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Impact of Diabetes and Glycemia on 
Cardiac Improvement and Adverse Events 
Following Mechanical Circulatory Support
Christos P. Kyriakopoulos , MD;* Iosif Taleb , MD;* Eleni Tseliou , MD, PhD; Konstantinos Sideris , MD; 
Rana Hamouche , MD; Eleni Maneta , MD; Marisca Nelson, RN; Ethan Krauspe , MD; Sean Selko , MD; 
Joseph R. Visker , PhD; Elizabeth Dranow , PhD; Matthew L. Goodwin , MD; Rami Alharethi , MD;  
Omar Wever- Pinzon , MD; James C. Fang , MD; Josef Stehlik , MD, MPH; Craig H. Selzman , MD; 
Thomas C. Hanff , MD, MSCE; Stavros G. Drakos , MD, PhD

BACKGROUND: Type 2 diabetes is prevalent in cardiovascular disease and contributes to excess morbidity and mortality. We 
sought to investigate the effect of glycemia on functional cardiac improvement, morbidity, and mortality in durable left ven-
tricular assist device (LVAD) recipients.

METHODS AND RESULTS: Consecutive patients with an LVAD were prospectively evaluated (n=531). After excluding patients 
missing pre- LVAD glycated hemoglobin (HbA1c) measurements or having inadequate post- LVAD follow- up, 375 patients were 
studied. To assess functional cardiac improvement, we used absolute left ventricular ejection fraction change (ΔLVEF: LVEF 
post- LVAD−LVEF pre- LVAD). We quantified the association of pre- LVAD HbA1c with ΔLVEF as the primary outcome, and all- 
cause mortality and LVAD- related adverse event rates (ischemic stroke/transient ischemic attack, intracerebral hemorrhage, 
gastrointestinal bleeding, LVAD- related infection, device thrombosis) as secondary outcomes. Last, we assessed HbA1c dif-
ferences pre-  and post- LVAD. Patients with type 2 diabetes were older, more likely men suffering ischemic cardiomyopathy, 
and had longer heart failure duration. Pre- LVAD HbA1c was inversely associated with ΔLVEF in patients with nonischemic 
cardiomyopathy but not in those with ischemic cardiomyopathy, after adjusting for age, sex, heart failure duration, and left 
ventricular end- diastolic diameter. Pre- LVAD HbA1c was not associated with all- cause mortality, but higher pre- LVAD HbA1c 
was shown to increase the risk of intracerebral hemorrhage, LVAD- related infection, and device thrombosis by 3 years on 
LVAD support (P<0.05 for all). HbA1c decreased from 6.68±1.52% pre- LVAD to 6.11±1.33% post- LVAD (P<0.001).

CONCLUSIONS: Type 2 diabetes and pre- LVAD glycemia modify the potential for functional cardiac improvement and the risk for 
adverse events on LVAD support. The degree and duration of pre- LVAD glycemic control optimization to favorably affect these 
outcomes warrants further investigation.
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Type 2 diabetes (T2D) affects 34.1 million adults 
in the United States, accounting for 13% of the 
total adult population, and its prevalence is pro-

jected to increase.1 The association of T2D with 

cardiovascular disease is well established, with people 
with diabetes having a substantially increased risk for 
developing heart failure (HF).2–5 It has been shown that 
a 1% increase in serum glycated hemoglobin (HbA1c) 
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increases the risk for developing HF by 16%.6 At the 
same time, patients with HF exhibit marked insulin re-
sistance,7 which increases their risk of developing T2D. 
The above suggest a bidirectional relationship be-
tween T2D and HF, with each disease increasing the 
risk of each other and adversely affecting prognosis 
and outcomes.2,8

HF has long been deemed unidirectional and pro-
gressive, inevitably leading to advanced disease. This 
notion has been challenged by the occurrence of car-
diac improvement in different clinical settings, from 
spontaneous improvement in acute myocarditis and 
stress- induced cardiomyopathy, to facilitated improve-
ment by electrical or pharmacological therapies, and 
even advanced HF treated with left ventricular (LV) as-
sist devices (LVADs).9 Mechanical circulatory support 
(MCS) with LVADs is an established treatment modal-
ity for patients with refractory HF symptoms despite 
guideline- directed medical therapy. Through volume 
and pressure unloading of the ailing left ventricle, it can 
facilitate structural and functional cardiac improvement 
in varying degrees.10–17

In this study, we sought to investigate how T2D and 
glycemia affect the potential for functional cardiac im-
provement, as well as morbidity and mortality in pa-
tients with advanced HF on durable MCS. Findings 
from the advanced HF/MCS investigational setting 
could have prognostic and therapeutic implications for 
the greater population of patients with earlier stage HF 
and concomitant T2D or prediabetes.

METHODS
Data Sharing
The data and analytic methods of the study will be 
made available from the corresponding author upon 
reasonable request.

