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SUMMARY
CD8+ T cells must persist and function in diverse tumor microenvironments to exert their effects. Thus,
understanding common underlying expression programs could better inform the next generation of immuno-
therapies. We apply a generalizable matrix factorization algorithm that recovers both shared and context-
specific expression programs from diverse datasets to a single-cell RNA sequencing (scRNA-seq) compen-
dium of 33,161 CD8+ T cells from 132 patients with seven human cancers. Our meta-single-cell analyses
uncover a pan-cancer T cell dysfunction program that predicts clinical non-response to checkpoint blockade
in melanoma and highlights CXCR6 as a pan-cancer marker of chronically activated T cells. Cxcr6 is trans-
activated by AP-1 and repressed by TCF1. Using mouse models, we show that Cxcr6 deletion in CD8+

T cells increases apoptosis of PD1+TIM3+ cells, dampens CD28 signaling, and compromises tumor growth
control. Our study uncovers a TCF1:CXCR6 axis that counterbalances PD1-mediated suppression of CD8+

cell responses and is essential for effective anti-tumor immunity.
INTRODUCTION

CD8+Tcells in tumorsspanaspectrumof functional states reflect-

ing their stemness, memory potential, effector function, and

dysfunction or exhaustion status, all of which are shaped by both

cell-intrinsic regulation and the tumor microenvironment (TME).

Harnessing the effector potential of these tumor-infiltrating CD8+

T cells (TILs) is a goal of many cancer therapeutics. A foremost

strategy is theblockadeof immunecheckpoint receptors,primarily

CTLA4 and PD1, that are highly expressed on dysfunctional CD8+

TILs. Despite the success of immunecheckpoint blockade (ICB) in

cancers such as melanoma, lung, and renal,1–4 only 12% of pa-

tients across all cancer indications are estimated to respond.5

The TME is a key determinant of ICB response,6–8 but how it

impacts T cell functionality remains incompletely understood.
Cell Reports Medicine 5, 101640,
This is an open access article under the CC BY-NC-ND
TMEs vary widely within and between cancer types, with

differing degrees of vascularization, immune infiltration, and

the presence of non-immune cell types like cancer-associated fi-

broblasts. These factors influence antigen presentation, im-

muno-regulatory signals, and the availability of oxygen and other

nutrients, all known to impact T cell responses.9,10 Thus, a

greater understanding of CD8+ T cell states across multiple tu-

mor types with varied TMEs is critical for informing the develop-

ment of broadly efficacious therapies.

Single-cell genomics allows the study of T cell transcriptomes

at an unprecedented resolution and has generated rich cell at-

lases11–20 that uncover opportunities to identify novel regulators

and circuits that determine T cell functionality. Here, we devel-

oped a dimensionality reduction method that identifies general-

izable gene expression programs across cells, patients, and
July 16, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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datasets and applied it to single-cell RNA sequencing (scRNA-

seq) data of CD8+ T cells from 132 tumor samples spanning

seven cancer types.11–15,17–20 We uncovered a pan-cancer

T cell dysfunction program whose expression level was predic-

tive of failure to respond to ICB in a melanoma cohort. Among

the top 10 program genes were the immune checkpoints

CTLA4, PDCD1, and HAVCR2, as well as CXCR6, a chemokine

receptor, whose ligand CXCL16 is expressed by myeloid cells in

the TME. Investigating CXCR6 regulation, we found that it was

induced by AP-1 and repressed by TCF1, a transcription factor

critical for the maintenance of stem-like CD8+ TILs.21,22 Cxcr6

deletion promoted apoptosis in PD1+TIM3+ CD8+ TILs and

decreased Tox, Bcl2, and CD28 expression, ultimately diminish-

ing tumor growth control. As PD1 dampens T cell responses in

part by suppressing CD28 signals,23 our study uncovered a

TCF1:CXCR6 regulatory axis that counterbalances PD1-medi-

ated T cell suppression to support anti-tumor immunity.

RESULTS

GDMF: Generalizable matrix decomposition framework
recovers shared programs across studies
The rapid increase in single-cell profiling studies opens opportu-

nities to map cell states across dozens or hundreds of patients,

as demonstrated by recent large-scale pan-cancer studies.24,25

Such studies typically aggregate publicly available data that can

vary in collection protocols and data pre-processing, leading to

substantial technical variations. Supervised statistical models

that identify differentially expressed genes can be designed to

account for confounders, covariates, and hierarchical data

structures. Conversely, unsupervised methods for extracting

latent patterns representing gene programs often do not model

this complexity, making their application across diverse datasets

challenging, as patterns can reflect confounders rather than

shared underlying biology.

To address this, we developed a generalizable matrix decom-

position framework (GMDF) for unsupervised meta-analysis of

large and diverse datasets. Given a set of scRNA-seq studies,

GMDF identifies a low-dimensional representation of cell states

across conditions by decomposing cell profiles to shared and

context-specific metagenes or programs. The GMDF can incor-

porate covariates and contexts in the formulation and implemen-

tation of the dimensionality reduction task. ‘‘Context’’ is defined

by the user based on the specific datasets and research ques-

tion and can denote a specific cancer type, sex, treatment,

cohort, etc. GMDF identifies expression programs (i.e., a set of

co-expressed genes represented as a single meta-feature)

based on variation within a dataset. If this within-dataset varia-

tion is repeatedly observed across multiple datasets, then it

will be categorized as ‘‘shared.’’ If this within-dataset variation

is observed only in datasets from a specific ‘‘context,’’ it will be

identified as ‘‘context-specific.’’ By focusing on shared rather

than context-specific programs, we can identify biologically

meaningful variations that recur even across studies with

different technical characteristics.

GMDF consists of two main steps. The first is formulated as a

regularized, non-convex optimization problem that minimizes

the reconstruction error (Figure 1A) and is solved using block co-
2 Cell Reports Medicine 5, 101640, July 16, 2024
ordinate descent. Second, GMDF applies a consensus

approach, where multiple solutions obtained with different sub-

samples of the data and initializations are aggregated to a single

robust consensus solution, thus mitigating the risk of local

minima, non-unique solutions, and overfitting (STAR Methods).

In contrast to other methods, such as integrative non-negative

matrix factorization (iNMF)26 and linked inference of genomic

experimental relationships (LIGER),27 GMDF does not force

any coupling of the shared and context-specific programs and

thus outperforms previous methods in this task, shown using

simulated data (Figures S1A–S1D, STAR Methods). Specifically,

while LIGER and iNMF identify shared programs with context-

specific extensions, GMDF provides sufficient flexibility in iden-

tifying both types of programs without enforcing any coupling

between them. Comparing these methods, we find that enforc-

ing a specific structure, as done by LIGER, results in suboptimal

decompositions and misclassification of context-specific pro-

grams as shared.

GDMF identifies pan-cancer T cell expression programs
across tumor types
To map CD8+ T cell states across cancer types, we assembled a

pan-cancer scRNA-seq compendium of nine datasets, spanning

33,161 CD8+ TILs, collected from 132 cancer patients with mel-

anoma, sarcoma, pancreatic, liver, colon, lung, and breast can-

cer.11–15,17–20 We applied GMDF to this pan-cancer CD8+ T cell

compendium with cohort covariates (STAR Methods) to identify

shared (‘‘pan-cancer’’) programs, i.e., a gene module that is

repeatedly observed within each of the cohorts.

GMDF identified six pan-cancer programs that were shared

across all nine cohorts of the compendium, which we annotated

as naive/memory, activation/interferon response, AP1/stress

response, cell cycle, mitochondrial metabolism, and chronic

activation (Figures 1B; Tables S1 and S2). The chronic activation

program contained genes associated with T cell dysfunction,

including known immune checkpoints (HAVCR2, TIGIT,

PDCD1, CTLA4, LAG3, and ENTPD1) and the transcription fac-

tor TOX.28–30 In line with previous studies,12,31 it also included

effector genes (GZMB, IFNG, and FASLG), reflecting the

coupling between T cell dysfunction and activation.31–33

To further examine the dysfunction-activation association, we

computed an ‘‘activation score’’ for each cell based on its overall

expression12 (STAR Methods) of canonical effector function

markers (NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG, and

CCL3) minus its overall expression of canonical naive/memory

T cell markers (CCR7, TCF7, LEF1, and SELL). Naive cells,

with high expression of naive markers and low expression of

effector markers, had low expression of the pan-cancer chronic

activation program. However, as cells expressed higher activa-

tion scores, they were associated with increasingly higher values

of the chronic activation program and showed more intercellular

variation (Figure 1C).

To decouple activation and dysfunction, we first normalized

the chronic activation GMDF score based on the expected value

given the ‘‘activation score’’ (LOWESS regression line, Figure 1C,

STAR Methods). Next, we annotated each T cell as naive/mem-

ory (low activation scores), effector (high activation and lower-

than-expected chronic activation scores, i.e., below the
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Figure 1. Pan-cancer approach reveals highly generalizable T cell expression programs

(A) Analysis approach. scRNA-seq data of CD8+ TILs from seven human cancers (left) were analyzed with GMDF (center) revealing shared (pan-cancer) and

context (tumor)-specific expression programs (right).

(B) GMDF identified 6 pan-cancer T cell expression programs. Top 100 genes (rows) of each program (color bar on the left) and their weights (W matrix) across

programs from the different GMDF solutions (columns). Right: representative genes from each program.

(C) Chronic activation score (y axis) and activation score (x axis) for each CD8+ T cell (dot) from each study (panels) with cells classified as dysfunctional, effector,

or naive/memory by their signatures, or as ‘‘balanced,’’ if their chronic activation score is at the expected level based on the LOWESS regression line (black).

Pearson’s R and association p value are shown.

