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Abstract

Dynamic systems biology aims to identify the molecular mechanisms governing cell fate decisions 

through the analysis of living cells. Large scale molecular information from living cells can be 

obtained from reporter constructs that provide activities for either individual transcription factors 

or multiple factors binding to the full promoter following CRISPR/Cas9 directed insertion of 

luciferase. In this report, we investigated the design criteria to obtain reporters that are specific 

and responsive to transcription factor (TF) binding and the integration of TF binding activity 

with genetic reporter activity. The design of TF reporters was investigated for the impact of 

consensus binding site spacing sequence and off-target binding on the reporter sensitivity using 

a library of 25 SMAD3 activity reporters with spacers of random composition and length. 

A spacer was necessary to quantify activity changes after TGFβ stimulation. TF binding site 

prediction algorithms (BEEML, FIMO and DeepBind) were used to predict off-target binding, 

and nonresponsiveness to a SMAD3 reporter was correlated with a predicted competitive binding 

of constitutively active p53. The network of activity of the SMAD3 reporter was inferred from 

measurements of TF reporter library, and connected with large-scale genetic reporter activity 

measurements. The integration of TF and genetic reporters identified the major hubs directing 

responses to TGFβ, and this method provided a systems-level algorithm to investigate cell 

signaling.
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Synthetic reporter arrays are increasingly employed to study complex biological systems. 

Reporter constructs, either as transcription factor (TF) activity1–3 or CRISPR-mediated 

full promoter activity,4,5 provide dynamic outputs of intracellular signaling in living cells. 

Dynamic data can enable tracking of cellular processes during cell fate decisions, and 

reporters designed toward a particular signaling pathway or omics data set provides a 

powerful tool to connect the contribution of that pathway to the cell phenotype. Furthermore, 

these technologies can be multiplexed into arrays that provide a dynamic, live cell 

counterpart to the more traditional “omics” techniques that are inherently destructive 

and thus report on a snapshot in time. The implementation of synthetic reporter arrays 

remains poorly defined, in part due to the limited understanding of the design principles 

necessary for developing live cell reporter arrays. Herein, this study sought to develop 

design parameters for reporter arrays, which were applied to investigate the dynamics of a 

well-known pathway, TGFβ signaling, in a model cell line.

SMAD3 is the known transcriptional target of TGFβ signaling, and this pathway plays a 

major role in both health and disease. The design of reporters for SMAD3 and other TFs 

has commonly involved driving luciferase expression with the consensus binding sequence. 

Computational methods to identify TF binding sequences have increased substantially in 

recent years in terms of both accuracy and number of available algorithms. Position weight 

matrices (PWMs) that identify the probability of different binding motifs for a TF have been 

developed based on protein binding microarrays, SELEX, and CHIP-seq experiments.6–11 

Reporters have been traditionally built on these PWMs, where a number of predicted high 

affinity binding sites are repeated upstream of a reporter coding region and used to measure 

the activity of a specific TF. This method has been useful for a range of canonical signaling 

pathways; however, differing PWMs from different algorithms6–8,12 point to both contextual 

specificity of TF binding and the need for methods to rationally design sensitive and specific 

reporter constructs. Previous studies have demonstrated that the exact sequence, spacing, and 

distance from the start codon all play a role in the activation of transcription.13–20 Additional 

work has suggested the use of PWMs is either insufficient to predict binding21 or is more 

accurate as a general description for classes of factors.8 The inherent lack of specificity for 

a TF reporter complicates the interpretation of TF activity array data and leads to complex 

computational solutions to the problem of specificity.1,6 More recently, interpreting the 

impact of a pathway can be enhanced through multiplexing reporter constructs.1,3,22

Decker et al. Page 2

ACS Synth Biol. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TFs are the downstream targets of signaling pathways, and parallel TF activity reporter 

arrays generally inform on the connectivity of the network; however, the TF assays have 

not been effectively linked with gene expression due to the complexity of full promoters. 