Study Population
Patients with advanced HF receiving a continuous- flow 
LVAD between May 2008 and November 2020 at 1 of 
the institutions comprising the Utah Cardiac Recovery 
Program (University of Utah Health and School of 
Medicine, Intermountain Medical Center, and George 
E. Wahlen Department of Veterans Affairs Medical 
Center) were prospectively evaluated. Patients were 
followed until LVAD explantation due to heart trans-
plantation or cardiac recovery, loss to follow- up, death, 
or study conclusion in February 2023. The study was 
approved by the institutional review boards of the par-
ticipating institutions, and written informed consent 
was obtained from all patients.

Patients with hypertrophic or infiltrative cardiomy-
opathy, baseline LV ejection fraction (LVEF) ≥40%, 
consent withdrawal, or inadequate (<3 months) post- 
LVAD follow- up (early heart transplantation, death, or 
unavailable echocardiographic follow- up) were ex-
cluded. To investigate the effect of T2D and glycemic 
control on LVAD- mediated cardiac recovery, we also 
excluded patients with missing HbA1c measurements 
before LVAD implantation or diagnosed with type 1 
diabetes.

Clinical Management and Definitions
Data collection included demographics, comorbidi-
ties, medications, laboratory values, and hemody-
namic data obtained via right heart catheterization 
before and closest to LVAD implantation. Cardiac 
imaging data were obtained before and during LVAD 
support to assess the structural and functional effects 
of mechanical unloading on the failing heart. The du-
ration of HF was defined as the time from HF symptom 
onset to LVAD implantation as ascertained through 
chart review. The estimated glomerular filtration rate 
was calculated using the Chronic Kidney Disease 
Epidemiology collaboration 2021 creatinine- based 

CLINICAL PERSPECTIVE

What Is New?
• Type 2 diabetes and pre- left ventricular assist 

device glycemia might affect the potential for 
functional cardiac improvement and the risk for 
adverse events on left ventricular assist device 
support.

What Are the Clinical Implications?
• Optimization of pre- left ventricular assist device 

glycemic control could improve outcomes in 
these patients.

• Findings from patients with advanced heart fail-
ure receiving mechanical circulatory support 
could inform the care of patients with earlier 
stage heart failure and concomitant type 2 dia-
betes or prediabetes.
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equation.18 Patients were considered diabetic if pre-
viously diagnosed with T2D or if they had an HbA1c 
≥6.5% in the 12- month period preceding LVAD im-
plantation. Pre- LVAD HbA1c was recorded as the av-
erage of all available measurements in the 12- month 
period preceding LVAD implantation, whereas post- 
LVAD HbA1c was recorded as the average of all avail-
able measurements in the 12- month period following 
LVAD implantation.

The effect of LVAD unloading on cardiac size, 
shape, and function was assessed by echocardiog-
raphy and invasive hemodynamic measurements fol-
lowing LVAD implantation and before discharge. LVAD 
speed was adjusted to optimize flows and left ventricle 
decompression with positioning of the interventricular 
and interatrial septa in the midline, minimal mitral valve 
regurgitation, and intermittent aortic valve opening, in 
order of decreasing priority. Subsequent speed adjust-
ments were made as indicated by patient symptoms 
and/or clinical events. Patients were medically man-
aged at the discretion of the treating physicians within 
the participating institutions per established standard 
HF and T2D therapy guidelines.

Functional Cardiac Improvement 
Assessment
Functional cardiac changes on LVAD support were 
prospectively assessed using a protocol developed 
and tested at the Utah Cardiac Recovery Program.11 
Transthoracic echocardiograms were performed 
within the 2 weeks preceding and serially at 1, 3, 6, 
9, and 12 months following LVAD implantation. The 
standard of care clinical protocol entailed 2 sets of 
echocardiographic measurements: (1) at full LVAD 
support and (2) after 30 minutes of limited support, 
at the lowest setting recommended by the device 
manufacturer (turndown study). The absence of prior 
stroke, transient ischemic attack, LVAD thrombosis, or 
hemolysis, along with a therapeutic international nor-
malized ratio, were prerequisites for a turndown study. 
Complete echocardiographic assessment, including 
2- dimensional, M- mode, and Doppler modalities, was 
performed according to the 2015 American Society 
of Echocardiography and European Association of 
Cardiovascular Imaging guidelines.19

To quantitatively estimate functional cardiac im-
provement on LVAD support, we used the following 
formula: absolute LVEF change (ΔLVEF)=LVEF post- 
LVAD−LVEF pre- LVAD. For LVEF pre- LVAD we used the 
measurement before and closest to LVAD implantation, 
whereas for LVEF post- LVAD we used the maximum 
LVEF achieved within the 12- month period following 
LVAD implantation. Pre- turndown LVEF measurements 
were used, because a turndown study might not have 
been performed for the reasons mentioned above. We 

have previously shown that LVEF measurements do 
not significantly differ between pre-  and post- turndown 
studies.11,20

Study Outcomes
The primary outcome was ΔLVEF by 12 months, and 
the secondary outcomes were all- cause mortality and 
LVAD- related adverse event rates by 3 years on LVAD 
support. The following LVAD- related adverse events 
were prospectively captured using the INTERMACS 
(Interagency Registry for Mechanically Assisted 
Circulatory Support) definitions and were adjudicated 
via chart review (C.P.K., I.T.)21: ischemic stroke, in-
tracerebral hemorrhage, transient ischemic attack, 
gastrointestinal bleeding, LVAD- related infection (per-
cutaneous site infection, infection of external or blood- 
containing surfaces of an implantable component), 
and device thrombus. Additionally, we assessed glyce-
mia before and following LVAD support, in the subset 
of patients with available pre-  and post- LVAD HbA1c 
measurements.

Statistical Analysis
Patient baseline characteristics were summarized 
using standard summary statistics including frequen-
cies, percentages, and means. Measures of variation 
were presented as mean and SD or median and in-
terquartile range, as appropriate. Differences between 
patient groups for categorical variables were evaluated 
using the χ2 test or Fisher exact test, as appropriate, 
and continuous variables were evaluated using the 2- 
group Student t test or Mann- Whitney 2- sample test, 
as appropriate.

Linear regression was used to assess the pri-
mary outcome (association of ΔLVEF with pre- LVAD 
HbA1c). Multivariable linear regression was used to 
test this association while adjusting for variables that 
have been suggested to significantly affect functional 
cardiac improvement, and by extension ΔLVEF in 
previous studies.12–17,22 Additionally, we used statisti-
cal interaction terms to determine potential modifica-
tion of HbA1c impact by variables previously shown 
to affect functional cardiac improvement.12–17,22 To 
properly interpret potential interaction effects, data 
were mean- centered (raw value mean).23 Linear re-
gression is robust with regard to the assumptions of 
homogeneity of variance and normality of residual er-
rors,24,25 and graphical evaluation of the data allowed 
us to conclude these assumptions were not violated. 
Robust estimates of variance were reported. We used 
a paired- sample t test to assess the difference in gly-
cemia before and after LVAD support in the subset 
of patients with available pre-  and post- LVAD HbA1c 
measurements. A 2- sided P value <0.05 was consid-
ered significant.
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Cox proportional hazards regression modeling was 
used to examine the association between pre- LVAD 
HbA1c and all- cause mortality or LVAD- related adverse 
events by 3 years on LVAD support.

RESULTS
Overall, 531 patients receiving durable continuous- 
flow LVAD were prospectively enrolled within the study 
period. After excluding patients with hypertrophic or 
infiltrative cardiomyopathies (n=4), a baseline LVEF 
≥40% (n=6), consent withdrawal (n=8), inadequate 
(<3 months) post- LVAD follow- up due to death or heart 
transplantation (n=53), unavailable echocardiographic 
data (n=43), or absent HbA1c measurements before 
LVAD implantation (n=42), 375 patients comprised our 
study cohort (Figure 1). After applying the above ex-
clusion criteria, patients with type 1 diabetes were not 
included in our study.

Baseline demographic and clinical characteristics 
after stratifying patients into diabetic and nondiabetic 
are presented in Table 1. Patients with T2D were more 
likely to be older men with a history of systemic hy-
pertension and a higher body mass index. They had 
a longer duration of HF and more commonly suffered 

ischemic cardiomyopathy (ICM). No differences were 
observed in terms of disease severity as evidenced 
by New York Heart Association classification and 
INTERMACS profile or preoperative use of vasoactive 
agents or temporary MCS. Last, the proportion of pa-
tients treated with guideline- directed HF medical ther-
apy pre- LVAD was comparable between the 2 groups, 
whereas patients with T2D were less commonly on an 
aldosterone antagonist and more commonly on a di-
uretic 3 months post- LVAD (Table S1).

Hemodynamic, echocardiographic, and laboratory 
measurements before LVAD implantation are pre-
sented in Table 2. Patients in both the T2D and non- 
T2D groups had elevated cardiac filling pressures, 
severely impaired cardiac function, and abnormal 
cardiac structure. No differences were identified be-
tween the 2 groups in baseline hemodynamic and 
echocardiographic parameters, a higher LVEF, and a 
thicker interventricular septum in patients with diabe-
tes. Laboratory assessment revealed higher creati-
nine, blood urea nitrogen, as well as lower estimated 
glomerular filtration rate, albumin, and alanine ami-
notransferase values in patients with versus without 
T2D. As expected, patients with diabetes had higher 
blood glucose and HbA1c values compared with those 
without.

