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SUMMARY
High-grade ovarian cancer (HGOC) is a major cause of death in women. Early detection of HGOC usually
leads to a cure, yet it remains a clinical challenge with over 90% HGOCs diagnosed at advanced stages.
This is mainly because conventional biomarkers are not sensitive enough to detect the microscopic yet met-
astatic early lesions. In this study, we sequence the blood T cell receptor (TCR) repertoires of 466 patients
with ovarian cancer and controls and systematically investigate the immune repertoire signatures in
HGOCs. We observe quantifiable changes of selected TCRs in HGOCs that are reproducible in multiple inde-
pendent cohorts. Importantly, these changes are stronger during stage I. Using pre-diagnostic patient blood
samples from the Nurses’ Health Study, we confirm that HGOC signals can be detected in the blood TCR
repertoire up to 4 years preceding conventional diagnosis. Our findings may provide the basis for future im-
mune-based HGOC early detection criteria.
INTRODUCTION

Ovarian cancer represents 2.5% of all malignancies in women1

while causing 5% of cancer-related deaths.2 It consists of diverse

histological subtypes, including serous, mucinous, clear cell, en-

dometrioid, etc.3 High-grade ovarian cancer (HGOC), dominantly

with serous histology,4 comprises over 70%of incident ovarian tu-

mors1 and contributes to the disease’s highmortality rate. Ovarian

tumors of other histological types are mostly low grade and much

less lethal.5 Stage I high-grade serous carcinomas are confined

within ovaries or fallopian tubes and are largely curable with com-

plete surgical resection and chemotherapy (93%, 5-year relative

survival).6 Conversely, patients with HGOC diagnosed at

advanced stages have a 5-year survival of 31%.6 High-grade se-

rous ovarian cancers frequently arise from a range of epithelial

changes with p53 mutations, including serous tubal intraepithelial

carcinoma (STIC) in the fallopian tube and atypical lesions in be-

tween p53 mutations and STIC.7 Current paradigms of serous

carcinogenesis include a precursor lesion (STIC) with gradual pro-

gression to cancer and precursor metastasis into the peritoneal

cavity.8,9 Unfortunately, conventional methods rarely facilitate

the early detection or prevention of HGOCs, resulting in over

87% of cases being diagnosed at stage III or IV.
Cell Reports Medicine 5, 101612,
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Given the apparent clinical benefit of detecting ovarian cancer

early, noninvasive assays have been evaluated in large-scale,

prospective screening trials, focusing on serum CA-125 levels10

and its changes over time,11 serum human epididymis protein

4,12,13 and transvaginal ultrasound.14 However, a recent longitu-

dinal trial of over 200,000 subjects followed for more than 18

years showed no mortality benefit for HGOC among women

routinely tested by one or a combination of these assays.15

Studies have further demonstrated that most conventional bio-

markers have limited predictive ability until 6–12 months before

diagnosis,16 possibly because HGOC primarily comprises

microscopic lesions until late in its progression. Consequently,

existing blood biomarkers or tumor imaging tests may lack

sensitivity in detecting early-stage ovarian tumors.

Previously, we showed that early-stage cancers induce

observable changes in the blood T cell receptor (TCR) reper-

toire.17 Although it remains unclear what causes these changes

in patients with diverse genetic backgrounds, the concept of im-

munoediting18,19 may explain why signals emerge at early

stages. Specifically, during the ‘‘elimination’’ phase, exposure

to early tumor antigens could trigger a rapid expansion of can-

cer-associated T cells,20 leading to detectable signals in the

TCR repertoire in circulating white blood cells. However, the
July 16, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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vast diversity of the immune repertoire poses challenges in de-

tecting such signals in large sample cohorts. Related to this pur-

pose, we developed Geometric Isometry-based TCR AligNment

Algorithm (GIANA)21 to perform isometric embedding for rapid

TCR clustering. Although useful in finding disease-associated

TCRs, GIANA embedding was incompatible with different TCR

lengths and thus was not biologically relevant. Here, we intro-

duced a trimer embedding framework to uniformly encode

TCRs of different lengths based on sequence similarity, allowing

quantitative dissection of TCR repertoire data into functional

units. Subsequently, we collected preoperative blood samples

from patients with ovarian tumors to identify TCR units that are

enriched in patients with HGOC compared to women with

benign ovarian tumors. Finally, we measured TCRs in pre-diag-

nostic blood specimens from patients diagnosed with ovarian

cancer within 5 years after blood draw using samples from a

large longitudinal cohort study and matched controls. Our anal-

ysis revealed transient but significant TCR repertoire changes

occurring up to 4 years before conventional ovarian cancer

diagnosis.

RESULTS

Trimer embedding of TCRs and RFU definition
To quantitatively dissect the TCR repertoire data, we first ob-

tained a numeric embedding of the b-chain complementarity-

determining region 3 (CDR3b) region that preserved amino

acid sequence similarity (Figure 1A). In brief, approximately 20

million TCRs from the public domain (Table S1) were clustered

based on the variable gene (TRBV) and CDR3b sequences (Fig-

ure 1B) by GIANA21 to construct a trimer substitution matrix

(Figures 1C and 1D). Approximated isometric embedding of

each trimer was obtained using multidimensional scaling (Fig-

ure 1E), and the final embedding vector for each CDR3b was

calculated by mean pooling of all the consecutive trimers in the

amino acid sequence (Figure 1F).