(D) Average expression (row Z score, color bar) of genes (rows) from the decoupled pan-cancer dysfunction program in CD8+ T cell subsets (columns) from 9

scRNA-seq studies stratified by expression of canonical markers (naive/memory: CCR7, TCF7, LEF1, and SELL; effector: NKG7, CCL4, CST7, PRF1, GZMA,

GZMB, IFNG, and CCL3; dysfunctional: PDCD1, TIGIT, HAVCR2, LAG3, and CTLA4).

(E) Distribution of overall expression scores (y axis) of the decoupled pan-cancer dysfunction program (minus immune checkpoints: PDCD1, TIGIT, HAVCR2,

LAG3, andCTLA4) in CD8+ T cells stratified as in (D). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points that do not exceed

± IQR*1.5; further outliers are marked individually. ***p < 0.001, mixed-effects test.
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LOWESS regression line), or dysfunctional (high activation and

higher-than-expected chronic activation scores, i.e., above the

LOWESS regression line) (Figure 1C). Finally, using these three

cell annotations and multilevel regression modeling (STAR

Methods), we identified the unique features of each cell state

across all cohorts, resulting in three ‘‘decoupled pan-cancer pro-

grams’’ of effector, dysfunction, and naive/memory cell states

(Table S3). Indeed, when we stratified cells based on the expres-

sion of canonical naive/memory and effector markers (listed

earlier), as well as dysfunction markers (PDCD1, TIGIT,

HAVCR2, LAG3, and CTLA4), the decoupled pan-cancer pro-

grams reliably identified these canonically defined subsets

(Figure S2A; Figure 1D). The decoupled pan-cancer dysfunction

program consisted of 72 genes and notably did not include 35

genes from the original GMDF chronic activation program,

including GZMA, GZMB, IFNG, IL2RG, PRF1, and STAT1, all of

which are associated with T cell effector functions (Table S4),

demonstrating the decoupling of the effector and dysfunction

components.

To test the generalizability of the decoupled programs, we strat-

ified the cells by expression of the canonical effector, naive/mem-

ory, and dysfunction markers (as aforementioned), and then

examined whether using only the de novo genes in the three de-

coupled pan-cancer programs (i.e., after removing the canonical

markers) could identify the pertaining cell population. Indeed,

each of the decoupled programs marked the respective T cell

populations across all cohorts, as well as in two additional studies

of glioblastoma16 and ovarian cancer34,35 thatwere not included in

the discovery compendium (p< 6.82*10�14, 5.68*10�9, 4.26*10�8,

mixed-effects test, for the dysfunction, effector, and naive/mem-

ory programs, respectively, in glioblastoma and similarly,

p < 1.38*10�35, 5.85*10�3, 3.53*10�14, in ovarian cancer, STAR

Methods, Figures 1E; S2B and S2C).

The decoupled pan-cancer T cell dysfunction program
predicts clinical non-response to immunotherapy
To test the clinical relevance of the pan-cancer programs, we as-

sessed their overall expression in scRNA-seq data of CD8+ TILs

collected from patients with melanoma before and after ICB.18

Each of the programs highlighted distinct populations of cells

(Figure 2A). The decoupled pan-cancer dysfunction program

was overexpressed in cells from non-responder patients

compared to cells from responders (Figure 2A, p = 6.37*10�50,

mixed-effects test; pre- and post-treatment combined). This is

consistent with the previously reported correlation of ENTPD1

and HAVCR2, both members of the decoupled pan-cancer

dysfunction program (Figures S3A and S3B), with failure to

respond to ICB.18 The decoupled pan-cancer dysfunction pro-

gram also includes SIRPG (Figure S3C), the ligand of CD47,

consistent with studies linking CD47 expression in cancer cells

to T cell function36–38 and lack of ICB response.12 Notably,

the decoupled naive/memory program, containing TCF7

(Figure S3D), showed the opposite trend (Figure 2A, p =

3.91*10�25, mixed-effects), consistent with previous reports.18

Importantly, expression of the decoupled pan-cancer dys-

function program in pre-treatment CD8+ TILs was predictive of

clinical non-response to ICB in patients with melanoma at both

the single-cell (area under the ROC curve [AUC] = 0.72, p =
4 Cell Reports Medicine 5, 101640, July 16, 2024
9.7*10�83) and sample (AUC = 0.86, p = 0.0075, t test) levels (Fig-

ure 2B). In four patients with responding and non-responding le-

sions, the dysfunction program predicted non-response at the

lesion level, showing significantly higher expression in cells

from non-responding vs. responding lesions (p < 1*10�30, Fisher

combined test, Figure 2C). The decoupled pan-cancer dysfunc-

tion program shared featureswith previously reported signatures

of T cell dysfunction in cancer and thus had similar predictive

performance (Table S5). Notably, the GMDF chronic activation

program (comprising both dysfunction and effector genes) was

associated with lack of response. However, once decoupled

into separate effector and dysfunction programs, they instead

associated with response and non-response, respectively, sup-

porting the value of decoupling (Table S5). We tested the predic-

tive power of the pan-cancer dysfunction program in two addi-

tional scRNA-seq datasets: a breast cancer cohort39 (N = 11

patients) and a basal (N = 11) or squamous cell carcinoma cohort

(n = 4) treated with ICB.40 The pan-cancer dysfunction program

was not predictive of ICB response in these cohorts. This could

reflect the lower number of patients compared to the melanoma

cohort (N = 32), although these cohorts had more cells sampled

per patient, or the more modest clinical responses observed in

these cohorts (only one patient with complete response). Addi-

tional cohorts with larger numbers of ICB-treated patients across

cancer types will be needed to compare the signature’s predic-

tive performance in a broader context.

CXCR6 is a high-ranking gene in the decoupled pan-
cancer dysfunction program
Examining the decoupled pan-cancer dysfunction program

genes for novel regulators, we noted CXCR6 among the top 5

genes, with a high loading in the GMDF consensus solution.

CXCR6 was also the only gene that consistently marked

dysfunctional T cells across all cancers examined (Figure 1D,

Benjamini-Hochberg false discovery rate [FDR] <0.01, mixed-ef-

fects, in all cohorts). Previous studies have associated CXCR6

with improved immune responses along with effector and mem-

ory T cell recruitment and trafficking.41,42 More recent work has

shown that CXCR6 is expressed in dysfunctional T cells in mul-

tiple cancer types20,43 and in chronic viral infections.44,45

Furthermore, CXCR6-mediated interactions between CD8+

T cells and intra-tumoral dendritic cells (DCs) were shown to

be important for sustained tumor control in a murine melanoma

model.46 Given these studies indicating the importance of

CXCR6 for anti-tumor immunity, we pursued its study in more

depth.

CXCR6was predominantly expressed in T cells, and its ligand,

CXCL16, was predominantly expressed by myeloid cells in the

three tumor types in our compendium (sarcoma, lung, and mel-

anoma) and an additional glioblastoma dataset where non-T

cells were profiled12–15,18,47 (Figure 3A). Based on these data

and data from a breast cancer cohort,11 we identified a program

of genes co-expressed with CXCL16 in macrophages (Fig-

ure S3E; Table S6). The program included complement genes

(C1QA, C1QB, and C1QC), major histocompatibility complex

(MHC) class II genes (HLA-DMB and HLA-DOA), and the co-

stimulatory receptor CD86, indicating that CXCL16 marks acti-

vated cells engaged in antigen cross-presentation. Indeed,
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Figure 2. The pan-cancer T cell dysfunction program predicts ICB responses

(A) Uniform manifold approximation and projection (UMAP) embedding of CD8+ T cell profiles (dots) from 48 melanoma tumors,18 colored by the overall

expression of the decoupled pan-cancer naive/memory (I), effector (II), and dysfunction (III), or pan-cancer cell cycle (IV) program, ICB response status (V), or pre-

versus post-treatment biopsy status (VI).

(B) Left: true positive (y axis) and false positive (x axis) rates when predicting the clinical response of the tumor based on different levels of the pan-cancer

dysfunction program score at either the CD8+ T cell (top) or sample (bottom) level. Right: distribution of the overall expression (y axis) of the decoupled pan-cancer

dysfunction program in responders or non-responders at the cell (top) and sample (bottom) level. Middle line: median; box edges: 25th and 75th percentiles,

whiskers: most extreme points that do not exceed ± IQR*1.5; further outliers are marked individually.

(C) Distribution of overall expression of the decoupled pan-cancer dysfunction program in the responding and non-responding lesions of patients (x axis) with

mixed responses. Statistical significance was determined by Student’s t test (B, right) and Fisher combined test (C).
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CXCL16was co-expressed with antigen processing and presen-

tation signatures in macrophages in all datasets (Figure 3B).

These findings, along with data from mouse models showing

that CD8+ T cell CXCR6 expression optimized interactions with

CXCL16-expressing dendritic cells,46 indicated that CXCR6-

CXCL16 interactions may mediate spatiotemporal control of

chronically activated T cells in both mouse and human tumors.