Figure 1. Flow diagram for inclusion and exclusion of patients.
HbA1c indicates glycated hemoglobin; LVAD, left ventricular assist device; LVEF, left ventricular ejection 
fraction; and T2DM, type 2 diabetes mellitus.
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Table 1. Baseline Demographic and Clinical Characteristics in the Total Cohort and Patients Without and With T2D

Variables
Total cohort 
(N=375)

Patients without T2D 
(n=199)

Patients with T2D 
(n=176) P value

Male sex, n (%) 319 (85.1%) 155 (77.9%) 164 (93.2%) <0.001

Age, y 59 [49–66] 58 [39–66] 61 [55–66] <0.001

Race, n (%) 0.85

White 287 (81.8%) 145 (79.7%) 142 (84.0%)

Black 31 (8.8%) 18 (9.9%) 13 (7.7%)

American Indian or Alaska Native 14 (4.0%) 7 (3.8%) 7 (4.2%)

Native Hawaiian or Other Pacific Islander 4 (1.1%) 2 (1.1%) 2 (1.2%)

Asian 3 (0.9%) 2 (1.1%) 1 (0.6%)

Not reported or multiple races 12 (3.4%) 8 (4.4%) 4 (2.3%)

Ethnicity, n (%)

Hispanic or Latino 25 (7.1%) 13 (7.1%) 12 (7.1%) 0.99

Body mass index, kg/m2 28.3±5.8 27.5±5.8 29.3±5.7 0.003

Medical history, n (%)

Smoking 188 (50.0%) 103 (51.8%) 85 (48.3%) 0.50

Hypertension 190 (50.7%) 73 (36.7%) 117 (66.5%) <0.001

Ethanol use 169 (45.1%) 96 (48.2%) 73 (41.5%) 0.19

Atrial fibrillation 161 (43.1%) 76 (38.2%) 85 (48.6%) 0.04

Previous thoracotomy 98 (26.3%) 39 (19.9%) 59 (33.5%) 0.003

Electrical therapies, n (%) 0.34

None 58 (15.6%) 35 (17.7%) 23 (13.2%)

CRT- D 177 (47.6%) 88 (44.4%) 89 (51.2%)

ICD 137 (36.8%) 75 (37.9%) 62 (35.6%)

Preoperative supportive therapies, n (%)

Inotrope dependency 260 (69.3%) 134 (67.3%) 126 (71.6%) 0.37

Intra- aortic balloon pump 27 (7.2%) 11 (5.6%) 16 (9.1%) 0.19

Percutaneous VAD/VA- ECMO 22 (6.0%) 16 (8.0%) 6 (3.4%) 0.06

New York Heart Association class IV, n (%) 271 (72.3%) 143 (71.9%) 128 (72.7%) 0.85

Heart failure duration, mo 88.6±84.1 77.1±80.4 101.5±86.5 0.005

Heart failure cause, n (%)

Ischemic cardiomyopathy 172 (45.9%) 69 (34.7%) 103 (58.5%) <0.001

INTERMACS profile, n (%) 0.08

1 26 (7.1%) 20 (10.2%) 6 (3.5%)

2 66 (17.9%) 32 (16.3%) 34 (19.6%)

3 159 (43.1%) 81 (41.3%) 78 (45.1%)

≥4 118 (32.0%) 63 (32.1%) 55 (31.8%)

VAD indication, n (%) 0.05

BTT 212 (56.5%) 117 (58.8%) 95 (54.0%)

DT 139 (37.1%) 64 (32.2%) 75 (42.6%)

BTD 13 (3.5%) 10 (5.0%) 3 (1.7%)

BTR 11 (2.9%) 8 (4.0%) 3 (1.7%)

VAD type, n (%) 0.29

HeartMate 2 139 (37.1%) 66 (33.2%) 73 (41.5%)

HeartMate 3 44 (11.7%) 22 (11.1%) 22 (12.5%)

HeartWare 170 (45.3%) 99 (49.8%) 71 (40.3%)

Other 22 (5.9%) 12 (6.0%) 10 (5.7%)

VAD configuration, n (%)

Centrifugal 199 (56.4%) 110 (59.8%) 89 (52.7%) 0.18

 (Continued)
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Glycemia and Functional Cardiac 
Improvement on LVAD Support
Pre- LVAD HbA1c was inversely associated with ΔLVEF 
at a univariable level (linear regression coefficient: 
−1.02; P value: 0.05), as shown in Figure 2. The im-
pact of pre- LVAD HbA1c on ΔLVEF was subsequently 
assessed after adjusting for clinical factors previously 
shown to associate with functional cardiac improve-
ment on LVAD support, including age, sex, duration 
of HF symptoms, HF cause, and LV end- diastolic di-
ameter.12,14,15,22 Statistical interaction terms were cre-
ated between pre- LVAD HbA1c and the same set of 
clinical factors to assess for potential effect modifica-
tion. A significant interaction was identified between 
pre- LVAD HbA1c and ICM (P=0.039). Based on the 
above, patients were stratified into ICM and non- ICM 
(NICM). Although pre- LVAD HbA1c was found to be 
significantly associated with ΔLVEF in patients with 
NICM after adjusting for age, sex, HF duration, and 
LV end- diastolic diameter, this was not evident in 
patients with ICM (Figure 3). The multivariable linear 
regression models in ICM and NICM are shown in 
Figure 3.