To evaluate if trimer embedding could reflect TCR antigen

specificity, we benchmarked this method using 1,031 TCRs

with known specificity to 10 common immunogenic epitopes22

(Table S2). Specifically, we obtained the numeric embedding of

each TCR and calculated the Euclidean distances for each pair

of TCRs. This distance was used to predict if the pair of TCRs

were specific to the same antigen. Indeed, we observed an

area under the receiver operative characteristic curve (AUC) of

0.64, with better specificity at a lower-distance cutoff

(Figures S1A and S1B). At a high specificity of 90%, this method

reached a sensitivity of 30%, comparable to the state-of-art

methods based on TCR sequence similarity.21,23–25 Importantly,

as a similarity measure, trimer embedding preserves the ‘‘local

specificity’’ of TCRs, i.e., if the distance of two TCRs continu-

ously decreases to 0, then the probability that they share antigen

specificity will approach 1. This property is guarded by the fact

that TCR sequence similarity can be used as a surrogate for

shared antigen specificity.23

With this property, we defined the ‘‘neighborhood’’ in the

embedding space as local TCR clusters that likely recognize the

same antigens. Such neighborhoods may carry disease-specific

information. For example, a simple comparison between a B cell
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lymphoma sample and healthy control26 revealed several TCR

neighborhoods enriched or depleted in a patient with lymphoma,

each characterized by conserved CDR3 motifs (Figures S1C and

S1D). Systematic investigation by pooling over 1 million TCRs

from a healthy sample cohort27 revealed reproducible TCR clus-

ters seen in genetically unrelated donors (Figure S1E). This obser-

vation indicated that the composition of the TCR repertoire might

be conserved among different individuals. We thus divided the

TCR space into 5,000 groups (Figure 1G), with over 84% of

TCRs located within 0.018 Euclidean distance to the centroid,

which is the cutoff of 90% specificity in the benchmark (Fig-

ure S1F). The group centroid was defined as a ‘‘repertoire func-

tional unit’’ (RFU). Under this definition, TCRs assigned to each

RFU have a 90% chance to recognize the same antigens, and

thus RFUs can be viewed as the ‘‘genes’’ of a repertoire in the

sense of antigen recognition. This approach allowed us to trans-

form each TCR repertoire sample into a fixed-length numeric vec-

tor, i.e., the normalized TCR count of each RFU.

TCR repertoire landscape in patients with HGOC
We prospectively collected a discovery cohort of preoperative

peripheral blood mononuclear cell samples from 213 women,

including 67 patients with high-grade serous cancer, 49 with

other types of histology (all low grade), and 97 with benign

ovarian tumors. TCR repertoire sequencing data were obtained

for each sample. Despite attempts to frequency match on age,

the patients with cancer were significantly older than benign con-

trols (Table S3). Therefore, we first investigated the impact of age

over RFUs in the healthy individuals using publicly available TCR

sequencing (TCR-seq) cohorts. We first analyzed the Emerson

et al. cohort,27 which contained blood TCR repertoires of 666

healthy donors collected before 2017. We observed that the ma-

jority of RFUs were not age related, yet a small subset of RFUs

showed strong negative correlations with age (Figure S2A).

This observation was further confirmed using another large

healthy cohort with 1,414 subjects28 (Figure S2B). Importantly,

the RFUs with strong age associations in both cohorts were

highly reproducible (Figure S2C), indicating that age-related

RFUs are conserved in the general population. In addition to

multivariable regression, these results warranted the direct

exclusion of related RFUs to control for age in the downstream

analysis.

We next visualized the TCR repertoires of all 213 individuals us-

ing the top 1,500 most variable RFUs (ranked by standard devia-

tion) to obtain an overview of RFU distributions across different

disease groups. Unsupervised hierarchical clustering revealed a

distinguishable separation between HGOC and benign samples

(Figure 2A), suggesting a global difference in the immune reper-

toire between these two conditions. Principal-component anal-

ysis (PCA) of the RFUmatrix confirmed that PC1 is partially driven

by disease categories (Figures 2B and 2C). In contrast, PC2 is

influenced by race, with African American patients showing the

largest separation from Asian patients (Figures 2D and 2E). To

systematically investigate the differences of TCR repertoire be-

tween patients with HGOC and benign patients and identify

RFUs as independent markers for HGOCs, we performed logistic

regression adjusted for patient age and race for all 1,500

RFUs and observed significant results at false discovery rate



Figure 1. Trimer-guided embedding for TCRs and derivation of RFUs

(A) Method workflow. The first 3 steps describe the trimer-embedding Euclidean space, and the last two steps describe how repertoire functional units (RFUs) are

defined.

(B) Massive clustering of TCRs from patients with diverse health conditions based on CDR3 amino acid sequence similarity.

(C) Illustration of replaceable trimers from small TCR clusters.

(D) Illustration of the trimer substitution matrix with each number represents the times a row trimer is replaced by the column trimer in a TCR cluster.