CXCR6 expression tracks with T cell dysfunction and
tumor progression in murine tumors
We next assessed CXCR6 expression in CD8+ T cells in different

mouse tumor models that vary in immunogenicity and in their

expression of Ova as an ectopic tumor antigen. In CD8+ TILs, the

frequency of cells expressing CXCR6 increased from PD1�

TIM3� (naive-like) to PD1+TIM3� (stem-like PD1+TCF1+TIM3�

and effector-like PD1+TCF1�TIM3�) to PD1+TIM3+ (terminally

dysfunctional) cells across all models (Figure 3C, top; Figure S3F).
Tumor antigen-specific (Ova-Dextramer+) cells showed the same

pattern in Mc38Ovahi but not in B16Ova tumors, where antigen-

specific cells were less frequent (Figure 3C, bottom; Figure S3F,

Figure S3G). Further, CXCR6 expression was higher in

PD1+TIM3+ vs. PD1+TIM3� cells among both total and tumor anti-

gen-specific CD8+ TILs (Figure S3H). CXCR6+ TILs expressed

more CX3CR1, associated with effector function,48–51 Ki-67, and

multiple co-inhibitory receptors (PD1, TIM3, LAG3, TIGIT, and

CD39) and Tox,28–30 all of which are associated with dysfunction

(Figure 3D). Notably, CXCR6+ T cells expressed lower TCF1 (Fig-

ure 3D), which represses effector CD8+ T cell differentiation52,53

andmaintains stem-like cells that give rise to effector and, eventu-

ally, dysfunctional cells in both cancer and chronic virus infection

models.21,22,54,55 In linewith the human pan-cancer compendium,

CXCL16 was expressed by myeloid cells across the three tumor

models, with the highest expression in MHCIIhi macrophages, fol-

lowed by MHCIIlo macrophages, and DC subsets (Figure 3E).
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Figure 3. CXCR6 and CXCL16 expression in human and murine tumors tracks with dysfunctional T cells and myeloid cells, respectively

(A) Mean expression (color bar) and fraction of expressing cells (dot size) for CXCR6 and CXCL16 (columns) across cell types (rows) in different human tumor

studies (panels).

(B) GSEA plots obtained for the KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION gene set when compared against the ranking of genes based on their

co-expression with CXCL16 in macrophages in the indicated tumors.

(C) Frequency of CXCR6+ cells (y axis, mean ± SEM) in the indicated subsets (x axis) of total (top) or Ova-Dextramer+ (bottom) CD8+ TILs harvested from B16F10,

B16Ova, or Mc38Ovahi tumors (top: B16F10, n = 8, 2 experiments combined. B16Ova, n = 10, 2 experiments combined. Mc38Ovahi, n = 9, 2 experiments

combined. Bottom: B16Ova, n = 3, 1 experiment. Mc38Ovahi, n = 15, 2 experiments combined).

(D) Representative distributions of expression levels (x axis, fluorescence intensity) in CXCR6+ and CXCR6�CD8+ TILs fromB16Ova tumors (n = 4, 1 experiment).

(E) Representative distributions of CXCL16 surface (top) or intracellular (bottom) expression (x axis, fluorescence intensity) in myeloid cells from Mc38Ovahi,

B16Ova, or B16F10 tumors (n = 4 per tumor, 1 experiment).

(F) Left: B16Ova tumor area (y axis, mean ± SEM) of early-stage or late-stage tumors. Middle: frequency (y axis, mean ±SEM) of PD1- and TIM3-expressing CD8+

TILs (x axis) in early- or late-stage tumors. Right: frequency of CXCR6+ cells (y axis, mean ± SEM) in the indicated subsets (x axis) of CD8+ TILs from early- or late-

stage B16Ova tumors (n = 12, 2 experiments combined). Statistical significance was determined by Student’s unpaired t test (C, F). *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.
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These data point to CXCR6-CXCL16 mediating interactions be-

tween effector and dysfunctional PD1+TIM3+CD8+ TILs with anti-

gen-presenting cells in the TME.

We further characterized CXCR6 expression over the course

of tumor progression, comparing CD8+ TILs from B16Ova tu-

mors harvested at early versus late stages of progression. While

the proportions of PD1- and TIM3-expressing subsets remained

mostly unchanged, CXCR6 expression within PD1+TIM3� and

PD1+TIM3+ cells increased with tumor progression (Figure 3F).

Thus, CD8+ T cells increasingly acquired CXCR6 expression as

they transitioned to effector and finally terminally dysfunctional

T cell states with tumor progression.

CXCR6 is up-regulated with ICB and is repressed by
TCF1
The gradient of increasing CXCR6 expression from effector to

dysfunctional CD8+ TILs (Figures 3C; S3H) and a previous study

showing its expression increases upon ICB in a mouse model56

prompted us to examine whether CXCR6 increased in response

to ICB in our human cohort. In CD8+ TILs from patients with mel-

anoma collected pre- and post-treatment,18 CXCR6 expression

increased following ICB treatment (p = 4.63*10�4, mixed-effects)

(Figure S4A). To test this further in a controlled setting, we exam-

ined two different tumor models (Mc38Ovahi and B16Ova) and

two different ICB therapies (anti-PD1 and anti-PD-L1 + anti-

TIM3). In the immunogenic Mc38Ovahi model, the fraction of

CXCR6-expressing cells increased with ICB in both the

PD1+TIM3� andPD1+TIM3+CD8+ TIL populations (Figure 4A; Fig-

ure S4B). In the less immunogenic B16Ova model, the fraction of

CXCR6-expressing cells increased upon ICB in the PD1+TIM3�

but not in the PD1+TIM3+ subset, where nearly all cells expressed

CXCR6 prior to ICB (Figures 4B; S4C). We also observed an in-

crease in the CXCR6 expression level within the subsets upon

ICB in both models (Figures S4D and S4E). The PD1+TIM3� pop-

ulation, containing both TCF1+ stem-like and TCF1� effector-like

cells, showed the most robust CXCR6 expression increase upon

ICB. Interestingly, TCF1 and CXCR6 expression were mutually

exclusive within this population (Figure S4F), and this was even

more striking among antigen-specific cells (Figure S4G). Thus,

the increased CXCR6 expression within this population likely re-

flected a shift toward TCF1� effector-like cells upon ICB.
Figure 4. CXCR6 expression increases upon ICB and is repressed by T

(A and B) Left: tumor area (y axis, mean ± SEM) over time (x axis) of Mc38Ovahi (A

anti-PD-L1 + anti-TIM3 (B), or isotype control. Right: frequency of CXCR6+ cells (y

tumors treated as above (A: n = 4–6 per group, 1 experiment. B: n = 3–4 per gro

(C) Expression (row-normalized TPM, color bar) of top differentially expressed ge

Tcf7FL/FL) cells at different time points after T cell activation (columns) (n = 3, 1 e

(D) Mean expression (color bar) and fraction of expressing cells (dot size) of key ge

seq of cells from B16Ova tumors implanted in WT or Tcf7 cKO mice (n = 3 per g

(E) Frequency of CXCR6+ cells (y axis, mean ± SEM) in the indicated subsets (x ax

(n = 3–7 per group, representative of 2 experiments).

(F) Percent input (y axis, mean ± SEM) following chromatin immunoprecipitation (C

axis) in WT or Tcf7 cKO CD8+ T cells (n = 8, 5 experiments combined).

(G–I) Luciferase activity (RLU, relative light unit, y axis, mean ± SEM) in HEK293

together with either empty vector (control) or vectors encoding the indicated t

constitutive Renilla luciferase activity (n = 3, representative of 2 experiments).

Student’s unpaired t test (A right, B right, E, F comparing WT to Tcf7 cKO anti-T

ANOVA with Tukey’s multiple comparisons test (G, H, I). NS = not significant, *p
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Given the observed CXCR6 increase in CD8+ TILs upon ICB

(Figures 4A and 4B) and its anti-correlation with TCF1

(Figures S4F and S4G), we hypothesized that TCF1 regulated

Cxcr6 expression. To test this, we analyzed bulk RNA

sequencing (RNA-seq) of CD8+ TILs isolated from either wild-

type (WT) mice or mice bearing conditional deletion of Tcf7

(the gene encoding TCF1) in mature CD8+ T cells (Tcf7 cKO)

over a time course of in vitro activation. CXCR6 was among

the top 5 differentially expressed genes between WT and

Tcf7 cKO cells both prior to activation (time point 0, p =

6.23*10�23, Wald test) and at subsequent time points, with

the expression difference gradually decreasing over time (Fig-

ure 4C). Moreover, scRNA-seq of B16Ova tumors from WT

and Tcf7 cKO mice showed significantly higher CXCR6 expres-

sion in Tcf7 cKO cells, specifically the PD1�TIM3� (p < 1*10�4,

Wilcoxon test) and PD1+TIM3� CD8+ TILs (p < 1*10�4, Wil-

coxon test) (Figure 4D), which we confirmed at the protein level

(Figure 4E).

These results suggested that Tcf7/TCF1 repressed CXCR6

expression in PD1�TIM3� and PD1+TIM3� CD8+ T cells (where

TCF1 is expressed; TCF1 levels become negligible once TIM3 is

expressed), consistent with TCF1 acting as a transcriptional

repressor.57 Supporting direct regulation, chromatin immunopre-

cipitation (ChIP) sequencing data show TCF1 binding in the

CXCR6 promoter region, which is also shown to be chromatin

accessible in naive CD8+ T cells58,59 (Figure S4H). We confirmed

TCF1 binding in this region (mm10, chr9: 123806217–

123806718) by ChIP-PCR in CD8+ T cells from WT and Tcf7

cKOmice (Figure 4F). To test TCF1 repression ofCxcr6 transcrip-

tion, we identified candidate transcription factors with predicted

binding sites in a 1-kb genomic region surrounding the predicted

TCF1-binding sites (mm10, chr9: 123806024–123807024) (STAR

Methods). Of these, 15 were expressed in CD8+ TILs from

B16F10 tumors,33 including three members of the AP-1 transcrip-

tion factor family, c-Fos, c-Jun, and JunD. We therefore tested if

AP-1 transcription factors could induce Cxcr6 expression and

whether this induction could be repressed by TCF1. Using lucif-

erase assays, we showed that c-Fos, c-Jun, and JunD induced

Cxcr6 transcription, but, upon addition of TCF1, transcription

was repressed to control levels (Figures 4G–4I). Thus, TCF1

repressed AP-1-induced Cxcr6 expression.
CF1

) or B16Ova (B) implanted in wild-type (WT) mice and treated with anti-PD1 (A),

axis, mean ±SEM) in the indicated subsets (x axis) of CD8+ TILs harvested from

up, 1 experiment).

nes (rows) between WT OTI (E8i-Cre-, Tcf7FL/FL) and Tcf7 cKO OTI (E8i-Cre+,

xperiment).

nes (rows) in different CD8+ T cell clusters (columns) as determined by scRNA-

roup combined, 1 experiment).

is) of CD8+ TILs from B16Ova tumors fromWT (black) or Tcf7 cKO (green) mice

hIP) PCR of the Cxcr6 locus with anti-TCF1 or rabbit IgG control antibodies (x

T cells transfected with Cxcr6 locus-containing pGL4.10 luciferase reporters

ranscription factors (x axis). Firefly luciferase activity is presented relative to

Statistical significance was determined by linear mixed model (A left, B left),

CF1 samples), Student’s paired t test (F comparing WT samples), or one-way

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 5. CXCR6 knockout reduces anti-tumor immunity

(A) Experimental design for adoptive transfer experiments.