Glycemia and All- Cause Mortality on 
LVAD Support
Of 375 patients, 74 (19.7%) were deceased by 3 years 
on LVAD support (Figure  S1). Pre- LVAD HbA1c was 
not associated with the risk of all- cause mortality by 
3 years on LVAD support at a univariable level (hazard 
ratio [HR], 1.12 [95% CI, 0.95–1.31]; P=0.177), or after 
adjusting for age, sex, duration of HF symptoms, HF 

cause, and LV end- diastolic diameter (HR, 1.13 [95% 
CI, 0.96–1.34]; P=0.152) (Table S2).

Glycemia and LVAD- Related Adverse 
Events
Pre- LVAD HbA1c was shown to increase the risk of in-
tracerebral hemorrhage (HR, 1.31 [95% CI, 1.13–1.52]; 
P<0.001), device thrombosis (HR, 1.28 [95% CI, 1.07–
1.54]; P=0.008), and LVAD- related infection (HR, 1.31 
[95% CI, 1.17–1.47]; P<0.001), but not ischemic stroke/
transient ischemic attack (HR, 1.03 [95% CI, 0.79–
1.35]; P=0.811), or gastrointestinal bleeding (HR, 1.14 
[95% CI, 1.00–1.31]; P=0.052) by 3 years on LVAD sup-
port. The associations above remained significant after 
adjusting for age, sex, and LVAD type for all outcomes 
(Figure S2).

Glycemia Pre-  and Post- LVAD Support
In the subset of patients with available HbA1c meas-
urements before and following LVAD support (n=127), 
HbA1c decreased from 6.68±1.52% pre- LVAD to 
6.11±1.33% post- LVAD support (P<0.001) (Figure 4).

DISCUSSION
The findings of the present study suggest that T2D 
and glycemia affect the potential for cardiac functional 
improvement on LVAD support. Decreased pre- LVAD 
HbA1c was found to be independently associated with 
greater ΔLVEF, after adjusting for clinical factors known 
to associate with LVAD- mediated cardiac recovery, in-
cluding age, sex, duration of HF symptoms, and LV 

Variables
Total cohort 
(N=375)

Patients without T2D 
(n=199)

Patients with T2D 
(n=176) P value

Pre- VAD heart failure medications, n (%)

β- Blocker 241 (64.3%) 128 (64.3%) 113 (64.2%) 0.98

ARNI/ARB/ACE inhibitor 242 (64.5%) 124 (62.3%) 118 (67.1%) 0.34

Aldosterone antagonist 227 (60.5%) 127 (63.8%) 100 (56.8%) 0.17

Diuretic 354 (94.4%) 185 (93.0%) 169 (96.0%) 0.20

Pre- VAD T2D medications, n (%)

Insulin … … 75 (42.9%) …

Metformin … … 42 (23.9%) …

DPP- 4 inhibitors … … 7 (4.0%) …

GLP- 1 agonists … … 10 (5.7%) …

SGLT- 2 inhibitors … … 2 (1.2%) …

α- Glucosidase inhibitors … … 1 (0.6%) …

Continuous variables are presented as mean±SD or median [interquartile range]. ACE indicates angiotensin- converting enzyme; ARB, angiotensin receptor 
blocker; ARNI, angiotensin receptor- neprilysin inhibitor; BTD, bridge- to- decision; BTR, bridge- to- recovery; BTT, bridge- to- transplant; CRT- D, cardiac 
resynchronization therapy- defibrillator; DPP- 4, dipeptidyl peptidase- 4; DT, destination therapy; GLP- 1; glucagon- like peptide- 1; ICD, implantable cardioverter- 
defibrillator; INTERMACS, Interagency Registry of Mechanically Assisted Circulatory Support; SGLT- 2, sodium- glucose cotransporter- 2; T2D, type 2 diabetes; 
VAD, ventricular assist device; and VA- ECMO, veno- arterial extracorporeal membrane oxygenation.