(E) Derivation of approximately isometric embedding for each trimer based on multidimensional scaling from the trimer substitution matrix in (D).

(F) Representation of each CDR3 sequence in the high-dimensional Euclidean space by averaging all the consecutive trimers.

(G) RFU definition by pooling 1.2 million TCRs from 120 individuals shown as t-distributed stochastic neighbor embedding plot. Colors denote distinct clusters

with cluster centroids assigned by k-means.

See also Figure S1 and Tables S1 and S2.
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Figure 2. Characterization of TCR repertoire landscape in patients with ovarian cancer

(A) Heatmap showing the distribution of the top 1,500 most variable RFUs of high-grade, low-grade, and benign patients.

(B) Distribution of patients with ovarian cancer and benign patients on the PCA plot calculated from the RFU-by-patient matrix.

(C) Violin plot showing the differences of PC1 across disease categories. Statistical significance was evaluated using one-way ANOVA.

(D) Distribution of patient races on the PCA plot.

(E) Violin plot showing the differences of PC2 across patient races. Statistical significance was evaluated using one-way ANOVA.

(F) Volcano plot showing the log odds ratio vs. FDR adjusted by Benjamini-Hochberg method. The odds ratio is estimated from logistic regression with disease

status as a binary outcome, with each RFU being the covariate and adjusted for age and race. Blue: down-regulated; Red: up-regulated.

(G) Sequence logo analysis of selected top up-/down-regulated RFUs. Scale of logo height (y axis) was measured by bits ranging from 0 to 4.

See also Figure S2 and Table S2.
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(FDR) %0.2 (Figure 2F). In contrast, the comparisons between

HGOC vs. low grade and low grade vs. benign yielded no signif-

icant RFUs, potentially due to the limited sample size and closer

immunological backgrounds (Figure S2D).We then visualized the

CDR3motifs of the top up-/down-regulated ones in patients with

HGOC (Figure 2G). We noted a conservative ‘‘RLAG’’ pattern at
4 Cell Reports Medicine 5, 101612, July 16, 2024
the 6th–9th positions of RFU 1804. CDR3s with this pattern, com-

bined with the use of joining gene TRBJ2-3*01 (DTQYF), have

been reported to recognize the ELAGIGLTV epitope from mela-

noma antigen MART-1,29 which is reportedly expressed in

ovarian neoplasms.30 No known cancer antigens were associ-

ated with the other three RFUs.
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RFU as a risk marker for HGOC
The above results indicated that selected RFUs are significantly

altered in the blood repertoire of patients with HGOC compared

to benign controls. We therefore proceeded to select a subset of

RFUs to evaluate the risk of HGOC. First, we observed that

although some RFUs reached high odds ratios (ORs) in the logis-

tic regression, there was no difference in the median levels of

these RFUs between patients with HGOC and benign patients

(Figure 3A), suggesting the potential influence of outliers in para-

metric analysis. After the removal of such RFUs, we then defined

the top 2 up- and down-regulated RFUs based on the ORs,

which included RFUs 750, 866, 3808, and 1804. Notably, none

of these RFUs were age related (Figure S3A), indicating that

there is no need to correct age in a regression model. Hence,

we no longer considered age as a confounder in the following

analysis and arithmetically combined these RFUs to construct

a predictor. We then surveyed the distributions of these RFUs

across a wide spectrum of human cancers (Table S1). Interest-

ingly, in addition to HGOC, RFU 750 was also down-regulated

in melanoma and kidney cancer, where RFU 866 showed a

similar yet insignificant trend (p = 0.24) (Figure 3B). On the other

hand, RFU 1804was also up-regulated in lung cancer, while RFU

3808 was higher in head and neck cancer (Figure S3B). Notably,

for all four RFUs, healthy control samples from both children and

adult cohorts had similar distributions to benign patients.

We next investigated the human leukocyte antigen (HLA) allele

associations for each of the four RFUs. We collected TCR reper-

toire samples from 1,208 individuals with HLA genotype informa-

tion (Table S1) and performed sequence clustering using

GIANA.21 For each TCR cluster, we tested if it was enriched for

an HLA allele using Fisher’s exact test. 240,438 TCRswith signif-

icant HLA enrichment were identified at FDR = 0.05. Among

these TCRs, the HLA-enriched TCRs belonging to these four

RFUs were selected. To select the most enriched HLA alleles,

we performed another enrichment analyses for each RFU. Spe-

cifically, for each allele and each RFU, we counted the number of

TCRs specific to the HLA allele that have been assigned to this

RFU and estimated the OR (Figure S3C). We made a cutoff at

OR = 2 and selected the top enriched HLA alleles. Interestingly,

each RFU was associated with at least 2 alleles, which made up

a sizable fraction of the total population (Figure S3D).

We then tested the performance of the 4 RFUs as a potential

risk predictor for HGOC against benign ovarian tumors. We

directly used the sum of down-regulated RFUs (750 and 866)

or up-regulated RFUs (3808 and 1804) as predictors and

observed moderate predictive accuracy with an AUC slightly

above 0.7 (Figures 3C and 3D). We combined the signals by us-

ing the up- minus the down-regulated RFU sums (1804 + 3808–

866 – 750) as ‘‘OV RFU score.’’ As expected, this score is signif-

icantly higher in the HGOC vs. the benign group (Figure 3E), with

an improved AUC of 0.77 (Figure 3F).

