Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Sep;72(3):1163–1167. doi: 10.1172/JCI111041

Perfusion of isolated tubules of the shark rectal gland. Electrical characteristics and response to hormones.

J N Forrest Jr, F Wang, K W Beyenbach
PMCID: PMC1129284  PMID: 6309906

Abstract

Both the mammalian thick ascending limb of Henle's loop and the shark rectal gland actively transport Cl against an electrochemical gradient by mechanisms involving hormone-sensitive NaCl transport. In contrast to mammalian renal tubules, individual tubules of the shark rectal gland previously have not been perfused in vitro. Using a combination of renal slice and microdissection techniques we were able to isolate and perfuse single rectal gland tubules without the use of enzyme treatment. Single tubules consistently generated lumen-negative transepithelial voltages (Vt) of -1.8 mV when perfused and bathed with identical shark Ringer's solution. The addition of cyclic AMP, vasoactive intestinal peptide (VIP), and adenosine to the bath increased Vt to -7.5, -9.0, and -4.3 mV, respectively (all P less than 0.02 compared with paired controls). Each stimulation could be reversed by addition by furosemide to the bath. The adenosine response was inhibited by theophylline, a specific inhibitor of adenosine receptors. The tubules had a low transepithelial electrical resistance of 12-26 omega X cm2 and exhibited a transepithelial permselectivity for small cations. These results indicate that tubules of the rectal gland can be perfused in vitro and have receptors for VIP and adenosine. Cyclic AMP and secretagogues hyperpolarize the membrane consistent with electrogenic chloride transport, and these effects are reversed by furosemide, an inhibitor of coupled sodium-potassium-chloride co-transport. The response of Vt to cyclic AMP and furosemide, the transepithelial electrical resistance, and the cation selective permeability of tubules are remarkably similar to measurements in perfused mammalian thick ascending limbs.

Full text

PDF
1163

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGER J. W., HESS W. N. Function of the rectal gland in the spiny dogfish. Science. 1960 Mar 4;131(3401):670–671. doi: 10.1126/science.131.3401.670. [DOI] [PubMed] [Google Scholar]
  2. Beyenbach K. W., Koeppen B. M., Dantzler W. H., Helman S. I. Luminal Na concentration and the electrical properties of the snake distal tubule. Am J Physiol. 1980 Nov;239(5):F412–F419. doi: 10.1152/ajprenal.1980.239.5.F412. [DOI] [PubMed] [Google Scholar]
  3. Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5547–5551. doi: 10.1073/pnas.77.9.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burg M. B., Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol. 1973 Mar;224(3):659–668. doi: 10.1152/ajplegacy.1973.224.3.659. [DOI] [PubMed] [Google Scholar]
  5. Eveloff J., Kinne R., Kinne-Saffran E., Murer H., Silva P., Epstein F. H., Stoff J., Kinter W. B. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pflugers Arch. 1978 Dec 28;378(2):87–92. doi: 10.1007/BF00584439. [DOI] [PubMed] [Google Scholar]
  6. Forrest J. N., Jr, Boyer J. L., Ardito T. A., Murdaugh H. V., Jr, Wade J. B. Structure of tight junctions during Cl secretion in the perfused rectal gland of the dogfish shark. Am J Physiol. 1982 May;242(5):C388–C392. doi: 10.1152/ajpcell.1982.242.5.C388. [DOI] [PubMed] [Google Scholar]
  7. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  8. Greger R. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1981 Apr;390(1):30–37. doi: 10.1007/BF00582707. [DOI] [PubMed] [Google Scholar]
  9. Greger R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch. 1981 Apr;390(1):38–43. doi: 10.1007/BF00582708. [DOI] [PubMed] [Google Scholar]
  10. Greger R., Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1981 Nov;392(1):92–94. doi: 10.1007/BF00584588. [DOI] [PubMed] [Google Scholar]
  11. Hall D. A., Varney D. M. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J Clin Invest. 1980 Oct;66(4):792–802. doi: 10.1172/JCI109917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hannafin J., Kinne-Saffran E., Friedman D., Kinne R. Presence of a sodium-potassium chloride cotransport system in the rectal gland of Squalus acanthias. J Membr Biol. 1983;75(1):73–83. doi: 10.1007/BF01870801. [DOI] [PubMed] [Google Scholar]
  13. Hebert S. C., Culpepper R. M., Andreoli T. E. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Physiol. 1981 Oct;241(4):F412–F431. doi: 10.1152/ajprenal.1981.241.4.F412. [DOI] [PubMed] [Google Scholar]
  14. Helman S. I. Determination of electrical resistance of the isolated cortical collecting tubule and its possible anatomical location. Yale J Biol Med. 1972 Jun-Aug;45(3-4):339–345. [PMC free article] [PubMed] [Google Scholar]
  15. Imai M. Effect of bumetanide and furosemide on the thick ascending limb of Henle's loop of rabbits and rats perfused in vitro. Eur J Pharmacol. 1977 Feb 21;41(4):409–416. doi: 10.1016/0014-2999(77)90261-8. [DOI] [PubMed] [Google Scholar]
  16. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rocha A. S., Kokko J. P. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest. 1973 Mar;52(3):612–623. doi: 10.1172/JCI107223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shuttleworth T. J. Haemodynamic effects of secretory agents on the isolated elasmobranch rectal gland. J Exp Biol. 1983 Mar;103:193–204. doi: 10.1242/jeb.103.1.193. [DOI] [PubMed] [Google Scholar]
  19. Silva P., Stoff J., Field M., Fine L., Forrest J. N., Epstein F. H. Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport. Am J Physiol. 1977 Oct;233(4):F298–F306. doi: 10.1152/ajprenal.1977.233.4.F298. [DOI] [PubMed] [Google Scholar]
  20. Stoff J. S., Rosa R., Hallac R., Silva P., Epstein F. H. Hormonal regulation of active chloride transport in the dogfish rectal gland. Am J Physiol. 1979 Aug;237(2):F138–F144. doi: 10.1152/ajprenal.1979.237.2.F138. [DOI] [PubMed] [Google Scholar]
  21. Stoner L. C., Trimble M. E. Effects of MK-196 and furosemide on rat medullary thick ascending limbs of Henle in vitro. J Pharmacol Exp Ther. 1982 Jun;221(3):715–720. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES