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SUMMARY

We performed long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood
mononuclear cells (PBMCs) from healthy donors to discover new transcript and protein isoforms ex-
pressed during immune responses to diverse pathogens. Long-read transcriptome profiling reveals novel
sequences and isoform switching induced upon pathogen stimulation, including transcripts that are diffi-
cult to detect using traditional short-read sequencing. Widespread loss of intron retention occurs as a
common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that
may indicate novel immunological mechanisms. RNA expression differences did not result in differences
in the amounts of secreted proteins. Clustering analysis of secreted proteins revealed a correlation be-
tween chemokine (receptor) expression on the RNA and protein levels in C. albicans- and poly(I:C)-stimu-
lated PBMCs. Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the
potential of these methods to identify novel transcripts, revealing a more complex transcriptome land-
scape than previously appreciated.

INTRODUCTION

Immune system responses within the context of an infection are shaped by the nature of the infection and by inter-individual variability,

contributing to differential susceptibility to infections and to various diseases with an inflammatory component. Dynamic expression of tran-

scripts and proteins in a range of cells responsible for the innate immune response is important to shape the first line of defense against a wide

variety of pathogens.1 Pattern recognition receptors (PRR) initiate acute inflammatory responses, activating signaling cascades that converge

on various transcription factors. Multiple levels of regulation orchestrate the dynamic expression of transcripts and proteins, including tran-

scriptional and post-transcriptional checkpoints such asmRNA splicing and protein translation. Examples of this include the regulatory role of

alternative splicing of Toll-like receptors (TLR) and their downstream signaling factors.2,3

Methods for investigating innate immune responses include in vitro stimulation of primary immune cells with pathogens or microbial com-

ponents. These methods allow for specific investigation of host-pathogen interactions that shape the immune response elicited by specific

cell types and have been under extensive investigation in research on the innate immune system.4,5 Stimuli that are commonly used include

molecules that stimulate a specific TLR, such as E. coli lipopolysaccharide (LPS) for TLR4.6 dsRNA mimicking poly(I:C) for TLR37 and imidazo-

quinolines for TLR7/8.8 Stimulation is also often elicited by live or heat-killed pathogens,9,10 which stimulate at the same time a broader range

of PRRs.11,12

Transcriptome characterization is traditionally performed using short read RNA sequencing. These sequencing approaches are limited by

their short-read length (approximately 150–300 bp), necessitating the computational reconstruction of whole transcripts and making detec-

tion of different transcripts of the same gene inaccurate. This limitation is especially pronounced in immune biology, where tight regulation of

isoform expression has previously been described to play a major role in processes, such as the expression of multiple IL-32 transcripts with

different inflammatory potency13 and alternative splicing of CD45 in T cell activation.14 Recent long-read sequencing approaches provide a

more complete and accurate reflection of the transcriptome. Sequencing technologies provided by PacBio and Oxford Nanopore allow for
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Figure 1. Experimental setup

(A) Human peripheral blood mononuclear cells (PBMCs) isolated from five donors were exposed to four different pathogenic stimuli and analyzed after 24 h.

(B) PacBio long read RNA-sequencingwas performed on samples from one of the five donors. Long-reads were used to estimate differential transcript expression

and isoform switching.

(C) The supernatant from all samples (all donors) was collected and peptides were detected to quantify protein levels in the secretome.

(D) Short read RNA sequencing (QuantSeq) was performed on all samples (all donors) and differential expression estimates were compared to thosemeasured in

long-read sequencing.
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the sequencing of mRNA (or cDNA) molecules from the ultimate 30-end to the ultimate 50-end, which have given a more comprehensive view

into the complexity of the transcriptome. A number of studies have indicated that the isoform landscape is much more complex than previ-

ously appreciated.15–17 Long-read mRNA sequencing has provided insight into regulatory mechanisms of immune responses, for instance in

alternative splicing in macrophages,18 and allows for accurate sequencing of complex transcripts in immune cells.19 Further work on cell-type

specific long-read transcriptomes have shown preferential expression of transcripts in specific cell types.20

The impact of the newly discovered transcripts as well as post-transcriptional processes can only be fully understood by observing the

proteome.Many studies have characterized the transcriptomic landscape of the human immune response, but amulti-omics view of immunity

is necessary as mRNA profiles are not enough to understand immune activation.21,22 Transcript information can be leveraged to study the

proteome, including identification of novel proteoforms resulting from alternative splicing. Proteoforms discovered by proteogenomics

methodologies have already been found to have a role in immunological processes, for instance in immune-regulating micropeptides23

and tumor neoantigen production.24

Here, we stimulated peripheral blood mononuclear cells (PBMCs) with multiple microbial stimuli in vitro/ex vivo and performed long- and

short-read RNA sequencing and secretome proteomics to gain insight into potential differences in immune response. We aim to provide

insight into the immune transcriptome and proteome of immune cells during innate immune responses against a variety of pathogens.