Genetic reporters have been developed in which a reporter gene is inserted alongside a gene 

of interest, such that expression of the gene leads to production of the reporter. This strategy 

thus reports on the activity of promoter. The development of facile methods for delivering 

genetic reporters, such as the CRISPR/Cas9 system, has opened new opportunities for 

multiplexing reporter assays. Luminescent or fluorescent reporters can be specifically 

delivered to a gene of interest through careful design of the guide RNA and these methods 

can be adapted to most cell types and signaling pathways.4,5,23

We investigated the design of a dynamic live cell TF reporter, and its integration with 

genetic reporters to analyze cell signaling to provide dynamic information on TGFβ-

induced intracellular activity. SMAD3, a target of TGFβ, provided an excellent target 

for investigating the syntax of a synthetic reporter, as it has a well-defined PWM and 

is stimulated by soluble TGFβ. The length and sequence of spacer elements was varied 

between SMAD3 binding sites and observed a dependence of TGFβ-meditated activity on 

spacer composition, which was further investigated from the context of competitive binding 

with other, more active, factors. We then applied an existing TF array (TRACER) for 

analyzing TGFβ signaling and its integration with genetic reporters that indicate changes in 

gene expression associated with cell phenotypes. Our results suggested design principles for 

TF reporter constructs, and an algorithm for a systems biology analysis of cell signaling that 

integrates TF and genetic reporters.

RESULTS

Spacer Variations Result in Nonresponsive SMAD3 Reporters.

TGFβ canonically signals through the transcription factor SMAD3.41 We therefore initially 

sought to maximize the sensitivity of a SMAD3 activity reporter. SMAD3 has a well-defined 

PWM, with CGTCTAGACA as the most likely 10 bp binding sequence (Figure 1A).24 

While this sequence is necessary to generate a reporter, the contribution of a spacer region to 

reporter sensitivity had not previously been established. Two reporters were generated based 

on the consensus SMAD3 binding sequence, one with 8 repeats of the most likely sequence 

(SMAD3_NS) and one with 8 repeats of the most likely binding sequence spaced with a 

single adenosine base pair (SMAD3_S) (Table 1). Reporter activity reached a maximum at 

4 h poststimulation with TGFβ. SMAD3_NS showed a 0.54-fold decrease in activity while 

SMAD3_S showed a 1.16-fold increase in activity relative to an untreated control (Figure 

1B). The decrease observed in the SMAD3_NS reporter was not statistically significant. 

These results indicated a spacer between SMAD3 binding sites was necessary to observe 

changes caused by increased SMAD3 activity.

We next examined the relationship between spacer composition and the activity of the 

SMAD3 reporter. A compilation of 23 sequences with SMAD3 binding sites and randomly 

generated spacers was fabricated; the base sequences for these reporters can be seen in 

Table 1 and methods for spacer design are found in the Methods. Maximum TF reporter 

activity was observed 4 h after TGFβ stimulation in A549 cells, similar to the SMAD3_S 
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and SMAD3_NS reporters (Figure 2A). Of the new reporters, a significant increase in 

activity was detected in 21 of the 23 reporters following TGFβ stimulation relative to an 

untreated control (p < 0.05) (Figure 2B). Accordingly, two reporters were not sensitive 

to TGFβ-stimulated SMAD3 activation (SMAD3_8 and SMAD3_18); that is, they were 

not significantly different than the untreated control 4 h post stimulation. Collectively, a 

weak, but significant, positive correlation between activity and spacer length was observed 

by linear regression and F-test (p < 0.05) (Figure 2C). Spacer length was not sufficient to 

predict nonresponsive reporters. This observation led to the conclusion that spacer length 

played a marginal role in the reporter sensitivity; however, some other sequence-specific 

effects, such as the syntax of the spacer regions, led to nonresponsiveness.

Spacer Composition Predicts Sensitivity.

We tested the hypothesis that the sensitivity of the reporter was based on the ability 

of other TFs to bind to synthetic promoter sequence. Competitive binding of other TFs 

to our synthetic promoters was predicted using three methods: two based on the PWM 

(FIMO (log-odds probability) and BEEML (energy-based probability)), and one based 

on a learned neural network for TF binding (DeepBind).30 All three methods predicted 

SMAD3 binding to the 25 reporter constructs in our library relative to a random background 

sequence, including the three that had no response to increased SMAD3 activity. In order 

to computationally assess off-target TF binding, FIMO and BEEML were applied to predict 

binding based on the PWMs in the TRANSFAC database and DeepBind to predict binding 

to factors in the DeepBind library. DeepBind was the most conservative of these methods, 

predicting fewer off target factors for all reporters relative to FIMO and BEEML (Table 2). 