(B–F) B16Ova tumor-bearingmice were adoptively transferred with CRISPRCXCR6KOOTI T cells, CRISPR control OTI T cells, or no transfer control as indicated

in (A). (B) Tumor area (y axis, mean ±SEM) over time (x axis) (n = 5 per group, representative of 2 experiments). (C) Number of transferred, transducedOTI cells per

mg of tumor tissue (y axis, mean ± SEM) (n = 5 per group, representative of 2 experiments). (D) Left: frequency of IFNg+, TNF-a+, or Granzyme B+CD107a+ cells (y

axis, mean ± SEM) in transferred, transduced OTI cells after ex vivo activation with Ova 257–264. Right: frequency of Ki-67+ cells (y axis, mean ± SEM) in

transferred, transduced OTI cells (n = 4–5 per group, representative of 2 experiments). (E) Frequency of Tox+ cells (y axis, mean ± SEM) in the indicated subsets

(legend continued on next page)
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CXCR6 is required to maintain tumor control
To study the impact of CXCR6 expression on anti-tumor CD8+

T cell function, we next utilized CRISPR-Cas9 to delete CXCR6

in mature OTI CD8+ T cells and transferred them into mice

bearing Ova-expressing tumors (Figure 5A). This approach de-

letes genes at the time of T cell activation, thus bypassing any

compensatory mechanisms that might arise when genes are

deleted during development. We confirmed that CXCR6 was

efficiently deleted in CRISPR CXCR6 knockout (KO) OTI cells

in vivo (Figure S5A) and found that CRISPR CXCR6 KO T cells

failed to control tumor growth compared to CRISPR control

T cells in both the B16Ova and Mc38Ovahi models (Figures 5B;

S5B), in line with previous reports.46,56We did not observe signif-

icant differences in the numbers of transduced cells within tumor

tissue, although there was a trend toward fewer CRISPR CXCR6

KOOTI cells (Figures 5C; S5C). PD1 and TIM3 expression did not

differ betweenCRISPRCXCR6KO andCRISPR control OTI cells

(Figure S5D). Despite the compromised tumor control by

CRISPR CXCR6 KO OTI cells (Figure 5B; Figure S5B), functional

analyses showed no major differences in their proliferation (Ki-

67), pro-inflammatory cytokine production (IFNg and TNF-a),

or cytotoxic capacity (GranzymeB+CD107a+) (Figure 5D). How-

ever, Tox expression, known to impact the survival of CD8+

TILs,29 was reduced in PD1+TIM3+ CRISPR CXCR6 KO cells

compared to CRISPR control cells (Figure 5E). There were also

fewer CRISPR CXCR6 KO PD1+TIM3+ OTI cells expressing

CX3CR1 and a trend toward lower CX3CR1 expression levels

(Figure 5F).

We further confirmed that loss of CXCR6 compromised tumor

growth control using CD8+ T cells from OTI mice crossed with

CXCR6 KO mice (Figure 5G). Again, there was a non-significant

trend toward fewer transferred CXCR6 KO OTI cells in tumors

(Figure S5E) and no difference in the proliferation, cytokine pro-

duction, or cytotoxicity of transferred cells (Figure S5F). Howev-

er, in line with our CRISPR data, the expression level of CX3CR1

was decreased in CXCR6 KO PD1+TIM3+ cells compared to WT

OTI (Figure S5G, right), although the proportion of CX3CR1+ cells

was similar (Figure S5G, left).

As CX3CR1 expression has been associated with expres-

sion of the pro-survival protein Bcl2 in other immune cells,60,61

we compared Bcl2 expression in our transferred cells.

Although Bcl2 expression was high overall, the proportion of

Bcl2-expressing cells and Bcl2 expression levels were signifi-

cantly lower in PD1+TIM3+ CXCR6 KO OTI cells compared to

WT OTI cells (Figure 5H). Consistent with a previous report

that showed CXCR6-deficient CD8+ T cells survived less in

the TME,46 there were more apoptotic (Annexin V+, 7AAD+)

cells among PD1+TIM3+ CXCR6 KO OTI cells compared to
(x axis) of transferred, transduced OTI cells (n = 4 per group, 1 experiment). (F) Fr

level in CX3CR1+ cells (right, y axis, geometricmean fluorescence (MFI), mean ±S

per group, representative of 2 experiments).

(G–I) B16Ova-tumor bearing mice were adoptively transferred with CXCR6 knock

SEM) over time (x axis) (n = 4–5 per group, 1 experiment). (H) Frequency of Bcl-2

geometric mean fluorescence (MFI), mean ±SEM) in the indicated subsets (x axis)

V+, 7AAD� cells (left, y axis, mean ± SEM) and of Annexin V+, 7AAD+ cells (right, m

group, 1 experiment). Statistical significance was determined by linear mixedmod

**p < 0.01, ***p < 0.001.
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WT OTI cells (Figure 5I). Collectively, these data support a

model where CXCR6-CXCL16 interactions may regulate the

survival of PD1+TIM3+ cells, possibly via alterations in

CX3CR1 and Bcl2, such that CXCR6 KO cells are more

apoptotic and therefore less effective at mediating tumor

clearance.

Defective CD28 co-stimulation in CXCR6 KO cells
To further identify how CXCR6 signaling affects T cells, we per-

formed RNA-seq on WT and CXCR6 KO OTI cells after co-cul-

ture with Ova-pulsed CXCL16+ bone-marrow-derived dendritic

cells (Figure S5H). The top three pathways enriched in WT vs.

CXCR6 KOOTI cells were leukocyte activation, regulation of reg-

ulatory T cell differentiation, and co-stimulation by the CD28

family (Figures 6A and 6B; Table S7), whereas those enriched

in CXCR6 KO OTI were metabolism of RNA, ribonucleoprotein

complex biogenesis, and assembly (Figure 6C). Notably, the

‘‘costimulation by the CD28 pathway’’ (R-MMU-388841) was

significantly higher in WT vs. CXCR6 KO OTI cells by gene set

enrichment analysis (Figure 6D).

CD28 signaling is not only important for effective T cell co-

stimulation and T cell survival,62–64 but it is also critical for

ICB response and was recently shown to be abrogated by

PD1 signaling.23,65 Given the increased apoptosis observed in

CXCR6 KO T cells (Figure 5), we assessed CD28 expression

in WT and CXCR6 KO OTI cells at early (day 3) and late (day

8) time points after co-transfer into the same tumor-bearing

host (Figure 6E). Early post-transfer, WT and CXCR6 KO OTI

cells were present in tumor tissue at similar frequencies, but

later, all mice showed higher frequencies of WT cells (Figure 6F),

in line with increased apoptosis in CXCR6 KO cells. Notably,

these differences in survival were more readily observed in a

co-transfer setting, likely reflecting the decreased capacity of

CXCR6 KO cells to compete with WT cells for limiting growth

and survival signals within the same TME. Importantly, although

similar prior to transfer, the frequency of CD28+ cells was lower

among CXCR6 KO OTI cells at both early and late time points,

as was the CD28 expression level per cell at the day 8 time

point (Figure 6G), consistent with our RNA-seq data (Figure 6A).

CD28 co-stimulation is directly linked to the pro-survival protein

Bcl-xL.62–64 Indeed, there was a decreased frequency of Bcl-

xL-expressing cells and a lower Bcl-xL expression level in

CXCR6 KO OTI cells (Figure 6H). Finally, there was lower

CX3CR1 expression in CXCR6 KO OTI cells (Figure 6I), con-

firming our previous results (Figure 5F). Together, these data

indicate that CD28 modulation may be one mechanism by

which CXCR6 contributes to the preservation of anti-tumor

T cell responses.
equency of CX3CR1+ cells (left, y axis, mean ± SEM) and CX3CR1 expression

EM) in the indicated subsets (x axis) of transferred, transducedOTI cells (n = 4–5

out (KO) OTI cells, WT OTI cells, or no T cells. (G) Tumor area (y axis, mean ±
+ cells (left, y axis, mean ± SEM) and level of Bcl-2 in Bcl-2+ cells (right, y axis,

of transferred OTI cells (n = 4 per group, 1 experiment). (I) Frequency of Annexin

ean ± SEM) in the indicated subsets (x axis) of transferred OTI cells (n = 4 per

el (B, G) and Student’s unpaired t test (C–F, H, I). NS = not significant, *p < 0.05,
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DISCUSSION

Here, we devised and applied a new matrix factorization algo-

rithm, GMDF, to map CD8+ T cell gene expression programs

across a spectrum of human cancers and identify a generalizable

pan-cancer T cell dysfunction program. One of the top-ranking

genes in the program was CXCR6, which we showed is nega-

tively regulated by TCF1 and is predominantly expressed in

PD1+TIM3+ terminally dysfunctional cells, where it may promote

their survival through various mechanisms including promotion

of CD28 co-stimulation and expression of Tox, Bcl2, and

CX3CR1. Accordingly, CXCR6 deletion resulted in decreased tu-

mor growth control, highlighting the contribution of dysfunctional

T cells in mediating anti-tumor immunity and the importance of

the TCF1:CXCR6 regulatory circuit.