Table 1. Continued
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Table 2. Baseline Hemodynamic, Echocardiographic, and Laboratory Characteristics in the Total Cohort and Patients 
Without and With T2D

Variables
Total cohort 
(N=375)

Patients without T2D 
(n=199)

Patients with T2D 
(n=176) P value

Hemodynamic measurements

Systolic blood pressure, mm Hg 104.6±15.4 103.0±15.2 106.8±15.4 0.06

Diastolic blood pressure, mm Hg 68.3±11.4 68.2±11.1 68.3±11.8 0.94

Mean blood pressure, mm Hg 79.4±12.4 80.0±12.3 78.6±12.5 0.42

Heart rate, bpm 86.6±19.8 88.1±21.3 84.9±17.9 0.15

Mean right atrial pressure, mm Hg 11.7±6.2 11.6±6.5 11.9±5.8 0.66

Systolic right ventricular pressure, mm Hg 51.5±13.7 50.1±13.6 52.9±13.7 0.07

Diastolic right ventricular pressure, mm Hg 7.6±6.7 7.9±7.7 7.2±5.3 0.38

Mean right ventricular pressure, mm Hg 16.1±8.5 15.2±8.1 17.1±8.9 0.19

Systolic pulmonary artery pressure, mm Hg 52.5±14.6 51.5±14.4 53.7±14.8 0.16

Diastolic pulmonary artery pressure, mm Hg 26.4±8.7 26.3±8.6 26.5±8.8 0.84

Mean pulmonary artery pressure, mm Hg 36.9±9.9 36.6±9.6 37.2±10.2 0.55

Pulmonary capillary wedge pressure, mm Hg 24.6±8.2 24.7±8.0 24.5±8.5 0.79

Systemic vascular resistance, dynes×s×cm−5 1458 [1121–1837] 1496 [1162–1853] 1414 [1073–1683] 0.41

Pulmonary vascular resistance, Wood units 3.64±2.35 3.56±2.23 3.73±2.47 0.51

Cardiac output, L/min 3.77±1.29 3.74±1.48 3.81±1.05 0.62

Cardiac index, L/min per m2 1.86±0.63 1.88±0.72 1.85±0.53 0.72

Echocardiographic measurements

Left ventricular ejection fraction, % 18.1±6.9 17.2±6.5 19.0±7.2 0.01

Left ventricular end- diastolic diameter, cm 6.77±1.04 6.82±1.01 6.71±1.07 0.33

Interventricular septum thickness  
end- diastole, cm

0.98±0.42 0.93±0.24 1.04±0.56 0.02

Posterior wall thickness end- diastole, cm 0.95±0.25 0.94±0.24 0.97±0.25 0.31

Laboratory measurements

Hemoglobin, g/dL 12.3±2.3 12.5±2.4 12.2±2.2 0.20

White blood cell count, ×103/μL 8.3±3.5 8.3±3.3 8.3±3.7 0.95

Neutrophil/lymphocyte count ratio 5.2±4.2 5.0±4.1 5.5±4.3 0.21

C- reactive protein, mg/dL 3.2±4.0 3.1±4.3 3.3±3.7 0.73

Platelet count, ×103/μL 205 [161–249] 207 [159–244] 202 [164–259] 0.84

International normalized ratio 1.40±1.16 1.40±1.15 1.40±1.18 0.93

Sodium, mEq/L 134.3±5.3 134.5±5.1 134.0±5.5 0.40

Potassium, mEq/L 4.09±0.51 4.08±0.55 4.11±0.45 0.50

Creatinine, mg/dL 1.38±0.52 1.30±0.50 1.47±0.52 0.002

Blood urea nitrogen, mg/dL 27 [20–39] 25 [18–34] 29 [22–44] <0.001

Estimated glomerular filtration rate, mL/min 67.6±27.6 72.9±29.1 61.6±24.4 <0.001

Aspartate aminotransferase, mg/dL 30 [22–45] 32 [23–47] 27 [21–40] 0.017

Alanine aminotransferase, mg/dL 27 [19–51] 30 [20–61] 25 [17–40] 0.015

Alkaline phosphatase, mg/dL 94 [72–124] 90 [71–115] 99 [74–129] 0.044

Total bilirubin, mg/dL 1.1 [0.7–1.6] 1.2 [0.7–1.8] 1.0 [0.8–1.6] 0.25

Uric acid, mg/dL 8.6±3.1 8.5±3.2 8.8±3.1 0.48

Total serum protein, g/dL 6.97±0.77 7.02±0.75 6.92±0.79 0.24

Albumin, g/dL 3.72±0.47 3.78±0.49 3.66±0.45 0.02

Blood glucose, g/dL 129.0±53.5 114.1±40.9 145.6±60.6 <0.001

Hemoglobin A1c, % 6.4±1.2 5.7±0.4 7.2±1.2 <0.001

B- type natriuretic peptide, pg/mL 1013 [455–1873] 1100 [506–2099] 844 [428–1546] 0.078

Continuous variables are presented as mean±SD or median [interquartile range]. T2D indicates type 2 diabetes.
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end- diastolic diameter.12,14,15,22 This was not evident, 
however, after stratifying patients based on their underly-
ing HF cause. Decreased pre- LVAD HbA1c was shown 
to independently associate with increased ΔLVEF in pa-
tients with NICM but not in those with ICM, after adjust-
ing for the above- mentioned clinical variables.