For all methods, a significant and positive correlation was observed between the number of 

predicted off-target binding TFs and the maximum activity of the reporter following TGFβ 
stimulation (p < 0.05) (Figure 3A–C). As with spacer length, the number of competitive 

binding elements was insufficient to predict nonresponsiveness, which suggested specific 

factors may be causing nonresponsiveness in these reporters.

Binding of p53 Predicts Nonresponsive Reporters.

We subsequently investigated the potential for a relationship between specific off-target TFs 

to the sequences as a predictor of nonresponsiveness for the library of SMAD3 reporter 

constructs. A partial least-squares discriminant analysis (PLS-DA) was used to calculate a 

multivariate TF binding score signature that could classify a reporter as either responsive 

or nonresponsive (Figure 4). The responsive and nonresponsive factors were well-defined 

in the model and separated along latent variable 1 (Figure 4A). The loadings for latent 

variable 1 (Figure 4B) indicated a strong preference for p53 binding in nonresponsive 

reporters. Predicted binding of p53 was observed for all three analysis methods and was 

most predictive in BEEML and DeepBind. We noted that several p53 PWM were among 

the most predictive variables obtained from different scoring algorithms, which increased 

the robustness of the results. Moreover, a consensus p53 PWM was present in all the 

nonresponsive sequences, corroborating the results of the multivariate analysis (Figure 4C).

We sought to verify the predictions of the PLS-DA analysis by testing the nonresponsive 

reporters in a p53 deficient cell line. The three scoring algorithms all predict the possibility 
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of both SMAD3 and p53 binding to the nonresponsive reporters, leading to the hypothesis 

that removal of p53 by using a deficient cell line would enable the response to increased 

SMAD3 activity to be observed. MDA-MB-231, a triple negative breast cancer cell line, was 

selected as it has an inactivating mutation in p5342 and responds to TGFβ signaling with 

an increase in SMAD3 activity. The three reporters that were nonresponsive in A549 cells 

(SMAD3_NS, SMAD3_8 and SMAD3_18) all had significantly increased luminescence 

in the MDA-MB-231 cells 4 h after TGFβ stimulation relative to untreated controls and 

the equivalent A549 cells (Figure 4D). The SMAD3_NS reporter showed a 1.61 log fold 

change, while the SMAD3_8 and SMAD3_18 had a log fold change of 2.79 and 2.14, 

respectively.

Multivariate TF Activity Identifies Central Connections between Factors.

We subsequently investigated the activity of the SMAD3 reporter within the context of the 

activity of other TF reporters, which can represent the complexity of TGFβ signaling. We 

used transcriptional activity cell array (TRACER)1,2 to measure simultaneously the activity 

of 41 TFs using commercially available reporter constructs (Figure 5a). Of the 41 TF 

reporters, 37 reporters had significantly altered activity during TGFβ stimulation. Of these, 

SMAD3, ANRT1 and CMYC were most significantly altered, with activity increasing with 

SMAD3 and decreasing with ANRT1 and CMYC. Importantly, both increases (e.g., with 

AP1 and NFKB) and decreases (e.g., with p53 and ATF1) in activity were observed among 

the other factors, indicating a dynamic multivariate response among possible competing 

factors at the SMAD3 reporter. These differences in dynamic TF activity are easily observed 

through clustering analysis of the data (Figure 5a).

The TF activity measurements were subsequently used to predict central factors and 

connections in response to TGFβ stimulation. A previously developed computational 

pipeline was employed to infer a regulatory network structure from the dynamic data1 

(Figure 5b), with identification of central hubs that may be affected in tandem during TGFβ 
signaling. The identified TF activity hubs were SMAD3, p53, FOXO3A, and ATF1. This 

analysis indicated that cross reactivity between these factors (e.g., p53 binding a SMAD3 

reporter) may result in either nonresponsive reporters or inaccurate measurements in other 

systems, and should be avoided when designing the spacers on a new reporter.

Genetic Reporters Identify Dynamic EMT Signature.