To evaluate the reproducibility of this score, we collected an

independent validation cohort with 33 patients with HGOC and

64 benign patients (Figure 3G; Table S3). All blood samples

were collected before surgery for TCR-seq data generation.

We directly applied the above 4 RFU markers and calculated

the OV RFU score. It separated patients with HGOC from benign

patients with lower accuracy (AUC = 0.66) (Figure 3H). However,
unlike the discovery cohort, the validation cohort included 5

stage I HGOC patient samples (Table S3). We investigated the

distributions of RFU scores within stage I tumors and observed

significantly higher scores than controls (Figure 3I). As a predic-

tor, the RFU score reached an AUC = 0.81 for stage I HGOC vs.

control (Figure 3J). Interestingly, the scores of late-stage HGOCs

were lower than stage I tumors, although statistical significance

was not reached due to the small sample size. These results indi-

cated that the TCR repertoire may undergo nonlinear dynamic

changes that peak during the early progression of ovarian

malignancies.

Transient TCR repertoire changes in pre-diagnosis
samples from patients with ovarian cancer
The above findings hold promise in early ovarian cancer detec-

tion, yet further evaluation using more HGOC samples is chal-

lenging due to the rarity of stage I patients at diagnosis. To

address this issue, we utilized blood samples collected from

the Nurses’ Health Studies (NHS/NHSII). These studies, with

over 280,000 participants, have collected blood samples from

over 60,000 women primarily in the 1990s and early 2000s and

followed women for diagnosis of ovarian cancer within 5 years

after blood draw.31 A subset of over 34,000 women gave two

blood draws approximately 10–15 years apart. Among them,

we identified 40 patients with ovarian cancer (33 patients with

HGOC) with two blood draws before diagnosis, one remote

(R10 years) and one recent (%5 years). We also assayed 38

healthy controls matched on age at the 1st and 2nd blood draws

(Figure 4A; Table S4). All 156 NHS samples were sequenced for

their TCR repertoires using the same commercial platform as the

discovery and validation cohorts. We confirmed that within-indi-

vidual dynamics is smaller than cross-individual variation,32 with

the 2nd blood draw mostly similar to the 1st draw from the same

person (Figures S4A and S4B). Given the higher RFU scores

observed in patients with stage I HGOCs (Figure 3I), we hypoth-

esized that a transient changemay occur in the adaptive immune

repertoire within 5 years prior to the conventional diagnosis,

when the tumor is still at an early stage.

First, PCA plot of all samples at the 1st blood draw revealed no

difference between patients with cancer (10–15 years before

diagnosis) and healthy controls. At the 2nd blood draw, there is

a slight yet nonsignificant difference at PC2 (p = 0.17, Figure 4B),

suggesting that the cancer-induced changes were subtle, not

driving global alterations in the TCR repertoire. We next exam-

ined the impacts of known ovarian cancer risk factors33,34 on

the immune repertoire. There was no difference between pa-

tients with cancer and controls for menopausal status, tubal liga-

tion, parity, or mycoplasma infection, with all p values exceeding

0.05 (Figure 4C). To avoid potential confounding effects, we

removed all subjects with a family history of ovarian cancer in

the downstream analysis.

We proceeded to investigate the dynamics of OV RFU scores

in the pre-diagnostic samples. RFU scores using the 4 RFUs

described above were directly calculated for the 37 passed-filter

patients with ovarian cancer at the 2nd time point. Interestingly,

RFU scores displayed a significantly nonrandom (p = 0.032)

dynamic curve prior to diagnosis (�5 to 0 years) that matched

our expectation (Figure 4D). Specifically, the score rapidly
Cell Reports Medicine 5, 101612, July 16, 2024 5
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Figure 3. Selected RFUs as biomarkers to distinguish HGOCs from benign ovarian lesions
(A) Selection criteria for the top informative RFUs. Odds ratios and ratios ofmedians (HGOC vs. benign) are displayed in a scatterplot. Odds ratios were calculated

from the logistic regression described in Figure 2F. Blue color indicates ratio median <0.7 or >1.3.

(B) Boxplot showing the distributions of selected RFUs across multiple cancer types. Red arrow indicates ovarian cancer group. All analysis was performed using

blood TCR repertoire samples from the public domain.

(C and D) Receiver operating characteristic (ROC) curves showing the prediction accuracy of up- or down-regulated RFUs to predict HGOCs against benign

patients.

(E) Combination of up- and down-regulated RFUs as a joint biomarker: the OV RFU score. Statistical significance was evaluated using two-sided Wilcoxon test.

(F) Prediction accuracy of the OV RFU score illustrated by ROC curves.

(G) Donut plot showing the sample composition in the validation cohort, with total n = 97. The inner ring visualizes the percentage of patients with HGOC vs.

benign patients, while the outer ring indicates the tumor stage for patients with HGOC and histological subgroups for benign patients.

(H) Performance of OV RFU score in the validation cohort.