RESULTS

We stimulated PBMCs from five donors with four different microbial stimuli, mimicking bacterial (E. coli LPS, S. aureus), viral (poly(I:C)) and

fungal (C. albicans) infections. PBMCs were stimulated for 24 h. RPMI incubation was used as a negative control (Figure 1A). To characterize

full-length transcript structures, we performed long-read sequencing on PBMCs from one donor (Figure 1B). Additionally, shotgun prote-

omics data were generated from supernatants of the samples from all five donors. The proteomics data serves to corroborate differential

gene/transcript expression and provide evidence of the protein-coding potential of novel transcripts identified through long-read RNA

sequencing (Figure 1C). Short-read 30 sequencing data of all five donors was generated to validate differential gene expression data gener-

ated from long-read RNA sequencing (Figure 1D).

Long read transcriptomes of both control and pathogen-stimulated conditions show novelty

Sequences detected using long-read sequencing were categorized in terms of novelty according to their intron chains. Transcripts

are divided into three categories that encompass reference transcripts (GENCODE), novel in catalog (transcripts that contain annotated

introns) and transcripts that are novel not in catalog (containing unannotated introns) (Figure 2A). We identified a total of 37,312

unique transcript sequences from 11,872 genes across all samples. The majority of transcripts were in protein coding genes (Figure S1A)
2 iScience 27, 110471, August 16, 2024
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Figure 2. Transcriptome novelty in the control condition and comparison between stimuli transcriptomes in the five long-read samples

(A) Transcript novelty categories. GENCODE (blue) is the set of all known reference transcripts. Novel in catalog (orange) contains a novel combination of

annotated introns. Novel not in catalog (green) contains one or more unannotated introns.

(B) Reads (top) and unique transcripts (bottom) of events in each pre-defined transcript novelty category in RPMI.

(C) Novelty-inducing events occurring in the RPMI transcriptome.

(D) Unique transcripts by novelty category for each of the stimulus conditions.

(E) Unique transcripts by novelty category that remain at various transcript abundance thresholds in the C. albicans condition.

(F) Transcriptomes of the samples plotted on the first two principal components of PCA.

(G) Jaccard distances of genes (left) and known transcripts (right) of the transcriptomes, not considering transcript abundance.

See also Figures S1 and S2.
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including �10% immune-related genes (Figure S1B). We found 47.4% of detected transcripts to be novel, while these accounted for only

20.3% of the total reads (Figure 2B). The distribution of reads per novel transcript was similar to that of known transcripts with a slight skew

toward lower abundance (Figure S2A). Exon elongations were the most observed feature distinguishing novel from known transcripts,

occurring in nearly a third of the novel transcripts found in RPMI. This was similar for the stimulated conditions (Figures 2C and S2B).

The percentage of novel transcripts and transcript deviations were similar for all conditions (Figure 2D). To corroborate the existence

of novel transcripts, we analyzed FANTOM5 CAGE peaks in the vicinity of the transcription start sites for novel transcripts with novel 50

ends. We found 8,233 (51.3%) novel 50 end transcripts across all conditions to be supported by a CAGE peaks from unstimulated human

monocytes (within 150 nucleotides).25

Principal-component analysis (PCA) of the expression levels for each transcript indicated that stimulated conditions were more similar to

each other than to RPMI. S. aureus andC. albicansweremost similar to each other (Figure 2F). Genes and transcripts expressedwere similar in

the stimulated conditions with average Jaccard similarity indices of 0.9 and 0.82 for genes and transcripts, respectively (Figure 2G). Novel

transcripts had similar Jaccard indices to each other than for known transcripts (not shown). Differential expression analysis yielded an average

of 949 differentially expressed genes (DEGs) and 2,076 differentially expressed transcripts per condition (Figure S3; Tables S1 and S2).