We subsequently analyzed the activity of genetic reporters to extend our previous analyses 

of TF activity. CRISPR/Cas9 was used to introduce genetic reporters to dynamically 

measure 47 potential gene targets that may be stimulated by TGFβ signaling in A549 cells 

(Figure 6a), which has been previously shown to induce epithelial-mesenchymal transition 

(EMT) in A549 cells43 Of the 47 genetic reporters, 34 reporters were significantly altered 

during the 8 h of TGFβ stimulation. Accordingly, clustering of the dynamic gene expression 

data indicated a cluster of significantly upregulated markers of EMT (e.g., SNAIL, SNAI2, 

TWIST, Vimentin, MMP14). Additional downregulation of relevant EMT markers (TGFβ2, 

CDH1 or E-cadherin) was also observed. Genes were, in general, gradually upregulated 

during the 8-h time course, while downregulation primarily occurred in the first 2 h. Initial 

downregulation was observed in several EMT-related genes (e.g., CDH2, ZEB1, ZEB2), 
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with expression trending toward significant increases by 8 h. We applied our network 

inference algorithm to the dynamic gene expression data in a similar manner to the TF 

activity data (Figure 6b). A central set of five genes (CDH1, NOTCH1, TGFB2, TWIST 

and ZEB2) were identified from the network structure. This set of reporters included both 

upregulated (NOTCH1, TWIST, ZEB2) as well as downregulated (CDH1, TGFB2) genes, 

suggesting that both processes are central in regulating EMT. An inferred network topology 

that combines the TF regulators and induced genetic targets (Figure 6c) showed similar 

central nodes as to those identified in Figure 5b and Figure 6b, supporting that these 

analyses can be run effectively on each independent data set.

DISCUSSION

TGFβ signaling through SMAD3 leads to a myriad of changes in TF activity that leads to 

numerous changes in gene expression within the cell. A TF reporter array was employed 

to capture the TF dynamics following TGFβ stimulation, while genomic reporters identified 

the gene expression changes that were downstream of TF activation. The combination of TF 

and genomic reporters broadly reproduced known targets of TGFβ signaling (e.g., increased 

SMAD3 activity and expression of EMT markers) while also suggesting potential cross 

reactivity and important factors in a multivariate analysis. While these experiments were 

conducted using a well-known signaling pathway, the methodology can be extended to other 

systems. For example, this connectivity of TFs and genetic targets has been applied to the 

various lineages within the nervous system.44 While these connections have been inferred 

from single-cell sequencing experiments, the TF and genetic reporter systems could directly 

visualize the developmental dynamics. The experiments in this paper provide the framework 

for the integration of the TF and genetic reporter systems, which complement the more 

established work in transcriptomics and proteomics.

The results of this study suggested that the sensitivity of a SMAD3 reporter construct is 

heavily dependent on the positioning of the binding sites for SMAD3 within the reporter. 

Simply repeating the CGTCTAGACA consensus binding sequence for SMAD3 without 

spacers was insufficient for accurate reporter activity, as evidenced by the lack of response 

by the SMAD3_NS reporter (Figure 1). Interestingly, a small change in the reporter repeat 

sequence (insertion of one base pair between SMAD3 binding site repeats) was sufficient 

to provide a responsive reporter. We used three analysis methods (FIMO, BEEML and 

DeepBind) to predict SMAD3 binding to our designed reporters. Despite experimentally 

observed differences between constructs, the TF binding algorithms used in this study 

predicted that SMAD3 could bind equally to all the reporters and therefore respond to 

an increase in SMAD3 activity. The observation that a spacer is necessary to observe an 

increase in reporter activity after addition of TGFβ to the media indicated that factors 

beyond the number of binding sites and their congruency to a consensus sequence must be 

considered when designing a TF reporter construct. These design factors included spacer 

length (Figure 2C) and number of competing TFs that could bind to the sequences (Figure 

3). Other variables, such as GC content, that were not analyzed in this study may also play a 

role and would provide other areas to examine to optimize the reporter design. The specific 

sequence of the spacer region must therefore be carefully considered and computationally 

validated for unintended binding effects before implemented in the reporter design.
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A multivariate model classifying reporters based on scores from FIMO, BEEML, and 

DeepBind using experimentally generated-PWM databases clearly identified sequence-

specific differences that were predictive of the response to SMAD3 activity. The three 

algorithms yielded complementary binding predictions and inferred a select few factors that 

were likely inhibiting reporter response to SMAD3. Specifically, a binding site for p53 

was identified as the distinguishing characteristic for nonresponsive reporters. Interestingly, 

computationally predicted binding from other SMAD TFs (e.g., SMAD2, SMAD4) were not 

highly predictive of sensitive/insensitive reporters.

