it prioritizes recall over precision, a 
measure of accuracy, with an emphasis on comprehensiveness.

Currently, male infertility is widely considered a harbinger for a man’s general health and a growing body of 
literature has identified male infertility as a potential biomarker for both present and future health28–30. Salonia 
et al. reported that males with infertility had more medical comorbidities than fertile men31. Additionally, semen 
quality decreases as a man’s medical comorbidities increase32,33. As a result, a man who is seeking reproductive 
treatment may also benefit from an evaluation of his overall health because improvements in health can also 
manifest as an increase in semen quality34. Therefore, managing male infertility has wide health ramifications. 
Screening based on serum hormone levels using an AI model would not only be important for evaluating male 
patients for infertility but also for optimizing their future health.

In conclusion, ability to predict the probability of male infertility without semen analysis would be useful to 
all physicians and male patients. We believe that screening for male infertility by healthcare professionals other 
than reproductive specialists will benefit potential male infertility patients. In future clinical application, if the 
AI prediction model is introduced at health check-up centers and clinical laboratory companies, for example, it 
will be possible to determine the risk of male infertility by only measuring serum hormone levels in adult males, 
without semen analysis. If abnormalities are found, individuals would be referred to an infertility facility. The 
model has the potential to be an unprecedented, revolutionary new tool for comprehensively identifying male 
infertility patients who had remained undiscovered in the past.

Methods
Study population
We retrospectively obtained data from the medical records of 3,662 patients who underwent sperm analysis 
and serum hormone level measurement for male infertility from 1 January 2011 to 31 December 2020. We also 
obtained individual data for 188 and 166 patients, respectively, on whom sperm analysis and serum hormone 
level measurement were performed for male infertility in 2021 and 2022. For both, the age of subjects was defined 
as 18 years and over. The WHO Laboratory Manual for the Examination and Processing of Human Semen of 
20214 was used for sperm analysis. We measured serum hormonal levels of FSH, LH, PRL, total testosterone, 
and E2. The method of testing hormone levels was the ECLIA (electrochemiluminescence immunoassay assay). 
In the ECLIA, a magnetic particle-bound antibody (antigen) reacts with an antibody (antigen) labeled with a 
chemiluminescent substance, and then the emission from the resulting immuno-compound in a redox reaction 
on an electrode in the presence of TPA (Tripropylamine) is measured. In addition, the T/E2ratio was calculated 
using T in ng/dL and E2 in pg/mL. One of the exclusion criteria was “Underwent only semen analysis or serum 
hormone level measurement, not both”.

The Ethics Committee of Toho University Omori Medical Center has waived informed consent for this study. 
The study protocol was approved by the Ethics Committee of Toho University Omori Medical Center (approval 
No. M22267 20,104). All methods were performed in accordance with the relevant guidelines and regulations as 
well as with the Declaration of Helsinki. The presented study design was accepted by the Ethics Committee on 
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the condition that a document declaring an opt-out policy, by which any potential patients and/or their relatives 
could refuse inclusion in this study, was uploaded to the website of the Toho University Omori Medical Center.

Database
Age, LH, FSH, PRL, total testosterone, E2, T/E2, sperm volume, sperm concentration, sperm motility, and 
total sperm motility count were extracted from patient records and Excel (Microsoft Corporation, Redmond, 
Washington, U.S.A) sheets were created from the data. Total sperm motility count was calculated by multiplying 
sperm volume by sperm concentration by sperm motility. In addition, we defined a total motility sperm count 
of 9.408 × 106 (1.4 ml × 16 × 106/ml × 42%) as the lower limit of normal in accordance with WHO Laboratory 
Manual for the Examination and Processing of Human Semen of 2021, assigning a value of “0” if the total motil-
ity sperm count calculated for an individual patient was above 9.408 × 106 and a value of “1” when it was below.

Statistical analysis
Age, LH, FSH, PRL, total testosterone, E2, T/E2, sperm volume, sperm concentration, sperm motility, and total 
sperm motility count were extracted from patient records and IBM SPSS statistics software (Version 27) (IBM, 
Armonk, New York, U.S.A) sheets were created from the data. Statistical analysis was performed using IBM 
SPSS statistics software (Version 27). The mean and 95% confidence interval of each item were indicated by 
descriptive statistics.

Creation of machine learning prediction model requiring no coding using prediction one
Prediction One software (https://​predi​ction​one.​sony.​biz; Sony Network Communications Inc., Tokyo, Japan) 
was used to make a prediction model for determining risk of male infertility. Prediction One is only available 
in Japanese. It generates feature vectors from datasets using standard preprocessing methods, such as one-hot 
encoding for categorical variables and normalization for numerical variables. A gradient-boosting tree and a 
neural network are used as supervised machine learning models, each trained with hyperparameter tuning. An 
ensemble model of both trained models was constructed. Missing values are automatically handled by common 
machine learning techniques, one of them the gradient-boosting tree. The AUC was calculated using internal 
validation to evaluate the accuracy of the AI model. Prediction One makes the best predictive model using 
an artificial neural network with fivefold cross validation. It also evaluates the ‘importance of variables’ using 
a method based on permutation feature importance. This method was used to calculate the difference in the 
model output when a single variable was removed. The value of the difference in the model output indicated 
how much the model depended on the variables. The value of the difference was computed for each covariate 
and then averaged over those in the dataset35.

Prediction One read in the data of the 3662 patients who underwent sperm analysis and serum hormone 
level measurement for male infertility and automatically divided them into internal training and cross-validation 
datasets, in more or less equal halves. It automatically adjusted and optimized the variables to make it easy to 
process them statistically and mathematically and select an appropriate algorithm with ensemble learning. The 
missing values were automatically compared and Prediction One made the best prediction model using an ANN 
(artificial neural network) with internal cross-validation. The details are trade secrets and cannot be provided.

The data from 188 and 166 patients, who underwent sperm analysis and measurement of serum hormone 
levels for male infertility determination in 2021 and 2022, respectively, were used as an external validation dataset. 
Among them, the data of those with azoospermia in 2021and 2022 were extracted and used to validate the AI 
prediction model for male infertility risk.

Creation of machine learning prediction model requiring no coding using AutoML tables on 
Google cloud platform
AutoML makes the power of machine learning available to those with limited knowledge of machine learning. 
AutoML is built on Google’s machine learning capabilities for creating custom machine learning models. AutoML 
Tables enables automatic building and deployment of state-of-the-art machine learning models on structured 
data at massively increased speed and scale.

AutoML Tables read in the data of the 3662 patients who underwent sperm analysis and serum hormone 
level measurement for male infertility determination and automatically divided them into internal training and 
cross-validation datasets, in more or less equal halves. It automatically adjusted and optimized the variables to 
make it easy to process them statistically and mathematically and select an appropriate algorithm with ensemble 
learning. The missing values were automatically compared and AutoML Tables made the best prediction model 
using an ANN with internal cross-validation. The details are trade secrets and cannot be provided.

In addition, AutoML Tables indicates how much each feature impacts the model. This is shown in a feature 
importance graph. Values are provided as a percentage for each feature: the higher the percentage, the more 
strongly that feature impacts model training.

Data availability
K H has ownership for the data used with Prediction One and AutoML Tables. The data collected during this 
study is patient data obtained with the Ethics Committee’s approval and can be shared for other research. All 
data generated or analyzed during this study are included in this published article.
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