T2D and HF have a bidirectional relationship and 
are often coexistent.2,8,26–28 Risk factors for HF, such as 
hypertension, coronary artery disease, valvular heart 
disease, chronic kidney disease, and obesity, are often 
coexistent with T2D and can accelerate LV adverse 
remodeling and dysfunction; however, HF might de-
velop in their absence.2,29 Several preclinical and clin-
ical studies have yielded results strongly suggesting 
that diabetic cardiomyopathy is a unique clinical en-
tity, with hyperglycemia leading to abnormal cardiac 
structure and function independent of traditional car-
diac risk factors.30,31 Among the potentially implicated 
pathophysiologic derangements are insulin resistance 
and impaired insulin signaling, glucotoxicity and lipo-
toxicity, upregulation of inflammatory pathways, ox-
idative stress, mitochondrial dysfunction, formation 
of advanced glycation end- products, and cardiac 
fibrosis.27,30–32

By unloading the failing heart, LVADs create a favor-
able environment for the reversal of adverse structural 
and functional cardiac changes,10–15 with functional 
cardiac improvement recently shown to associate with 
improved outcomes on LVAD support.33,34 Clinical fac-
tors previously shown to associate with LVAD- mediated 
cardiac recovery include a younger age, an underlying 
NICM, a shorter duration of HF, and smaller left ven-
tricle dimensions.12,14,15,22 At the cellular and molecular 
level, it has been suggested that glucose metabolism, 
mitochondrial function, and myocardial and systemic 

inflammation might influence cardiac recovery upon 
mechanical unloading.35–38 These derangements 
have been implicated in the pathophysiology of diabe-
tes,27,30–32 and might explain why T2D could play a role 
in LVAD- mediated cardiac recovery.

Insulin resistance is a key component of the met-
abolic syndrome, a cluster of systemic metabolic 
abnormalities implicated in the pathogenesis of car-
diovascular disease.39 Neurohormonal activation and 
chronic inflammation appear to be the common final 
pathway leading to changes in cardiac metabolism 
and signaling pathways that might contribute to myo-
cardial dysfunction.28,39 We have previously studied 
the effect of tissue and serum inflammatory markers 
on LVAD- mediated myocardial recovery.38 Circulating 
levels of cytokines were lower, whereas the signal 
transducer and activator of transcription- 3, an inflam-
matory response regulator, was less activated in the 
cardiac tissue of patients significantly improving the 
function and structure of their heart on an LVAD (re-
sponders) compared with nonresponders. As such, 
pre- LVAD metabolic dysfunction, including both insulin 
resistance/hyperglycemia and inflammation, seem to 
affect the potential for myocardial recovery.

It has been suggested that strategies to correct 
the systemic metabolic derangements associated 
with insulin resistance could impact the prognosis 
and outcomes of patients with HF.28 In a study com-
paring intensive blood glucose control (target HbA1c 
≤6.5%) versus standard of care treatment, combined 
micro-  and macrovascular events risk were reduced by 
10%, an effect largely driven by a reduction in the risk 
of microvascular events, especially nephropathy.40 In 
another large study investigating blood glucose reduc-
tion, an overall benefit was shown during the period 
in which the HbA1c curves were separated,41 whereas 
in a separate analysis, patients with low coronary ar-
tery calcium had the greatest benefit.42 These findings 
might be suggestive of a differential effect of improved 
glycemic control on cardiac reverse remodeling based 
on the extent of already established macro-  and micro-
vascular coronary artery disease. This agrees with our 
finding that glycemia might play a more pronounced 
role in affecting functional cardiac improvement in pa-
tients with NICM compared with patients with ICM. 
Furthermore, the relationships between changes in 
cardiac and systemic metabolism and myocardial re-
covery are currently under intensive investigation by 
several groups, including our group,35–37,43 and the 
emerging findings might shed additional light into the 
mechanisms driving the findings of the current study.

T2D is associated with worse outcomes in patients 
suffering from HF.8 It has been suggested that even 
insulin resistance in the absence of overt T2D is in-
dependently associated with a worse prognosis.7 
Specifically in patients with advanced HF supported 

Figure 2. Association of pre- LVAD HbA1c with left 
ventricular functional improvement (absolute LVEF change: 
LVEF post- LVAD−LVEF pre- LVAD) at a univariable level.
HbA1c indicates glycated hemoglobin; LVAD: left ventricular 
assist device; and LVEF, left ventricular ejection fraction.
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with LVADs, prior reports studying the impact of T2D 
and glycemic control on mortality and LVAD- related 
adverse events have not been conclusive.44–47 In a 

meta- analysis, T2D was not shown to significantly 
affect all- cause mortality or LVAD- related adverse 
events.48 In a recently published observational study 
of 154 patients with continuous- flow LVADs, patients 
with and without diabetes had comparable 30- day, 1- 
year, and 3- year mortality rates; however, T2D was an 
independent predictor of 5- year mortality (HR, 2.09; 
P=0.004).49 Additionally, patients with T2D had higher 
rates of major infection on LVAD support (59% versus 
47%, P=0.044).49 In our study, we found that pre- LVAD 
HbA1c was not associated with the risk of all- cause 
mortality by 3 years on LVAD support. Patients with 
a higher HbA1c before LVAD support, however, had 
a higher chance of developing intracerebral hemor-
rhage, LVAD- related infection, or device thrombosis by 
3 years on LVAD support.