Tumor protein p53 acts as a tumor suppressor in healthy cells and is often mutated in 

malignancy.45 A549 cells express wild-type p5342 and have a high level of baseline p53 

activity. While p53 belongs to its own unique class of TFs (p53 domain factors), the PWM 

for p53 (Figure 4C) shares similarities with the consensus binding sequence for SMAD3. 

Importantly, p53 is active in its role as a tumor suppressor, and therefore would be active at a 

SMAD3 reporter with a similar sequence. Competitive binding between constitutively active 

p53 and TGFβ-activated SMAD3 likely explains the nonresponsive reporters observed in 

this study. Importantly, testing the nonresponsive reporters in a p53-null cell line (MDA-

MB-231) resulted in these reporters responding to active SMAD3, indicating p53 activity 

significantly impacted the responsiveness in select reporter constructs in A549 cells. These 

results suggest binding sites for constitutively active TFs must be avoided when designing 

a reporter. such as p53, housekeeping proteins such as Sp1, and cell cycle proteins such as 

the E2F class of factors. Highly active cell-type specific factors should also be considered 

and avoided if possible. These would include pluripotency markers in stem cells (e.g., 
OCT4, NANOG), lineage specific factors in macrophages (e.g., PPARγ, STAT1), and 

lineage-specific markers (e.g., MAFA in pancreatic cells).

The parallel analysis of dynamic activity of multiple TFs provides more mechanistic 

information about changes in the regulome or transcriptome than is possible with a single 

reporter. In the case of TGFβ, SMAD3 is the canonical TF, though other factors are 

activated either initially or downstream and play a role in determining the subsequent gene 

expression and phenotype. By directly measuring the dynamics of multiple TFs, we could 

infer a network topology that represented the regulome dynamics during TGFβ signaling in 

A549 cells. The network analysis (Figure 5) provided a list of four factors (SMAD3, p53, 

ATF1, FOXO3A) that are central to early TGFβ signaling in A549 cells. The experiments 

confirmed that p53 activity was likely responsible for the nonresponsive reporters. Forkhead 

boX (FOX) factors were also predicted to bind to our reporters (data not shown), however 

did not factor heavily into identifying nonresponsive reporters. The fourth factor, ATF1, has 

been implicated in TGFβ signaling,46,47 yet did not bind strongly to reporters in our library, 

and was not implicated by the multivariate analysis as contributing to the nonresponsive 

reporters. Collectively, the dynamic TF measurements can be represented in a network 

model that captures the multivariate response to TGFβ.

Advances in the CRISPR/Cas9 system have provided the tools to create live cell assays 

that also profile dynamics in effector gene expression. Many previous studies have focused 

on the connection between possible TF regulators and dynamic genetic targets using gene 

expression data from microarrays or RNA-seq48,49 Herein, we simultaneously measured 
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TF activity and gene expression dynamics in real time (Figure 6). We focused our study 

here on short-term dynamics in EMT, which is well studied in A549 cells and thus genetic 

targets that are affected by TGFβ are known.43,50,51 As expected, a core group of early 

EMT regulatory genes were clustered together in our analysis, including transcription 

factors (SNAIL,52 TWIST,53 ZEB254), matriX related proteins (Vimentin,55 MMP243) and 

members of the Notch pathway (NOTCH1 and JAG156). The network analysis additionally 

identified two downregulated factors, TGFβ2 and E-cadherin, both of which are genes likely 

downregulated by TGFβ signaling in A549 cells.43 Together, these results indicated the 

genetic reporter array could be used effectively to identify targets that have been previously 

identified in the literature and gives a measure of confidence to any unknown factors that 

may be identified in future experiments.

As the TF activity and genetic reporter array techniques utilize the same functional output 

they can be easily combined into a single analysis pipeline, yielding a simple method 

to connect gene expression to transcriptional control (Figure 6c). The connected network 

between TF activators and genetic effectors yielded similar central nodes to the network 

analysis on each set of factors alone, which indicated the individual analyses were robust, 

yielded important mechanistic information, and that these two types of assay could be run 

independently in the future. Our analysis focused on early time points, and the integration 

of later time points may alter the network topology represented in Figure 6c. Importantly, 

the methods used for gene delivery in this study (lentivirus and CRISPR/Cas9) lead to stable 

integration of the reporter, which would allow us to interrogate later time points in a future 

experiment. This strategy allows the dynamic characterization of TF and gene expression 

activity within complex cultures over weeks or months and provide important mechanistic 

insight that is not available through any other available techniques, and could provide a 

versatile tool for biologists and engineers.