We validated the DEGs through 30 transcript counting (QuantSeq).26 We gathered a set of representative transcripts based on sequence

differences at the 30 end of transcripts (29,760 transcripts, 79.8% of total) and investigated the correlation of differential expression in the long-

read sequencing data with the separately generated short read dataset of the same donor. TheDEGs that overlapped between both datasets

correlate well (R2 0.62–0.81). Best matching pairs of stimulated conditions between the short- and long-read confirmed the concordance of

both sequencing approaches (Figure S4; Table S3).
iScience 27, 110471, August 16, 2024 3
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Figure 3. Differential pathway analysis originating from differentially expressed genes on the RNA level

(A) Overlap between enriched pathways generated from the differentially expressed genes from the four conditions.

(B) Selected pathways found to be enriched for all conditions, (C) three of the four conditions (poly(I:C), C. albicans and S. aureus), (D) specifically for LPS and

(E) specifically for poly(I:C).

See also Figure S3.
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Pathogen stimuli display upregulation of different pathways

Differential gene expression analysis using the long-read sequencing data resulted in a total of 1,733 genes that were differentially expressed

in stimulated conditions compared to control. We performed pathway analysis for each condition using gProfiler27 (Table S4). By overlapping

the gene sets enriched in each of the four conditions, we discerned biological processes/functions specific to certain pathogen-stimulated

conditions. There are a lot of constants in host response regardless of the pathogen, and indeed the largest set of pathways was in the overlap

between all stimulated conditions (211 pathways, Figure 3A). This set has an enrichment of genes involved in type II interferon (IFN-g) re-

sponses. Genes involved in tertiary and specific granules, which play a role in the defense against pathogens were found to be enriched
4 iScience 27, 110471, August 16, 2024
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among upregulated genes in all conditions. Surprisingly, we also find these and related gene sets to be enriched among downregulated

genes as a result of S. aureus and poly(I:C) stimulation, potentially a result of the regulation of the inflammatory response. Further gene

sets included the response to molecules of bacterial origin (including LPS), innate immune response signaling such as PRR signaling, antigen

processing, and presentation and IL-1 production (Figure 3B).

Some pathogen-stimulated conditions hadmore enriched pathways in common than others. There was a notable overlap of 131 gene sets

enriched inC. albicans-, S. aureus-, and poly(I:C)-stimulated conditions. Some of these were common to the set overlapping between all con-

ditions, such as interferon responses. The LPS-excluding set showed particular enrichment related to viral processes such as the defense

against viruses, regulation of the viral life cycle, likely due to interferon-stimulated gene expression, such as STAT1, OAS1/3, OASL, and

IFIH1. Also, transcription factor binding matches (TRANSFAC) such as IRF-2, 5, 8, and 9 were enriched, reflecting downstream signaling

through various signaling pathways leading to the regulation of the production of interferons and immune cell development (Figure 3C).28

LPS and poly(I:C) were the 2 stimuli with themost enriched pathways unique to a single stimulus. For 55 gene sets unique to LPS, there was

a downregulation of T cell receptor signaling, in part due to the downregulation ofCD4 expression, which has previously been described as a

result of endogenous production of TNF-a and IL-1b as a result of LPS stimulation.29We further found an upregulation of gene sets involved in

metabolic processes such as oxidoreductase complexes and cellular responses to oxygen, possibly reflecting metabolic changes previously

described to occur in immune cells such as monocytes upon LPS stimulation.30 Furthermore, there was an upregulation of genes involved in

humoral immune responses (Figure 3D). For 53 gene sets enriched uniquely in poly(I:C), we found functions including viral gene expression,

apoptosis related signaling (regulation of cysteine-type endopeptidase activity), and B cell relatedgene sets such as increased antibody levels

and BCR signaling. Finally, there was an enrichment of MHC class II antigen presentation (Figure 3E).
Isoform switches highlight transcriptome differences between conditions and control

Isoform switching (IS) genes are defined by a change (increase/decrease) of expression of a particular transcript isoform as measured by

percent of total reads for a gene. In different samples/conditions, a particular transcript isoform may comprise a different isoform fraction

(dIF) value for a given gene. Here, a change of at least 10% (0.10 dIF) in control and the opposite change (decrease/increase) of expression

of a different transcript isoform in the same gene of at least 10% in the pathogen-stimulated condition is considered an IS.