(I) Violin plot showing the distributions of OV RFU scores across benign, stage I HGOC, and advanced HGOCs. Statistical significance was evaluated using

Wilcoxon test.

(J) ROC curve for OV RFU score as a predictive biomarker for patients with stage I HGOC vs. benign patients.

See also Figure S3 and Tables S1 and S3.
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Figure 4. Dynamic changes of blood TCR repertoire prior to conventional ovarian cancer diagnosis

(A) Diagram illustration of blood samples collected at 1st and 2nd time points for both subjects with cancer and control subjects.

(B) PCA analysis of samples at 1st or 2nd blood draw.

(C) Violin plot showing the distribution of PC1 or PC2 scores across putative ovarian risk factors. Statistical significance was evaluated using two-sidedWilcoxon

test.

(D) Scatterplot showing the pre-diagnostic dynamics of OV RFU scores up to 5 years before conventional diagnosis. Loess smooth line was performed using only

HGOC samples. Statistical significance was evaluated using permutation test.

(E) Boxplot showing the distributions of OV RFU scores in healthy controls and pre-diagnostic patients. Statistical significance was evaluated using two-sided

Wilcoxon test. Red arrow indicates the location of 2–4 years before diagnosis. Adjusted p values for multiple hypothesis testing (padj) were performed using the

Benjamini-Hochberg approach.

(F) Paired boxplots showing the increments of OV RFU scores (2nd time point – 1st time point) in both patient and control samples. Statistical significance was

evaluated using paired two-sample Wilcoxon test.

(G) Scatterplot showing the pre-diagnostic dynamics of incremental OV RFU scores.

(H and I) Prediction accuracy of OV RFU scores or increment scores for pre-diagnostic patients with HGOC against healthy controls illustrated by ROC curves.

See also Figure S4 and Table S4.
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increased �5 to �4 years and peaked around �3 years before

slowly decreasing until the time of diagnosis. We dissected this

period into three intervals based on the shape of the curve: uphill

(�5 to �4), peak (�4 to �2), and downhill (�2 to 0). Direct com-

parison of the RFU scores of each group with the scores of

healthy controls revealed that the peak group was significantly

higher than both time points of the control cohort (Figure 4E).

Sampling two time points for both cancer and control cohorts

allowed us to track the TCR repertoire changes over time. The

RFU scores of patients within the �4- to �2-year window

showed significant increases when compared to their matched

1st time point, where the RFU scores of healthy individuals re-

mained stable (Figure 4F). The increment of RFU scores between

the two time points (denoted by ‘‘D’’) displayed a nonlinear trend

(Figure 4G). These results strongly supported our hypothesis that

transient but strong immune changes occurred during the early

development of ovarian cancer. We therefore evaluated the OV

RFU score as a potential biomarker to detect ovarian cancer

prior to its conventional diagnosis. If the disease is trackedwithin

the �4- to �2-year window, then the RFU score would reach an

AUC of 0.73, with 33% sensitivity at 95% specificity (Figure 4H).

In contrast, the increment between time points (D) performed

worse (Figure 4I), potentially because the random fluctuations

in the TCR repertoire over 10 years reduced the signal/noise

ratio.

To further validate the pre-diagnostic dynamics of OV RFU

scores, we profiled another set of blood TCR repertoire samples

from 41 pre-diagnostic (one time point, <5 years before diag-

nosis) patients with ovarian cancer (25 patients with HGOC) in

the NHS cohort (Table S4). Patients with a family history of

ovarian cancer were excluded. OV RFU scores of 4 RFUs were

calculated for each patient, and the score was compared with

pre-diagnostic years. We observed a nonlinear curve that peaks

around 3.5 years before conventional diagnosis (Figure S4C).

This curve matched the shape of the previous observation

(p = 0.038), thus confirming the dynamic TCR repertoire change

in the pre-diagnostic patients with HGOC.

DISCUSSION

In this work, we analyzed 466 blood TCR-seq samples from pa-

tients with ovarian cancer and healthy/benign controls. Our

computational analysis relied on a TCR embedding method spe-

cifically designed to quantify TCR repertoires. The RFU markers

predicted in the discovery cohort were independently validated

in two uniformly generated sample cohorts with age-matched

controls, mitigating potential batch effects or data leakage.

TCRs exhibit heavy cross-reactivity, with one TCR recognizing

�106 different peptides bounded by divergent HLA alleles.35

Interestingly, TCR antigen specificity prediction methods solely

based on the similarity of bCDR3 sequences demonstrated a

high clustering specificity disregarding the HLA background.23

Previous studies also showed that TCR specificities remain un-

changed despite conservative replacement at certain positions

of the CDR3 loops.36 Therefore, our estimated specificity for

RFU must be considered in this context, i.e., TCRs from the

same RFU could recognize 90% of the same pool of antigens

at the given distance cutoff.
8 Cell Reports Medicine 5, 101612, July 16, 2024
We anticipate that 5,000 TCR clusters or RFUs do not

completely cover the diversity of the immune repertoire. The

RFUs defined in this work are enriched for those with sharedmo-

tifs across multiple individuals. Further, since the RFUs were

defined using healthy donors, it is possible that disease-specific

TCRs are underrepresented. TCR cluster analysis could be con-

ducted on patients with cancer to potentially identify RFUs that

are specific to tumor antigens. Regarding ovarian cancer detec-

tion, with sufficiently more samples, RFUs can be redefined us-

ing patients with HGOC or even from ovarian tumor-infiltrating

T cells. HGOC-redefined RFUs might enhance prediction power

when applied to prospectively collected patient cohorts.