GMDF incorporates mixed effects in unsupervised modeling

to leverage the rapidly increasing number of single-cell studies

through a unified pattern recognition framework. It identified

shared programs as gene modules that are repeatedly observed

in all datasets (i.e., a set of genes that co-vary within each one of

the input datasets), as well as context-specific programs as gene

modules that co-vary only in some of the datasets. These latent

gene modules are identified by considering the co-variation of

genes within each dataset.

While our study focuses on programs shared across CD8+

TILs in various TMEs, context-specific programs could poten-

tially identify ways to unleash immune responses in specific

contexts. However, to uncover context-specific programs,

data from multiple cohorts of the same tumor type are

required, along with additional examination of GMDF’s perfor-

mance and robustness. Similarly, although expression of the

decoupled pan-cancer dysfunction program was associated

with ICB response in the melanoma cohort we studied, this

connection, potentially in combination with other ICB resis-

tance signatures in other cell types (e.g., in malignant cells12),

should be further examined as larger and more statistically

powered cohorts of ICB-treated patients across cancer types

become available.

CXCR6 was one of the top members of the decoupled pan-

cancer dysfunction program, whose expression predicted fail-

ure to respond to ICB in melanoma. Yet, CXCR6 expression

increases in both patients with melanoma18 and murine

models upon ICB. Additionally, loss of CXCR6 dampened tu-

mor control in mouse models. Our data therefore position

CXCR6 as a positive regulator of dysfunctional T cells that

sustains their limited functionality in the face of chronic activa-

tion in the TME. Thus, the pan-cancer dysfunction program

contains both positive (e.g., CXCR6) and negative (e.g.,

PDCD1/PD1) regulators of T cell function and persistence in

the TME, and their co-expression serves to tightly control

chronically activated T cells.

CXCR6 KOCD8+ T cells expressed lower CD28 and thusmay

receive less co-stimulation than their WT counterparts. A

decrease in CD28 co-stimulation in CXCR6 KO CD8+ T cells

may not only compromise their survival through regulation of

Bcl-xL62–64 but also their ability to respond effectively to ICB,

which is known to require CD28 signals.65 Indeed, a separate

study showed that CXCR6-deficient mice had a compromised
response to ICB.56 Our data are thus consistent with a model

where the CXCR6 increase upon ICB reinforces CD28 signaling

to counterbalance PD1-mediated inhibition.23 This, together

with a recent report showing that CXCR6 mediates interactions

with dendritic cells to promote survival of effector cells,46 por-

trays a combination of intrinsic and spatial signals that together

elicit protective signaling via CXCR6 in chronically activated

T cells.

CD8+ T cells undergo an altered differentiation trajectory in

the TME.66,67 Tcf7/TCF1 is important early in this trajectory as

it restrains effector differentiation and preserves a pool of

stem-like CD8+ T cells that seed the effector response upon

ICB.21,22,55 Our data show that TCF1 represses AP-1-driven

CXCR6 expression. Thus, as stem-like CD8+ T cells become

activated and lose TCF1 expression, AP-1-mediated CXCR6

transcription can occur. CXCR6 expression further increases

as cells progress along the effector differentiation trajectory

and eventually become dysfunctional. CXCR6 likely functions

to preserve and promote effector cells along this trajectory,

having its greatest effects on dysfunctional cells, where

CXCR6 levels are the highest. Further, TCF1+ stem-like CD8+

T cells have been shown to reside in specific tumoral niches.68

Their positioning could be in part due to the repression of

CXCR6, which has been shown to direct intra-tumoral localiza-

tion of cells.46 Thus, TCF1 suppression of CXCR6 in stem-like

cells may sequester them in specialized niches that preserve

their stemness and prevent effector differentiation. The

TCF1:CXCR6 axis we describe may therefore orchestrate the

differentiation trajectory of intra-tumoral CD8+ T cells by direct-

ing their spatial localization.

Our study focused mainly on the T cell component of the

CXCR6-CXCL16 interaction. However, CXCL16 is also ex-

pressed as a transmembrane protein.69–71 CXCR6 binding to

transmembrane CXCL16 can mediate cell adhesion72 and

reverse signal into CXCL16-expressing cells to modulate their

phenotype as well.73 Thus, future studies could investigate if

CXCR6-CXCL16 interactions could modify CXCL16+ APCs to

promote their production of factors such as IL-15,46 CX3CL1

(the ligand for CX3CR1), or B7 molecules to support the survival

and maintenance of chronically activated CD8+ TILs.

In conclusion, our study introduces a method for mixed-ef-

fects unsupervised modeling to leverage the large amount of

available scRNA-seq data through a unified framework and re-

veals a regulatory axis essential for T cell-mediated tumor

control.

Limitations of the study
Micewith an intact CD8+ T cell compartment were used as recip-

ients for adoptive transfer studies with antigen-specific T cells.

Although we examined the endogenous CD8+ T cells in these tu-

mors and found no differences between the experimental and

control groups, the contribution of endogenous CD8+ T cells

cannot be entirely ruled out. To interrogate the difference be-

tween WT and CXCR6 KO cells, we used an in vitro co-culture

system to better control for differences in cell numbers, expo-

sure to CXCL16 signals, and timing. However, investigating WT

and CXCR6 KO cells and their interactions with CXCL16-ex-

pressing cells in vivo may provide a clearer picture of CXCR6
Cell Reports Medicine 5, 101640, July 16, 2024 11
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Figure 6. CXCR6 KO cells have reduced CD28 co-stimulation

(A) Heatmap showing differentially expressed genes (rows, Z score) between WT and CXCR6 KO OTI T cells (columns) sorted from T cell:DC co-cultures. Genes

representative of the top 3 enriched pathways in WT and CXCR6 KO cells are labeled (n = 3, 1 experiment).

(B) The top 3 significantly enriched pathways based on genes that were significantly higher in WT compared to CXCR6 KOOTI T cells from T cell:DC co-cultures.

(C) The top 3 significantly enriched pathways based on genes that were significantly higher in CXCR6 KO compared toWT OTI T cells from T cell:DC co-cultures.

(D) GSEA plot for the ‘‘costimulation by the CD28 family’’ (R-MMU-388841) gene set when compared against the ranking of genes based on their differential

expression between WT and CXCR6 KO T OTI cells from T cell:DC co-cultures.

(E) Experimental design for co-adoptive transfer experiments.

(F–I) WT and CXCR6 KO OTI T cells were co-adoptively transferred into B16Ova tumor-bearing mice as indicated in (E) (n = 5–6 per time point, 1 experiment). (F)

Frequency (y axis, mean ± SEM) of transferred OTI cells on day 3 (D3) and day 8 (D8) post-transfer (x axis). (G) Expression level (left, x axis, fluorescence intensity)

of CD28 in WT and CXCR6 KO OTI CD8+ T cells versus fluorescence minus one (FMO, gray) prior to co-adoptive transfer. Frequency of CD28+ cells (middle, y

axis, mean ±SEM) and CD28 expression level in CD28+ cells (right, y axis, geometric mean fluorescence [MFI]) in transferred OTI cells at day 3 (D3) and day 8 (D8)

post-transfer. (H) Expression level (left, x axis, fluorescence intensity) of Bcl-xL in WT and CXCR6 KO OTI CD8+ T cells versus FMO (gray) prior to co-adoptive

transfer. Frequency of Bcl-xL+ cells (middle, y axis, mean ± SEM) and Bcl-xL expression level in Bcl-xL+ cells (right, y axis, geometric mean fluorescence [MFI]) in

transferred OTI cells at day 3 (D3) and day 8 (D8) post-transfer. (I) Expression level (left, x axis, fluorescence intensity) of CX3CR1 in WT and CXCR6 KOOTI CD8+

T cells versus FMO (gray) prior to co-adoptive transfer. Frequency of CX3CR1+ cells (middle, y axis, mean ± SEM) and CX3CR1 expression level in CX3CR1+ cells

(right, y axis, geometric mean fluorescence [MFI]) in transferred OTI cells at day 3 (D3) and day 8 (D8) post-transfer. Statistical significance was determined by

Student’s paired t test (F–I). NS = not significant, *p < 0.05, **p < 0.01.
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effects on CD8+ T cells in the TME. Future studies should test the

predictive power of the pan-cancer dysfunction program as sin-

gle-cell or spatial data from larger cohorts of ICB-treated pa-

tients become available.
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DYK vector (Clone ID OMu22131D)

Genscript Cat: # NM_010234.3

JunD cDNA ORF clone (subcloned to include

the first 144 base pairs) in pcDNA3.1+/C-(K)-

DYK vector (Clone ID OMu14151D)

Genscript N/A

Jun cDNA ORF clone in pcDNA3.1+/C-(K)-

DYK vector (Clone ID OMu19159D)

Genscript Cat: #NM_010591.2

TCF1 protein coding sequence

(ENSMUST00000109071.3)

in pcDNA3.1+/C-HA vector

Genscript N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

FlowJo software Tree Star https://flowjo.com

Metascape https://metascape.org/gp/

index.html#/main/step1

Morpheus Broad Institute https://software.broadinstitute.org/morpheus

Prism 9 GraphPad Software, Inc https://www.graphpad.com/

CellRanger software 10X Genomics https://support.10xgenomics.com/

single-cell-gene-expression/

software/overview/welcome

SEURAT V4.0.1 https://satijalab.org/seurat/

Promo3 https://alggen.lsi.upc.es/cgi-bin/

promo_v3/promo/promoinit.cgi?

dirDB=TF_8.3

GPP sgRNA Designer Broad Institute https://portals.broadinstitute.org/gpp/

public/analysis-tools/sgrna-design

Bioconductor package DESeq2 in R https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Bioconductor package fgsea in R https://bioconductor.org/packages/

release/bioc/html/fgsea.html

TIDE: Tracking of Indels by Decomposition http://shinyapps.datacurators.nl/tide/

Other

CXCR6 sgRNA CRISPR sequence 50- GCAGAGTACA

GACAAACACC

N/A

GMDF Code and Instructions https://github.com/livnatje/GMDF

Graphical Abstract web-design tool Biorender.com
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ana C.