A total of 999 IS were detected in 398 genes. Nearly half (N = 192, 48.2%) of these IS genes were unique to their respective stimulus con-

ditions, while 10.3% were found in all conditions (N = 41) (Figure 4A; Tables S5 and S6). The majority of genes demonstrating IS were not

differentially expressed in their respective conditions (327 genes; 77%). Most genes that were found to undergo IS displayed only one IS

instance (Figure S5A). Pathway analysis of genes undergoing IS were enriched for gene sets involved in metabolic processes, mRNA splicing,

protein transport, and catabolism. Furthermore, immune and stress-related pathways such as MHC type I antigen processing and transport

through vesicles, inflammasomes, oxidative stress, and apoptosis were found to be represented in genes undergoing IS (Figure 4B; Tables S7,

S8, S9, S10, and S11).

We sought to understand the molecular consequences of IS upon pathogen stimulation by categorizing the differing features of the iso-

form pairs involved in the switch. Each of the IS was annotated with one or more of the following predicted protein characteristics: change in

ORF (open reading frame) length, ORF gain/loss, domain gain/loss, NMD sensitivity, intron retention (IR) gain/loss, coding probability (ORF

presence), and signal peptide gain/loss. These consequences are not independent and often multiple consequences could be attributed to

one IS (Figure S5B).We observedgeneral IS trends on a genome-wide scale (Figure S5C; Table S12). Strikingly, we found IR loss to be themost

common consequence of IS in this dataset. Isoforms with retained introns comprised a higher isoform fraction for genes in the control con-

dition, while their respective intron-excluding counterparts had a higher isoform fraction for genes in the pathogen-stimulated conditions.

Genes displaying loss of IR were enriched for pathways involved in mRNA processing, including spliceosome-related gene sets, antigen pro-

cessing and IL-1 production (Figure S6). IR has previously been described as a regulatory mechanism of RNA processing, splicing, vesicle

transport, and type I interferon production in the development of various immune cell types, including macrophages,31,32 granulocytes,33

and B cells.34,35 Our findings support previously described associations of IR losses in immune-related processes, and adds new genes regu-

lated by IR loss during immune responses (Figure S6; Table S13).

In addition, we found a higher proportion of transcripts to have domain gains than domain losses. This could indicate that stimulation by a

pathogen causes a gene to switch expression to a transcript isoform that codes for a protein with an extra function. Other observed trends

included longer ORFs and NMD insensitivity in transcript isoforms induced by pathogen stimulation (Figure 4C).

Since the addition or loss of domains could directly reveal protein function changes, we explored the IS that had this consequence type.

We found that genes with domain gain/loss (N = 158, Table S14) were enriched for involvement in various catabolic processes. We also

found enrichment of T cell activation genes, an effect previously described as a functional consequence of CD8+ T cell co-stimulation.36

Other enriched gene sets include leukocyte cell-cell adhesion and activation and general innate immune response genes (Table S15).

When looking more specifically at the molecular functions of the gained domains themselves, we found an enrichment of domains with

potassium channel regulator activity, kinase- and transferase activity concerning phosphorus-containing groups and nucleic acid binding.

These results potentially indicate functional and cell-type specific effects of domain gains as a result of IS in immune responses (Figure S7;

Table S16).

Novel transcripts play an important role in IS. Of the 999 IS, more than half (N = 592) had at least one novel transcript involved in the IS. In

most cases (N = 438), the switch was from a novel transcript to a known transcript (Figure 4D; Table S17). Compared to IS cases where only

known transcripts were involved, the IS consequences were more often NMD insensitivity and IR loss (Figure 4E). Conversely, shorter ORFs,
iScience 27, 110471, August 16, 2024 5
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Figure 4. Isoform switching induced by pathogen stimulation

(A) Overlap of isoform switching genes between the four stimulus conditions.

(B) Pathway network analysis derived from genes found to undergo isoform switching (IS) upon pathogen stimulation. Each pathway is colored by p value, where a

darker red indicates a lower p value.

(C) Proportions of total IS events in each stimulated condition per IS consequence.

(D) Number of IS by category of switch pairs. Categories are defined by involvement of novel transcripts in a given IS. ‘‘Novel down’’ indicates that the isoform

switched from a higher proportion of the novel transcript in control to a higher proportion of a known transcript in the stimulus condition. ‘‘Both known’’ indicates

that the IS occurs between 2 reference transcripts.

(E) Fraction of each transcript novelty combination per IS consequence. Normalized by total number of IS events per novelty category.