It is unlikely that the four selected RFUs encompassed all the

TCRs informative to HGOCs. The number of markers discovered

in this study was limited by the small number of HGOC samples,

particularly early-stage tumors. Further, all the patients with

HGOC in the discovery cohort were diagnosed at an advanced

stage, which, according to our observations above, yielded

dampened immune response that reduced statistical power.

More stage I HGOC samples with age-matched benign controls

from future clinical studies would be ideal for uncovering infor-

mative RFUs and improving predictive accuracy. Furthermore,

combining pre-diagnostic blood samples from multiple large

prospective cohort studies could augment the power to identify

early detection markers.37

Previous studies implied that the precursor lesion STIC de-

velops approximately 6 years prior to HGOC.38,39 Accordingly,

the 1st blood draw (>10 years) from the NHS cohort behaved

similarly to the healthy controls (Figure 4B), while the 2nd (<5

years) exhibited dynamic changes that strikingly coincide

with the immunoediting process.19 Specifically, during tumor

initiation, recognition of tumor antigens results in a rapid

expansion of the tumor-reactive T cells, creating the ‘‘uphill’’

part. Genome instability caused by p53 mutations likely pro-

duced more tumor neoantigens required for T cell recogni-

tion.40 The curve peaks when the tumor reaches equilibrium

with the immune system. Further tumor progression creates

a more immunosuppressive environment that slows down

T cell expansion and causes immune exhaustion,41 ultimately

leading to the contraction of tumor-reactive T cells in the

blood. Despite these matched dynamics, validating the pre-

diagnostic behavior of the immune repertoire in patients with

ovarian cancer requires more clinical data from larger sample

cohorts and more diverse populations.

Our analysis revealed different patterns in the TCR repertoire

in HGOCs compared to low-grade and benign tumors. Unlike

high-grade serous carcinomas with STIC origin, most low-grade

tumors (mucinous, clear cell, endometrial, etc.) arise from the

benign precursors.42 For example, while most mucinous cysta-

denoma are benign, approximately 10% of them become malig-

nant borderline ovarian tumors (low grade). Hence, low-grade

ovarian tumors may share a developmental lineage and environ-

ment with benign histology. In addition, as mentioned above, the

mutation burden of HGOCs is much higher than low-grade tu-

mors due to frequent p53 mutations, leading to more neoantigen

presentation and elevated immune infiltration.43 These factors

might collectively contribute to the distinct immunological land-

scape in HGOC tumors.
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Together, our analyses support that ovarian tumor progres-

sion causes observable changes in the blood TCR repertoire,

which are stronger at the early stage, when HGOC is more likely

to be curable. This further suggests that immune biomarker dis-

coveries in higher-stage tumors, where immunosuppression is

prevalent, may not be efficient. Current testing approaches fail

to detect HGOCs at an early stage.15 Therefore, immune-based

approaches may offer advantages in detecting ovarian cancer

within the�4- to�2-year window, crucial for HGOC early detec-

tion. The cost to generate the TCR-seq data for OV RFU score

inference is approximately $200 per patient, close to a standard

serum biomarker test.44 Finally, our study demonstrates the

value of using prospectively collected samples in identifying bio-

markers by quantifying these RFU changes, which may yield

practical solutions for immune-based ovarian cancer early

detection.

Limitations of the study
Our study remains exploratory in nature. First, although the pre-

diagnostic curve of the RFU scores matched our findings in the

validation cohort of cases and benign controls, there is no defin-

itive evidence to support that women with samples collected at

the peak phase had bona fide stage I HGOCs. Second, our anal-

ysis was performed at the RFU level, where the antigen speci-

ficity of individual TCRs was not investigated. This is mainly

due to the lack of established T cell antigens from early-stage

HGOCs, which can be improved with future immunogenomic

research on ovarian cancers. Third, the association between

TCR and disease likely depends on HLA genotype, which unfor-

tunately is not available in our patient cohorts. Inclusion of HLA

allele information in future investigations is expected to increase

the prediction performance. Finally, as a screening biomarker,

the sensitivity and specificity of the RFU score are far lower

than what would be required to reach 10% positive predictive

value,10 mainly due to the small sample size of this study. As a

diagnostic tool, it is less accurate than established indices,

such as Risk of Malignancy Algorithm (ROMA),45 Risk of Malig-

nancy Index (RMI),46 or a recent approach based on metabo-

lome of uterine fluid.47 Prospectively, the prediction accuracy

of the OV RFU score might be improved by (1) including more

TCR-seq samples from patients with early stage HGOC or (2)

longitudinal sampling at smaller intervals before diagnosis, as

TCR dynamics is more conserved within individuals. Future

emphasis could be given to large clinical networks to recruit

such patients or that have banked such samples.48
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Data and code availability
The TCR-seq datasets for the discovery and validation cohorts generated in this study are publicly available on Zenodo at https://doi.