Anderson (acanderson@bwh.harvard.edu).

Materials availability
Requests for plasmids generated in this study should be directed to the lead contact, Ana C. Anderson (acanderson@bwh.

harvard.edu).

Data and code availability
d Single-cell RNA-seq and Bulk RNA-seq data have been deposited at GEO and are publicly available as of the date of publica-

tion. Accession numbers are listed in the key resources table.

d This paper analyzes existing, publicly available data. The accession numbers for these datasets are listed in the key resources

table.

d All original code has been deposited on github. The link can be found in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
6–8-week-oldmale or female C57BL/6 (Stock No. 000664), CXCR6 KO (Stock No. 005693), OT1 (Stock No. 003831), Cas9 (Stock No.

028555), E8i-Cre (Stock No. 008766), and CD45.1 (Stock No. 002014) transgenicmice were purchased from the Jackson Laboratory.

Tcf7 cKO (E8i-Cre+ Tcf7FL/FL) mice were generated as previously described22 and E8i-Cre- x Tcf7FL/FL littermates were used as con-

trols. CXCR6 KO, Tcf7 cKO, and control mice were crossed to OT1. All mice were housed in a vivarium under SPF conditions, in ca-

ges of up to five mice, and fed a special rodent diet. All experiments involving laboratory animals were performed under protocols

approved by the Harvard Medical Area Standing Committee on Animals (Boston, MA) and followed IACUC guidelines on the ethical

care and use of animals.
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Mouse tumor cell lines
B16F10was purchased fromATCC.Mc38Ovahi was generously provided byDr. Nick Haining. B16Ovawas kindly provided byDr. Kai

Wucherpfennig. All tumor cell lines were grown at 37�Cwith 10%CO2. B16F10 and B16Ova were grown in RPMI supplemented with

10%FBS, glutamine (2mM), pen/strep, non-essential amino acids (1x), sodium pyruvate (1mM), and HEPES (5mM) and injected sub-

cutaneously into the flanks of mice at 3-4x105 cells per mouse. Mc38Ovahi cells were grown in DMEM supplemented with 10% FBS,

glutamine (2mM), pen/strep, non-essential amino acids (1x), and sodium pyruvate (1mM) and injected subcutaneously into the flanks

of mice at 1x106 cells per mouse. Post thaw, Mc38Ovahi cells were cultured for one passage in medium containing puromycin (4 mg/

mL) to select Ova-expressing cells followed by passage in normal medium.

METHOD DETAILS

Generalizable matrix decomposition framework (GMDF)
Given a set of d datasets collected under different conditions, GMDF decomposes each of the original datasets Ei (ni x m) using latent

shared (W) and context-specific (Aj) metagenes:

Ei zHiW +
X
j

aijH
j
iAj (Equation 1)

where all the factormatrices are constrained to be non-negative.Hi;H
j
i are the usagematrices of the latent programs in dataset i. Note

thatW (k x m) is shared across all datasets (i = 1. d), while Aj (kj x m) is used only if the binary parameter aij is 1, denoting that con-

dition j holds in sample i. A condition is defined by the user and depends on the specific structure and features of the data. It can

denote the disease subtype, treatment status, data source, etc.

The optimization problem is then defined as
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where lj is a tuning parameter which allows adjusting the size of context-specific effects.

To find a solution to the non-convex GMDF optimization problems, the variables are divided into blocks. Using block coordinate

descent, the objective is iteratively minimized with respect to each block, while holding the others fixed.
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, whereHg
i represents the usage of programs

specific to context g in cohort i.

Each of the optimization subproblems above requires solving a nonnegative least-squares problem. Each of these subproblems is

solved by using the fast block principal pivoting algorithm,74 implemented using the Rcpp and LIGER packages in R. Convergence
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criteria: After each iteration (1–4 described above), GMDF updates a convergence variable denoting the improvement in the score of

the solution (computed as shown in Equation 2). The convergence variable drops semi-monotonically. Once it is below a pre-defined

convergence threshold (with a default of 1*10�4), GMDF outputs the single run solution.

Obtaining a consensus GMDF solution
GMDF is non-convex, and therefore has multiple non-unique optimal solutions, in addition to sub-optimal solutions that can be ob-

tained if reaching a local minimum. To alleviate these problems and generate a single robust solution, GMDF uses random subsam-

pling of the data, andmultiple initialization conditions to generate multiple solutions. The different solutions are then aggregated such

that similar solutions that were repeatedly identified across various data sampling and initializations are combined. More specifically,

all the shared programs (Wmatrixes), are clustered via hierarchical clustering, with Euclidean distance as the metric to evaluate sim-

ilarity between programs. Clusters with less than 3 metagenes are removed and the others are converted to final metagenes by

computing the mean loading of each gene in each cluster. The same procedure is performed for the Aj matrixes. This scheme mit-

igates outlier effects, reduces overfitting, andmakes the final solution less dependent on the k and kj parameters, identifying the num-

ber of the embeddings’ dimensions directly from the data.

Batch correction
When applying GMDF to pan-cancer CD8+ T cells mapping, Ei (Equation 1) includes only cells from the same cohort. Thus, GMDF

does not make direct comparisons between cells of different datasets. The GMDF procedure further filters out batch-specific effects

by factorizing the matrix to dataset-specific and -shared decompositions. The pan-cancer programs identified are unlikely to repre-

sent batch-effects across the studies, as they are repeatedly observed within each cohort. For future applications of GMDF, context

specific programs will require several datasets from each context to distinguish between biologically meaningful context-specific

program and second-order batch effects.

Comparing GMDF to LIGER and iNMF
To compare GMDF to LIGER27 and iNMF,26 data were simulated with shared and dataset-specific gene modules, where a shared

gene module consists of genes that are correlated across the cells in all the datasets, and a dataset-specific module consists of

genes that are correlated across the cells only in a specific dataset, while there is no correlation in the other datasets. Each dataset

consisted of 200 cells, and module size was set to 100 genes. The results obtained with GMDF and LIGER/iNMF are shown in

Figures S1A–S1D, with the ground truth denoted by the vertical color bar to the left. In contrast to LIGER/iNMF, GMDF identified

all the programs and assigned themcorrectly as shared or specific to dataset 1 or 2 (Figures S1A–S1D). To further test LIGER, another

analysis mode in the LIGER package was used, where, beyond decomposition, LIGER also identifies differentially expressed genes.

Even when applied to identify differentially expressed genes across the different datasets, LIGER did not identify the context-specific

modules.

Datasets and pre-processing
Processed data in the form of raw counts or transcripts per million (TPM) were obtained from the Gene Expression Omnibus (GEO),

accession numbers: GSE163108 (glioblastoma16), GSE115978 (melanoma cohort 112), GSE120575 (melanoma cohort 218),

GSE131309 (sarcoma13), GSE131907 (lung14), GSE114724 (breast cancer11), GSE98638 (hepatocellular carcinoma20),

GSE108989 (colorectal cancer19), and GSE131928 (glioblastoma47). Pancreatic ductal adenocarcinoma (PDAC) TIL scRNA-seq

data17 was obtained from the Genome Sequence Archive (GSA), accession number CRA001160, project PRJCA001063. An addi-

tional lung cancer TIL scRNA-seq data15 was downloaded from SCope (https://gbiomed.kuleuven.be/scRNAseq-NSCLC). Data

from an Ovarian cancer cohort34,35 was obtained from the website (http://blueprint.lambrechtslab.org). All data were converted to

log2(TPM/10 + 1), as previously described.31 Throughout, Overall Expression was computed as previously described.12 UMAPs (Fig-

ures 2 and S3) were obtained with the Seurat package, using the first 30 PCs obtained with top 2,000 most variable genes identified

with the FindVariableFeatures function (default parameters).

GMDF application to the pan-cancer CD8 T cell cohort
GMDF was applied 100 times with different (random) initialization parameters and a random sub-sample of the data. To avoid genes

with low detection rate, genes with detection rate below 0.1 in more than 4 datasets were omitted, resulting in 5,587 genes that were

used as input for GMDF. For each run, 500 cells were subsampled from each cohort, and the topmost variable genes were selected,

with variation threshold of 0.05 in the LIGER function selectGenes. GMDF parameters were 5 for k and k’, convergence threshold

1*10�20, and aij = 1 if and only if i = j, to identify shared and cohort-specific programs. Following the 100 runs, a consensus solution

was obtained as described above (‘‘obtaining a consensus GMDF solution’’ section). Lastly, for each consensus shared program, the

top 100 genes with the highest loading were used to define the pertaining program.

Decoupling convolved expression programs
T cell ‘‘activation’’ and ‘‘chronic activation’’ scores were computed separately for each dataset. Activation scores were defined as the

Overall Expression12 of the cytotoxic markers (NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG, CCL3) minus the Overall Expression
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of memory/naive markers (CCR7, TCF7, LEF1, SELL). Chronic activation scores were defined as the Overall Expression of the pan-

cancer chronic activation program identified by GMDF (Table S1). Chronic activation scores were then plotted as a function of the

activation scores using a locally-weighted polynomial regression (LOWESS, black line in Figure 1C). The deviation from this regres-

sion line was used to classify CD8 T cells into four groups: Cells with a low activation score (below the 25th percentile) were classified

as naive/memory-like cells, while the others were considered effector or dysfunctional, if their activation scores were (0.25 standard

deviations) higher or lower than expected given their chronic activation scores, respectively. Cells with a high activation score (>25th

percentile) that fit the regression line were annotated as ‘‘balanced’’ and were not used in the analysis below. In each dataset, genes

that were significantly overexpressed in one subset of cells (e.g., dysfunctional) compared separately to each of the other two sub-

sets (e.g., dysfunction vs. naive/memory and dysfunction vs. effector), were identified as markers of that cell subset in that dataset.

These pairwise comparisonswere performedwith amultilevel regressionmodel: yij � Nðaj + bxij;s
2
1Þ, aj � Nðg0;s

2
2Þ, where yij denotes

the expression of the gene in cell i from sample j, xij denotes the total log-transformed number of reads detected in cell i in sample j,

and aj is the sample-specific intercept. The lme475 (https://CRAN.R-project.org/package=lme4) and lmerTest R packages76 were

used to fit the model, compute p-values, and identify the latent variables that maximize the posterior probability

argmaxa;b;g;s1 ;s2pða;b;g; s1;s2 j y; x; uÞf
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To aggregate the results across all datasets, pan-cancer p-values were obtained for each of the three pairwise comparisons using

Fisher’s combined probability test. Genes that were repeatedly identified as markers for one of the three states across all datasets

and had a combined p-value <10�10 were denoted as pan-cancer markers of the pertaining state.

To examine the model’s ability to capture the continuous nature of T cell dysfunction, the HLMmodel wasmodified using a contin-

uous (rather than binary) covariate to denote the dysfunction status based on the distance from the LOWESS regression line. When

applied to identify dysfunction-specific genes in the melanoma cohort,18 the procedure yielded very similar results to those of the

original binary version (gene ranking similarity: rs = 0.906, p < 10�16, Spearman correlation).

CXCL16 pan-cancer macrophage program
scRNA-seq datasets of macrophages from melanoma,12,18 sarcoma,13 and glioblastoma,47 breast cancer,11 and lung cancer,14,15

were analyzed to identify genes co-expressed with CXCL16. In each dataset genes co-expressed with CXCL16 were identified using

partial Spearman correlation, accounting for the total number of genes detected in each cell. The CXCL16 program (Table S6) in-

cludes genes significantly co-expressed with CXCL16 (t-test, Benjamini-Hochberg FDR <0.05) in all seven datasets (Fisher’s

combined probability, Benjamini-Hochberg FDR <1*10�3). In addition, in each dataset the gene ranks based on the partial Spearman

correlation analyses were used as input for gene set enrichment analysis (GSEA) preformed using the fast GSEA package to

obtain the normalized enrichment scores (NES) and plots shown in Figure 3B, using the KEGG_ANTIGEN_PROCESSING_

AND_PRESENTATION gene set.

Predictive performance of the pan-cancer dysfunction program
scRNA-seq data from melanoma samples18 were used to examine the connection between the Overall Expression (OE) of a gene

signature in CD8 T cells and ICB treatment status and response, using either (1) an HLM model, with patient-specific intercept, a

covariate controlling for treatment status (i.e., pre/post ICB), and a binary covariate of response to treatment; or (2) an ROC curve

using the average OE of the signature in the sample CD8 T cells to predict the response observed in a specific tumor, using only

pre-treatment samples. The pan-cancer signatures identified here, and another set of T cells signatures previously identified in

HCC20 were used to examine the connection between T cell states and ICB response (Table S5).

Tumor experiments with immune checkpoint blockade
Tumor size was measured in two dimensions by caliper and is expressed as the product of two perpendicular diameters. In immune

checkpoint blockade experiments, B16Ova tumors were treated with a combination of anti-PD-L1 (10F.9G2, 200mg per mouse) and

anti-Tim-3 (RMT3-23, 200mg per mouse) antibodies or control immunoglobulin (Rat IgG2a and Rat IgG2b) i.p. on day 7 and day 10

post tumor implantation. Mc38Ovahi tumors were treated with anti-PD1 (RMP1-14,100mg per mouse) antibody or control immuno-

globulin (Rat IgG2a) i.p. on day 7 and day 10 post tumor implantation. Mice were then monitored every two days for tumor growth.

TIL isolation
TILs were isolated by dissecting the tumor mass and mincing the tumor tissue prior to digestion with Collagenase D (2.5 mg/mL) for

20min at 37�C. Tumorswere then dissociated to single cell suspensions by passing tissue through a 70mMfilter prior to centrifugation

and analysis by flow cytometry. For cytokine analysis, tumors were dissociated as above and cells underwent a density separation

via percoll gradient before being plating for ex vivo stimulation.
e8 Cell Reports Medicine 5, 101640, July 16, 2024

https://CRAN.R-project.org/package=lme4


Article
ll

OPEN ACCESS
Flow cytometry
Single cell suspensions were stained with fixable viability dye Zombie UV (Biolegend) and then incubated with anti-CD16/32 for

10 min prior to staining with antibodies against surface molecules. Antigen-specific CD8+ T cells were identified by H-2Kb/

SIINFEKL dextramer (Immudex) staining following the manufacturer’s protocol. For intracellular staining, eBioscience Foxp3/tran-

scription factor staining buffer set was used per manufacturer’s protocol. For intra-cytoplasmic cytokine (ICC) staining of TILs, cells

were stimulated ex vivo with 5 mg/mL OVA257-264 peptide (GenScript) for 4 h in the presence of Golgi stop (BD Biosciences) and

Golgi Plug (BD Biosciences) prior to cell surface and ICC staining. Importantly, the antibody detecting CD107a was added to the cells

during stimulation. Intracytoplasmic staining followed fixation and permeabilization. For intracellular staining of CXCL16, cells from

tumors were cultured ex vivo for 4 h in the presence of Golgi Plug (BD Biosciences) prior to cell surface and intracellular staining. For

quantitative flow cytometry we used absolute counting beads (Thermo Fisher Scientific, Cat. C36950) according to manufacturer’s

protocol. All data were collected on a BD Symphony (BD Biosciences) or Fortessa (BD Biosciences) and analyzed with FlowJo 10.7.1

software (TreeStar).

Adoptive cell transfers
Tumor cells were injected into the flanks of recipient mice as outlined above. On day 6 post tumor implantation, mice were random-

ized by tumor size and given T cells suspended in PBS via tail intravenous injections. For CRISPR KO experiments, 3x106 (for

B16Ova) or 2.25x106 (for Mc38Ovahi) CRISPR CXCR6 KO or CRISPR Control transduced cells were transferred into

Cas9+CD45.1/.2 recipients. For CXCR6 KO experiments, 7.5x105 CXCR6 KO or Control cells were transferred. For adoptive co-

transfer experiments, 2x105 of both WT OTI CD45.1/.2 and CXCR6 KO OTI CD45.2 cells were transferred into the same CD45.1 tu-

mor-bearing animal. Tumors were measured every two days until the day of tumor harvest when TILs were isolated and analyzed by

flow cytometry.

Purification, lentiviral transduction, and in vitro culture of primary CD8+ T cells for adoptive cell transfer experiments
For CRISPRKO transfers, CD8+ T cells from spleens and lymph nodes of CD45.2 Cas9+ OTI mice were isolated using CD8amicrobe-

ads (Miltenyi) and plated at a concentration of 5x105 cells per well in the presence of IL-2 (6 ng/mL) in 24-well plates previously coated

with 1 mg/mL anti-CD3/anti-CD28. The following day, cells were transduced at an MOI of 100 with lentiviral vectors. The vector con-

tained an sgRNA targeting CXCR6 and a Thy1.1 gene to be used as a marker for transduction. A vector lacking the sgRNA but con-

taining Thy1.1 was used as a control. Approximately 36 h after transduction, cells were moved to uncoated plates and cultured in the

presence of IL-2 for an additional 3.5 days. On the day of transfer cells were stained with an antibody against Thy1.1 and FACs sorted

to purify highly transduced cells. For CXCR6 KO adoptive transfer experiments, cells were isolated from wildtype OTI CD45.2 mice

and CXCR6 KO OTI CD45.2 mice and activated as above. Cells were activated for 48 h before moving to uncoated plates and sub-

sequently cultured in the presence of IL-2 for an additional 4 days prior to transfer. For adoptive co-transfer experiments, cells were

isolated from wildtype OTI CD45.1/.2 and CXCR6 KOOTI CD45.2 mice and activated and cultured as above. T cells were cultured at

37�C with 10% CO2 in DMEM containing 10% FBS, glutamine (2mM), pen/strep (100U/mL), non-essential amino acids (1x), sodium

pyruvate (1.5mM), vitamins (1x), arginine, asparagine, folic acid (14mM), and 2-mercaptoethanol (57.2mM).

sgRNA design, testing, and plasmid construction
sgRNA guides were designed using the Broad Institute’s GPP sgRNA designer portal (https://portals.broadinstitute.org/gpp/public/

analysis-tools/sgrna-design). Three candidate sgRNAs were chosen and each cloned into an sgRNA plasmid using BsmBI sites

(Addgene #85453, modified with Thy1.1 in place of Tdtomato). Candidate sgRNA plasmids were transfected into doxycycline-induc-

ible-Cas9 expressing murine 3T3 cells. After 48 h, transfection efficiency was determined and gDNA was collected. gDNA was used

to perform a TIDE (Tracking of Indels by Decomposition) assay.77 Briefly, PCRwas used to amplify a roughly 700bp region around the

expected sgRNA binding site. The PCR product was purified by agarose gel purification and Sanger sequenced. The resulting chro-

matogramwas uploaded to the TIDE website for analysis and each sgRNAwas evaluated compared to a control-transfected sample

to determine the guide editing efficiency. The guide with the highest editing efficiency was chosen to move forward for lentivirus pro-

duction (CXCR6 guide: 50- GCAGAGTACAGACAAACACC).