Last, we found that in patients with available HbA1c 
measurements before and following LVAD implanta-
tion, HbA1c decreased from 6.69±1.54% pre- LVAD to 
6.10±1.35% post- LVAD support (P<0.001). It should be 
acknowledged, however, that only a small proportion 
of patients were included in the analysis (127 out of 

Figure 3. Main effects between pre- LVAD HbA1c and left ventricular functional 
improvement (absolute LVEF change: LVEF post- LVAD−LVEF pre- LVAD) in nonischemic 
and ischemic patients with HF.
HbA1c indicates glycated hemoglobin; HF, heart failure; LVEDD, left ventricular end- diastolic 
diameter; and LVEF, left ventricular ejection fraction.

Figure 4. HbA1c values pre-  and post- LVAD support.
The bars represent mean values and the caps the SD. HbA1c 
indicates glycated hemoglobin; and LVAD, left ventricular assist 
device.
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375), with the small sample size potentially affecting 
this finding. It has been reported that glycemic control 
improves following LVAD implantation with decreased 
fasting blood glucose and HbA1c levels, as well as 
antidiabetic medical therapy requirements.44,47,50–52 
Multiple physiologic factors might be driving these 
findings, stemming from improved hemodynamics, 
cardiac output, and tissue perfusion. Low cardiac 
output in advanced HF leads to upregulation of the 
renin- angiotensin- aldosterone system, and increases 
cortisol and catecholamine levels, which in turn lead 
to insulin resistance.53 MCS helps correct these met-
abolic disturbances by increasing cardiac output and 
enhancing blood flow to peripheral tissues. It has also 
been shown that LVAD support reduces inflammation, 
which might also contribute to ameliorate insulin resis-
tance.54,55 Improved physical activity, more frequent 
follow- up, and better care coordination and medica-
tion optimization could also play a role.51 Last, it should 
be noted that red blood cell lifespan and turnover rate 
are affecting HbA1c levels and might be contributing 
to decreased levels on LVAD support. MCS devices 
can lead to mechanical damage and destruction of 
red blood cells, leading to reduced hemoglobin and 
increased reticulocyte counts,56,57 potentially overesti-
mating a favorable glycemic control.

Limitations of the current study include the potential 
selection bias introduced by the inclusion of patients 
with available HbA1c measurements before LVAD im-
plantation and at least 3 months echocardiographic fol-
low- up on LVAD support, excluding patients who died 
or underwent heart transplantation before this time 
point. Additional limitations to be mentioned are the rel-
atively small sample size and the inclusion of data from 
patients treated across a consortium of collaborating 
sites (ie, Utah Cardiac Recovery Program). Although 
the collaborating environment and research infrastruc-
ture allows for the rigorous, prospective follow- up of 
patients, it poses limitations on the generalizability of 
our findings. Additional limitations include the use of 
only 1 modality to assess cardiac functional improve-
ment and the absence of information on micro-  and 
macrovascular complications of T2D that could affect 
the study outcomes, as well as the limited number of 
patients treated with sodium- glucose cotransporter- 2 
inhibitors, which did not allow us to examine the impact 
of these medications on our results. Moreover, HF and 
T2D pharmacotherapy is presented for the 3- month 
post- LVAD time point. We acknowledge that pharma-
cologic regimen might have changed in subsequent 
time points. Last, the inclusion of available HbA1c val-
ues within the 1- year period preceding LVAD implanta-
tion does not allow for the assessment of longer- term 
glycemia and its potential effect on study outcomes.

The findings of our study suggest that T2D and pre- 
LVAD glycemia might affect the potential for functional 

cardiac improvement in patients with advanced HF 
supported with a durable LVAD. Moreover, it seems 
that glycemia before LVAD support does not affect all- 
cause mortality rates, but it affects the risk for the de-
velopment of LVAD- related adverse events by 3 years 
on MCS. The degree and duration of glycemic control 
optimization before LVAD implantation to potentially 
promote and sustain cardiac functional improvement 
and improve outcomes warrants further investigation. 
Findings from the advanced HF/MCS investigational 
setting could inform the care of patients with earlier- 
stage HF and concomitant T2D or prediabetes, and fol-
low- up studies in this patient population are warranted.
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