Using TGFβ signaling as a model, we identified key considerations for designing and 

interpreting arrays of reporter constructs. These studies demonstrated that an effective TF 

activity reporter must have both consensus binding sites for a particular factor and those 

binding sites arranged in a manner that will limit the binding of other TFs. Specific 

TFs, such as constitutively active factors and those that are active in a similar context, 

such as ATF1 for the SMAD3 reporters, should be avoided. The results of this study 

also suggested that longer spacers augment the sensitivity of the reporter. The parallel 

analysis of TF reporters can contribute to understanding the reporter design, and more 

importantly, can be converted to an inferred network to yield mechanistic information 

about the regulome. Furthermore, we supplemented the TF analysis genetic reporters for 

quantification of gene expression, which provides the opportunity to connect TF activity and 

gene expression. Collectively, these dynamic reporter approaches provide a foundation for 

developing complex living cell arrays, which will enable the next generation of live cell 

reporter technologies.
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METHODS

Cells and Reagents.

A549 and MDA-MB-231 cells were sourced from the American Type Cell Culture 

repository. A549 cells were maintained in RPMI Medium supplemented with 10% fetal 

bovine serum. MDA-MB-231 cells were maintained in DMEM Medium supplemented with 

10% fetal bovine serum. Media was replaced every 3 days and cells were passaged after they 

became 80% confluent.

Reporter Construction.

SMAD3 reporters were designed based on the V$SMAD3_02 motif from TRANSFAC.11,24 

This motif was discovered through HT-SELEX data and represents a well-defined sequence 

upon which to build our reporter library. Oligos were designed to contain the most probable 

binding sequences from the V$SMAD3_02 motif (CGTCTAGACA) along with a random 

spacer sequence. The library included one sequence with no spacer (SMAD3_NS) and one 

with a single adenosine spacer (SMAD3_S). Binding sites were repeated until the entire 

synthetic promoter region was between 80 and 90 bp in length. SMAD3 reporters were 

cloned into a modified version of the pCS-CG plasmid,25 in which the CMV promoter 

has been replaced with a minimal thymidine kinase (TA) promoter along with NheI and 

AgeI restriction enzyme sites for reporter cloning. Oligos were designed with these reporter 

sequences, annealed and ligated between NheI and AgeI sticky ends in the modified 

backbone.

Genetic reporters were designed using the system described by He et al.4 This system uses 

four plasmids coding for Cas9, IRES-reporter, target guide RNA and reporter guide RNA. 

Guide RNA plasmids and reporter template plasmids were obtained from Addgene (#83807 

and #83576, respectively). The GFP from the template was exchanged for Nanoluciferase 

(Promega) by ligating between NcoI and ClaI sites. Guide RNAs were created by cloning 

between the BsmbI sites in the MLM3636 plasmid (Addgene #43860). Guide RNAs 

targeting the 3′ UTR of target genes were designed to limit off target effects using the 

ATUM Biosciences gRNA design tool.

Lentivirus.

Lentivirus was produced by cotransfecting HEK-293T cells with previously described 

lentiviral packaging vectors (pMDL-GagPol, pRSV-Rev, pIVS-VSV-G) and lentiviral 

vectors using JetPrime (Polyplus).26 After 48 h, supernatants were collected and cell 

debris was spun down and removed. Viruses were concentrated using PEG-it (Systems 

Biosciences) and resuspended in phosphate buffered saline (PBS).

Reporter Arrays.

We used a transcriptional activity cell array (TRACER) to evaluate the activity of our 

designed SMAD3 reporters and an existing library of commercially available reporters.1,2,27 

A549 cells were plated into a black 96 well plate and transduced with the library of 

SMAD3 reporters as well as a control containing no additional binding site (thymidine 

kinase promoter or TA). Cells were allowed to proliferate for 48 h in culture. Following 

Decker et al. Page 9

ACS Synth Biol. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incubation, growth media was exchanged for media containing 630 μM d-luciferin and either 

vehicle or 5 ng/mL TGFβ. Activity was measured immediately following media change 

as well as 2, 4, 6, and 8 h later. Activity measurements were acquired using an IVIS 

Spectrum (PerkinElmer). Activity measurements were background subtracted, normalized to 

the luciferase signal from the empty control reporter (TA) and log2 transformed as described 

previously.2 Data were taken from a minimum of three replicates and presented as the mean 

± standard deviation. Statistical analysis was performed using the limma R package.28 P 
values were adjusted using the false-discovery rate correction.29

Genetic reporters were delivered to A549 cells through electroporation using a Neon 

transfection system (Thermo Fisher). Cas9, gRNA and reporter template DNA were 

delivered at a ratio of 1:1:1 and cells were maintained for at least 14 days before use 

in an experiment. Cells were plated in a black 96 well plate 2 days prior to assay. 

Following incubation, media was exchanged for growth media containing a 1:10,000 

dilution of Nano-Glo Live Cell EX-6829 substrate (Promega). One hour after addition of 

substrate, a luminescence image was acquired and either vehicle or TGFβ was added to 

a final concentration of 5 ng/mL. Luminescence data was collected at 2, 4, 6, and 8 h 

following addition of TGFβ in a manner similar to the TF reporter assay. For analysis, raw 

luminescence data was background subtracted and normalized to luminescence of a HPRT1 
reporter. Data was subsequently normalized to the control and log2 transformed. Statistical 

analysis was performed in a similar manner to the TF activity measurements.

Transcription Factor Binding Analysis.

The probability of TF binding to a reporter was calculated using three different 

methods. FIMO (Find Individual Motif Occurrences, part of the MEME suite30) uses 

a log odds method to compute a probability for a sequence matching a motif in a 

database (TRANSFAC11 in this study). BEEML (Binding Energy Estimation by Maximum 

Likelihood12,31) uses an energy model to calculate a binding probability based on a PWM. 

These two methods were converted to an R program and used to score each of the 25 

SMAD3 reporters against PWMs in the TRANSFAC database. A second set of 100 random 

sequences of 100 base pairs (bp) each was used as a control. A third method, DeepBind, is 

based on a neural network that has been trained on experimental TF binding data.6 The code 

and database for DeepBind was downloaded from the source (http://tools.genes.toronto.edu/

deepbind/) and used to score all 25 SMAD3 reporters and 100 random sequences against 

the DeepBind database. These three methods provided individual binding scores for each TF 

in the TRANSFAC (FIMO, BEEML) and DeepBind databases that were combined into a 

single multivariate score for each reporter. The combination of outputs for each method that 

was used for subsequent multivariate classification of the individual reporters. TFs were said 

to be predicted to bind to a sequence if the score was more than 4 standard deviations above 

the mean score of the 100 random sequences of 100 bp.

Classification Analysis.

Partial least squared discriminant analysis (PLS-DA) was performed to identify multivariate 

combinations of binding scores from FIMO, BEEML and DeepBind that would separate 

the different conditions (responsive vs nonresponsive reporters). PLS-DA analysis was 
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preformed using the mixOmics package in R.32 Mean-centering and variance scaling were 

used to standardize all data prior to multivariate analysis. Singular value decomposition 

(SVD) was used to select the top 20 scores for two latent variables in these models from the 

4914 individual values from the three score algorithms. Variable importance to the model 

was defined as both selection by SVD as well as the magnitude of loading in a particular 

latent variable.

Network Analysis.

Network analysis of TF activity measurements was carried out using a modified version 

of NTRACER, which has been described previously.1 Data was normalized, mean-centered 

and variance scaled prior to analysis. The data was combined through sampling a single 

mean value for each factor from the available experiments and connections between TF 

activity and gene expression inferred using several different techniques: linear methods 

(PLSR,33 similarity index,34 linear ordinary differential equations based on TIGRESS,35 

random forest36), and nonlinear methods (ARACNE,37 CLR,38 MRNET39). A total of 1000 

runs was performed to ensure robust inference of connected factors. Features were selected 

from the top 10% of edges from multiple inference methods. Central nodes were identified 

through eigenvector centrality. Networks were visualized and analyzed using the R package 

iGraph.40

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Position weighted matriX for SMAD3. (B) Activity of binding site and binding site plus 

spacer after 4 h TGFβ stimulus. Bars indicate standard error. *: p < 0.05.
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Figure 2. 
(A) Normalized change in SMAD3 reporter activity 4 h after TGFβ stimulation. (B) Time 

course dynamics of SMAD3 activity during stimulus. Bars indicate standard deviation of the 

measurements. (C) Relationship between reporter response and spacer length. Dashed lines 

are 95% confidence interval. Trend is significant by F test (p < 0.05)
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Figure 3. 
Prediction accuracy of SMAD3 reporter response based on background binding. (A–C) 