Lentivirus production
VSV-pseudotyped third-generation lentiviruses were made as described previously.78 Briefly, 293T cells were transiently co-trans-

fected with five plasmids, then underwent a media change 12 h post-transfection. Cell supernatant was collected 26–30 h later and

virus was concentrated by ultracentrifugation. Viral titers were determined on 293T cells by limiting dilution.

In vitro time-course of T cell activation and bulk RNA-seq
CD8+ T cells from spleens and lymph nodes of wildtype OTI mice (E8i-Cre- Tcf7FL/FL OTI+) and Tcf7 cKOOTI mice (E8i-Cre+ Tcf7FL/FL

OTI+) (n = 3 per group) were isolated using CD8 microbeads (Miltenyi). After taking a timepoint 0 sample, cells were plated on plates

previously coated with 1 mg/mL anti-CD3/anti-CD28 in the presence of murine IL2 (6 ng/mL). For each timepoint, 1,000 cells were

sorted into 5mL of TCL buffer (Qiagen) supplemented with 1% 2-mercaptoethanol. Samples were processed using the SMART-

Seq2 protocol,79 and sequenced on an Illumina NextSeq.
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RNA-seq reads were aligned using STAR to mouse genome version mm10, and expression levels were calculated using RSEM80

using annotated transcripts (mm10), followed by further processing using the Bioconductor package DESeq2 in R.81 Data was

normalized using TPM normalization, and differentially expressed genes were defined using the differential expression pipeline on

the raw counts with a single call to the function DESeq2 (reported p-values obtained via Wald test only for Benjamini-Hochberg

FDR< 0.05).

ChIP-PCR
CD8+ T cells from spleens and lymph nodes of wildtype (E8i-Cre- Tcf7FL/FL) TCR-transgenic and Tcf7 cKO (E8i-Cre+ Tcf7FL/FL) TCR-

transgenic mice were isolated using CD8 microbeads (Miltenyi). Cells were fixed for 10 min at room temperature with 1% formalde-

hyde and quenched with glycine. Cells were lysed with an SDS-lysis buffer prior to chromatin shearing via sonication. Sheared chro-

matin was ‘‘pre-cleared’’ using Protein A Agarose/Salmon SpermDNA beads. Pre-cleared chromatin from the equivalent of 3.57x106

cells was used in the chromatin IP reactions along with 3mg of either anti-TCF1 (C63D9) or Normal Rabbit IgG, both purchased from

Cell Signaling. Protein-chromatin complexes were then bound with Protein A Agarose/Salmon Sperm DNA beads and underwent

multiple rounds of washes. Finally, complexes were eluted off the beads, underwent reverse crosslinking with NaCl, and treated

with proteinase K before isolating DNA using the QIAquick PCR Purification kit from Qiagen. DNA content from chromatin IPs

was assessed using SYBR Green amplification with the following primers designed from the Cxcr6 locus (mm10, chr9:

123806217–123806718): Fw-primer: 50–GAGGCAGACCTTTAGTGAGCA–3’. Rev-primer: 50–TAGCTCGCACCGTATACACA–3’. Re-

sults from Chromatin IP reactions were normalized to their ‘‘input’’ samples, or sample taken prior to Chromatin IP.

Mouse single cell RNA-seq
Wildtype (E8i-Cre- Tcf7FL/FL) and Tcf7 cKO (E8i-Cre+ Tcf7FL/FL) mice were injected with 2.5x105 B16Ova cells subcutaneously in their

flanks. On day 13, tumors were harvested (n = 3 per group) and dissociated to single cell suspensions prior to FACS. CD45+ TCRb+

CD8+ T cells (2,000 cells/mouse) were sorted along with additional immune cell subsets, and cells from mice from the same group

were pooled and loaded for encapsulation for on the Chromium system (10xGenomics). Libraries were prepared using 50 sequencing
10X Genomics kit v1 according to the Manufacturer’s protocol. Libraries were sequenced on an Illumina HiSeq.

Mouse single cell RNA-seq analysis
Gene counts were obtained by aligning reads to the mm10 genome using CellRanger software (v1.3 10 3 Genomics). Cells were

removed if they contained >5% mitochondrial transcripts or <200 genes, retaining 309 cells with 14,215 detected genes for further

analysis. A log-transformed normalized count matrix was used as input for Principal Component Analysis (PCA) and the top 16 PCs

were kept based on a drop in the proportion of variance explained by subsequent PCs.We confirmed that the resulting analyses were

not particularly sensitive to this choice. Cells were clustered based on their top 16 PCs scores with the Louvain-Jaccard graph clus-

tering algorithm,82 as previously described83,84 using the FindNeighbors (k = 20) followed by FindClusters (resolution = 0.5) functions

with default parameters. scRNA-seq data was analyzed as describe above, with mixed-effect models used to account for con-

founders when examining differential expression of genes and gene programs. Analysis and plots were generated using Seurat pack-

age (version 4.0.1) for R with default parameters.

Luciferase assays
The murine Cxcr6 genomic region (mm10, chr9:123806024-123807024) was chosen for luciferase assay testing, because it con-

tained 500bp on either side of TCF1 predicted binding sites reported by Promo3.85,86 To generate a list of potential regulators,

this region was input into Promo3 with a maximum matrix dissimilarity rate of 10. The region was cloned into the luciferase reporter

construct pGL4.10 (Promega E6651) using NEBuilder HiFi DNA Assembly (New England BioLabs). Using PolyJet (SignaGen Labo-

ratories), HEK293T cells were transfected with the firefly luciferase reporter construct containing the CXCR6 region, the Renilla lucif-

erase reporter as an internal control, and vectors expressing the indicated transcription factors. Transcription factor vectors were

purchased from Genscript, all in the pcDNA3.1+/C-(K)-DYK vector backbone: Fos (Clone ID OMu22131D), JunD (Clone ID

OMu14151D, subcloned to include the first 144 base pairs), and Jun (Clone ID OMu19159D). The Tcf1 vector was custom-made

by Genscript based on the TCF1 protein coding sequence (ENSMUST00000109071.3) and put into the pcDNA3.1+/C-HA vector

backbone. Cells were analyzed at 48 h post transfection with the dual luciferase assay kit (Promega E1910).

T cell-DC co-culture, bulk RNA-seq, and pathway analysis
CD8+ T cells were isolated from the spleens and lymph nodes of wildtype CD45.2 OTI and CXCR6 KO CD45.2 OTI mice using CD8a

microbeads (Miltenyi). 5x105 cells per well were plated in the presence of murine IL-12 (10 ng/mL) in 24-well plates that were previ-

ously coated with 1 mg/mL anti-CD3/anti-CD28. After 48 h, media was changed to contain IL-2 (6 ng/mL) and cells were moved to

uncoated plates. Cells were cultured in the presence of IL-2 for an additional 3 days before use in co-culture assay. Bone marrow-

derived DCs fromCD45.1mice were generated with GM-CSF (5 ng/mL) and Flt-3L-Ig (human, 100 ng/mL) as previously described.87

DCs were activated overnight with 2 mg/mL of the STING agonist DMXAA (Invitrogen, tlrl-dmx). The following morning, DCs were

pulsed with 1nM of OVA257-264 peptide (GenScript) for 3 h at 37�C. 5x105 Ova-pulsed DCs and 5 3 105 T cells were cultured

together in 48 well plates. After 24 h, cells were stained with antibodies against CD45.2 and CD45.1 along with 7AAD for dead
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cell removal. 5,000 CD45.2+ cells were isolated by cell sorting into tubes containing 10mL TCL buffer (Qiagen) with 1%

2-mercaptoethanol. Samples were processed using the SMART-Seq2 protocol,79 and sequenced on an Illumina NextSeq.

Bulk RNA-seq data were processed using nextflow-based RNA-seq pipeline with STAR and RSEM for alignment and transcript

quantification (’–aligner star_rsem’), nf-core/tools v2.3.2 (https://github.com/nf-core/tools), bioconda, and nextflow v22.04.0

(https://github.com/nextflow-io/nextflow). Counts and transcripts per million (TPM) values were computed per sample. Estimated

gene counts were provided as input into the Bioconductor R package DESeq281 for downstream differential gene expression anal-

ysis using default parameters. Differentially expressed genes (DEGs) were defined as those with an FDR <0.075 (Table S7). For

pathway analysis, DEGs were input into Metascape88 and run with default parameters. Significantly enriched pathways included:

Leukocyte activation (GO:0045321), Regulation of regulatory T cell differentiation (GO:0045589), Costimulation by the CD28 family

(R-MMU-388841), Metabolism of RNA (R-MMU-8953854), Ribonucleoprotein complex biogenesis (GO:0022613), and Ribonucleo-

protein complex assembly (GO:0022618). Heatmaps were generated using Morpheus (https://software.broadinstitute.org/

morpheus). Gene Set Enrichment Analysis was performed using the fgsea package in R with genes ranked using the Wald test sta-

tistic from the DESeq2 analysis. Gene sets from the mouse MSigDB category ‘‘REACTOME_COSTIMULATION_BY_THE_CD28_

FAMILY" were interrogated to determine enrichment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests are labeled for each figure in the figure legend. Significant differences between two groups were analyzed using

GraphPad Prism using paired or unpaired two-tailed Student’s t test. Tumor growth curves were analyzed using linear mixed effects

models to test the trajectory of growth between various genotypes or treatments over time controlling for mouse. Values of *p < 0.05,

**p < 0.01, ***p < 0.001 and ****p < 0.0001 were considered statistically significant.
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