org/10.5281/zenodo.11204147. According to standard controlled access procedures, submitted written applications to request use
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contact author (B.L.) will assist the reader in communication with the NHS committee to access the data. R codes for RFU calculation

are deposited in Zenodo at the following https://doi.org/10.5281/zenodo.11209912. The codebase is also available at GitHub:
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ovarian cancer patient cohorts and Nurses’ Health Study samples
Women present with ovarian tumors were consented at ParklandHospital at UT SouthwesternMedical Center (UTSW) between 2019

and 2022. No stage-I HGOC patients were collected during this period. Blood samples were collected prior to surgeries and stored in

EDTA tubes in �80� freezer. Tumor histology, including benign or malignant, was available after pathological verification. Sample

collection was approved by the Institutional Review Boards (IRB) with protocol number STU-2020-442. Informed consent was ob-

tained from all patients before sample collection. All samples collected at UTSWwere used as the discovery cohort. Buffy coat sam-

ples of patients in the validation cohort were purchased from Accio Biobank Online in 2021.

Additional samples were obtained from the Nurses’ Health Studies (NHS/NHSII), two large prospective cohorts starting in 1976

(NHS) and 1989 (NHSII), with over 238,000 women. Between 1989 and 1990, 32,826 NHS participants donated self-collected blood
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samples, whichwere shipped on ice via courier where and processed into plasma, red blood cell, and white blood cell components; a

second collection in 2000–2002 from over 19,000 of these women used similar protocols. Similarly, between 1996 and 1999, 29,611

NHSII participants donated blood samples; a second collection occurred from 2011 to 2014. Cases of ovarian cancer were identified

via self-report on biennial questionnaires, report of family members, or via the National Death Index. Medical records or reports from

cancer registries were used to confirm the diagnosis. Cases were matched to controls who were alive and had at least one ovary at

the time of the case diagnosis and matched on age, menopausal status, date and time of blood collection, fasting status, and hor-

mone therapy use. For this analysis, we assayed both the first and second blood draw samples from cases that were diagnosed

within 5 years after the second blood draw and their matched controls. De-identified patient information, including age at blood

draws, age at diagnosis, tubal ligation status, parity, menopausal status, and other ovarian cancer risk factors were provided for

the analysis.

METHOD DETAILS

Description of TCR repertoire samples and preprocessing
All TCR repertoire sequencing samples that were not produced from this study were accessed from the immuneAccess database

managed by Adaptive Biotechnology. These samples were profiled using the immunoSEQ platform developed by the company.

Zip files were directly downloaded through the ‘Export’ function and selecting ‘v2’. Accession numbers for each cohort are available

in Table S1. For each repertoire sample, sequences with missing variable genes or nonproductive CDR3 regions were removed. The

top 10,000 TCRswithmost abundant clonality were selected for RFU calculation. These preprocessing criteria were applied to all the

TCR-seq samples throughout this study.

Genomic DNA isolation and TCR repertoire sequencing
Genomic DNA was isolated from 200 mL whole blood (from UTSW) or 10 ml buffy coat (from Accio Biobank or NHS) using the DNeasy

Blood and Tissue Kit (Cat# 69504, Qiagen) following the manufacturer’s guidelines. gDNA concentration was measured using a

NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific). The purity of gDNA was determined by measuring the 260–

280 nm absorbance ratio. Optimal purity was expected to be in the range of 1.7–2.0. The integrity of the gDNA samples was assessed

for evidence of degradation using agarose gel electrophoresis. Appropriate quality gDNA was expected to migrate predominantly

above 10 kb on agarose gels. All samples passed DNA purity and integrity quality controls. Twenty samples of gDNA were sent

to Adaptive Biotechnology for targeted TCR b chain repertoire sequencing using immunoSEQ at survey sequencing depth. Raw

TCR reads were processed with immunoSEQ Analyzer for CDR3 assembly, variable/joining gene calling, and clonal frequency

estimations.

Repertoire functional unit method description
(i) TCR embedding.

We applied GIANA21 to perform clustering of over 20 million TCRs using both the CDR3 sequences and variable gene alleles ob-

tained from public domain (Figure 1B). These samples covered a wide spectrum of disease context, including healthy individuals and

patients with cancer, autoimmune disorders as well as viral infections (Table S1). Previous work, including ours, have demonstrated

that TCRs clustered using such strategy are highly specific (R95%) to the same antigen epitopes,23–25 with smaller (n% 5) clusters

being more likely to share antigen-specificity.21

From GIANA output, we identified a total of 821K such clusters. An example of a typical cluster of two sequences, CSARQG

ARTYEQYF and CSARQGAYTYEQYF, bear a mismatch R/Y in position 8 (Figure 1C). We considered the amino acids flanking

this mismatch and extracted the trimer sequences from both TCRs. As the two TCRs likely share antigen-specificity, the two trimers,

ART and AYT, are thus considered ‘replaceable’ in the context of antigen recognition. We then traversed all 821K clusters and built

the 8,000-by-8,000 trimer-substitution matrix (TSM) by calculating the number of replacements of each trimer pairs (Figure 1D). We

calculated the Spearman’s correlation matrix using TSM and converted it into a Euclidean distance matrix (EDM). Next, similar as in

GIANA, we obtained the isometric embedding vector for each of the trimers using multi-dimensional scaling based on the EDM. This

approach allowed us to use a numeric vector to represent each trimer, with similar trimers located closely in the Euclidean space

(Figure 1E). The embedding of each CDR3 sequence is then calculated as the average of all the vectors from consecutive trimers

(Figure 1F). This embedding is a continuous representation of TCR similarity.

(ii) Benchmark using antigen-specific TCRs.

We benchmarked the trimer-based embedding using 1,031 TCR sequences with known antigen-specificity to 9 epitopes

(Table S2). This dataset has been used in our previous work to benchmark the specificity of TCR clustering.25 To avoid bias toward

epitope(s) with excessive amount of TCRs, we restricted the antigens with <170 TCRs. Coordinates were calculated for each CDR3

sequence. For each pair of TCRs, we calculated the Euclidean distance as the predictor, with the response being if or not the two

TCRs share the same antigen. From the total of half million comparisons, we excluded pairs with distances >0.025, based on the
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fact that trimer-based embedding is only powerful to identify shared antigen specificity among TCRs with similar sequences. ROC

curve was generated with the above predictor and response variables, with AUC calculated using the curve.

(iii) Definition of Repertoire Functional Units (RFU).

We pooled 1.2 million TCRs from 120 healthy donors from a previous study,27 and projected them onto the Euclidean space with

trimer-based embedding. We divided the TCR sequences in this space into 5,000 groups with the k-means method. We referred the

centroid of each group as a ‘Repertoire Functional Unit’, or RFU. To calculate the RFU vector of a new TCR repertoire sample, we first

select the top 10,000 most abundant TCRs based on clonal frequencies. For each TCR, we calculate the embedding vector and

assign it to the closest centroid from 5,000 RFUs. The value of each RFU is determined by the number of TCRs assigned to its

centroid. We chose 5,000 as the group number so that the expected count for each RFU is 2.

(iv) Calculation of OV RFU score.

The assignment of RFUs were based on the centroids of the TCR neighborhoods in the trimer embedding space. Since all of the

four selected RFUs were not age-associated, when calculating the OV RFU scores, we simply added the upregulated RFUs and sub-

tracted the downregulated ones. This calculation only involves the counts of the four given RFUs from an immune repertoire. OV RFU

score is defined as RFU1804 + RFU3808 - RFU750 - RFU866. The first two terms are the ‘Up RFUs’ and the last two terms are the

‘Down RFUs’. The full score is thus Up RFUs – Down RFUs.

HLA association analysis
We collected four public TCR-seq sample cohorts27,79–81 with HLA genotype information available. We compiled them into a mixed

cohort totaling 1,208 individuals. The top 30,000 TCRs of each sample were selected and pooled together to perform an HLA-enrich-

ment analysis, thus incorporating a total of 36 million TCRs as the training data. We implemented a highly efficient TCR clustering

method, GIANA to perform sequence-similarity-based TCR grouping.21 HLA alleles were analyzed at 2-digits resolution. For each

GIANA clustered TCR group, we performed a Fisher’s exact test to evaluate its enrichment to all the HLA alleles in the patient sam-

ples. 240,438 significantly enriched TCRs were identified (at FDR = 0.05). Among these TCRs, the HLA-enriched TCRs belonging to

these four RFUs were selected. To select the most enriched HLA alleles, we performed another enrichment analyses for each RFU.

Specifically, for each allele and each RFU, we counted the number of TCRs specific to this allele that have been assigned to this RFU,

and estimated the odds ratios.Wemade a cutoff at odds ratio = 2 and selected the top enriched HLA alleles. For each RFU, we calcu-

lated the percentage of individuals in the discovery cohort (n = 1,208) that carried the top enriched HLA alleles.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational and statistical analyses in this work were performed using the R programming language v4.3.0. Principal component

analysis (PCA) was performed as a dimension reduction technique to visualize the samples in different groups (Figures 2B, 2D and

4D). Logistic regression adjusted for patient age and race: logitðyHGOCÞ � RFU+Age+Race (Figure 2F) was implemented using the

glm function. FDR control was using the Benjamini-Hochberg method. Sequence logos were generated using package ggseqlogo

(v0.1), by performing multiple sequence alignment (msa, v1.32.0) using CDR3s with length 16. Donut plot (Figure 3) was generated

using package webr (v0.1.5). ROC curves with 95 confidence intervals and AUC values were generated using package pROC

(v1.18.2). Neighbor joining trees were calculated and visualized using R package ape (v5.7-1). Subpanels of main figures were pro-

duced using ggplot2 (v3.4.2). Permutation test in Figure 4D was performed as follows: with the goal of testing how significant the

peak-like dynamics of prediagnostic curve, we randomly permuted the RFU scores for 10,000 times and recalculated the Loess

smooth curve with default parameters (R function loess). For each permutation, we calculated the range of the curve (max - min),

denoted as Dr. The range of the unshuffled curve is denoted as D0. p value was estimated as the number of permutations with Dr

greater than D0 divided by 1,000.
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