Predictions in A549 cells from BEEML (A), FIMO (B), DeepBind (C). Lines are linear 

trend, dashed lines 95% confidence interval. All trends are significant by F test (p < 0.05).
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Figure 4. 
PLS-DA model separating Nonresponsive and Responsive reporters. (A) Scatter plot of 

reporters based on latent variables. Ellipses indicate 95% confidence interval for groups. 

(B) Loadings on latent variable 1, which provided the greatest separation between the two 

reporter types. (C) Binding sites for p53 in nonresponsive reporters. (D) Selected reporters 

are nonresponsive in A549 cells but respond to TGFβ stimulation in MDA-MB-231 cells. 

**** = p < 0.001.
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Figure 5. 
Dynamic assay for (A) TF activity and (B) inferred regulatory network during TGFβ 
stimulation. Yellow nodes are in the top 10% from eigenvector centrality.
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Figure 6. 
(A) Dynamic gene expression assay. (B) Inferred regulatory network during TGFβ 
stimulation. Yellow nodes are in the top 10% from eigenvector centrality. (C) Inferred 

network connections between TF activators and genetic effectors. Yellow and red nodes are 

in the top 10% by eigenvector centrality of TFs and genes, respectively.
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Table 1.

Reporter Sequences Containing a SMAD3 Response Element (Bold) and Spacer

reporter sequence

SMAD3_NS CGTCTAGACA

SMAD3_S CGTCTAGACAA

SMAD3_3 ATCGCGTCTAGACA

SMAD3_4 GCTCGTCTAGACA

SMAD3_5 GTCGTCTAGACA

SMAD3_6 AGTCTAGCTCCGTCTAGACA

SMAD3_7 CGTATAGACTGCCGTCTAGACAAA

SMAD3_8 TGTCGAGACGCGTCTAGACA

SMAD3_9 ACGTCTAGACAAGTC

SMAD3_10 CGCGTCAAGACTAGTGGCGTCTAGACA

SMAD3_11 CTCGTCTAGACAAGAT

SMAD3_12 TGCACGACTAGAATAGGACGTCTAGACA

SMAD3_13 TGCGACGTCTAGACAAGAT

SMAD3_14 TACCGCGTCTAGACA

SMAD3_15 CGTCTAGACAAAA

SMAD3_16 CAGTCGTCTAGACA

SMAD3_17 CCTCCAGACAAGGCGTCTAGACA

SMAD3_18 CGTCCAGACGCGTCTAGACA

SMAD3_19 AAAACGTCTAGACAAGAAAA

SMAD3_20 CCTCGAGACTCAACGTCTAGACA

SMAD3_21 TGCAACGTCTAGACA

SMAD3_22 TCTCTAGCCACTCGTCTAGACAAA

SMAD3_23 ACTCTAGACTCAACGTCTAGACA

SMAD3_24 TGCCGTCTAGACAAACGTCTAGACCTCTT

SMAD3_25 CGTCTAGACGAGAGG
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Table 2.

Unique Binding Factors from BEEML, FIMO and DeepBind for Each SMAD3 Reporter

reporter BEEML FIMO DeepBind

SMAD3_NS 74 107 4

SMAD3_S 71 91 6

SMAD3_3 113 113 1

SMAD3_4 58 74 4

SMAD3_5 48 74 4

SMAD3_6 84 113 6

SMAD3_7 139 152 6

SMAD3_8 94 113 7

SMAD3_9 113 173 5

SMAD3_10 167 199 9

SMAD3_11 85 104 1

SMAD3_12 173 151 10

SMAD3_13 125 136 7

SMAD3_14 67 70 3

SMAD3_15 97 118 7

SMAD3_16 62 97 2

SMAD3_17 150 168 9

SMAD3_18 114 133 7

SMAD3_19 198 168 11

SMAD3_20 115 153 7

SMAD3_21 89 104 4

SMAD3_22 174 162 6

SMAD3_23 90 138 6

SMAD3_24 181 203 6

SMAD3_25 97 138 8
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