See also Figures S5–S8.
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domain losses, andNMD sensitivity weremore common effects when the IS was from a known to a novel transcript isoform. In conclusion, the

unstimulated condition is characterized by the presence of many novel transcripts with retained introns, which are difficult to detect with short

read sequencing. IR is likely a mechanism to prepare a cell for fast action after an immune stimulus, when splicing of the retained intron could

quickly generate a functional transcript with coding potential, which has been for instance been described in CD4+ T cells.37
A novel readthrough transcript including CARD16 and CASP1

As an example of a remarkable finding with possible biological impact once validated, we identified a readthrough transcript that includes

both CARD16 and CASP1 (Figure 5A). Readthrough transcripts involve transcription that extends beyond the normal polyadenylation site

(PAS), terminating at the PAS of an adjacent gene or other nearby locus.38 These transcripts have been found to be expressed in specific cir-

cumstances, including malignancy and infection.38,39 This particular novel transcript encompasses the coding region of CASP1 and has an

extended 50 UTRwhich spansCARD16, and thus contains twoORFs. This IS was annotated as an IR loss, as the novel transcript loses an intronic
6 iScience 27, 110471, August 16, 2024
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Figure 5. A novel readthrough transcript of CASP1

(A) USCS genome browser track of the transcripts detected in the control condition (RPMI) and stimulated condition (poly(I:C)). The novel readthrough transcript

containing both CASP1 and CARD16 is presented in light blue. Known transcripts in in GENCODE are presented below.

(B) Representation of the domains in the novel CASP1 transcript, indicating that CARD16 is entirely included in the 50 UTR of the transcript.

(C) Gene and (D) transcript expression and (E) isoform fraction of theCASP1 transcripts that were detected (*p< 0.05; **p< 0.01; ***p< 0.001; ns, not significant).
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region in its 30 UTR (Figure 5B). Both the known and novel transcripts in this IS are predicted to be coding (both 100%).CASP1was found to be

differentially expressed upon poly(I:C) stimulation (log2FC 1.73, p = 0.049; Figure 5C). The isoform expression of the known transcript was

found to decrease upon poly(I:C) stimulation, while the novel transcript was found to increase (Figure 5D). This is further reflected in the iso-

form fraction, increasing from 8.3% to 24.8%, while the known transcript decreased from 85.5% to 74.2% (Figure 5E).

CARD16 and CASP1 both have a function in proinflammatory IL-1b signaling, where CARD16 has been shown to play a role in CASP1

assembly, although there remains discussion on the exact regulatory effect of CARD16 on this process.40,41 We have identified an IS spe-

cifically for poly(I:C) stimulation, where a novel transcript of CASP1 was found to harbor CARD16 in its 50 UTR was upregulated upon stim-

ulation. This finding could suggest a novel molecular mechanism in IL-1b signaling, potentially through the regulation ofCASP1 by its regu-

lator CARD16.
A novel coding transcript of NFKB1

We identified a novel NFKB1 transcript that demonstrated IS in all four conditions. This novel transcript was shorter than the canonical tran-

scripts (Figure 6A). Further analysis revealed that the novel transcript start site was supported by multiple nearby CAGE peaks (Figure 6B).

Strikingly, this novel transcript lacks a part of its Rel homology domain, a conserved domain responsible for functions such as dimerization

and DNA binding (Figure 6C).42 NFKB1 was not found to be significantly differentially expressed, although gene expression was found to

be higher in pathogen-stimulated condition compared to unstimulated condition (only C. albicans shown, Figure 6D). The expression of

the novel transcript was found to increase upon pathogen stimulation (Figure 6E). This is reflected in the isoform fraction, which increases

from 23.5% to 50.7%, while the known transcript decreases from 39.0% to 21.2% (Figure 5F).

NFKB1 plays a central role in immune responses, regulating the response to infections through transcriptional activation.36 Furthermore,

the Rel homology domain region is known to harbor disease-causing variants responsible for common viable immunodeficiency (CVID),43

highlighting the importance of this domain in normal B cell function. This finding could suggest a novel regulatory mechanism of NFKB1.
iScience 27, 110471, August 16, 2024 7
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Figure 6. A novel transcript of NFKB1

(A) UCSC genome browser track of the transcripts detected in the control condition (RPMI) and stimulated conditions. The novel transcript is presented in light

blue. Known transcripts in GENCODE are presented below.

(B) Zoomed view of the transcription start site of the novel transcript with CAGE peaks (monocyte) in this region.

(C) Representation of the domains in the known and novel NFKB1 transcripts that were detected.

(D) Gene and (E) transcript expression and (F) isoform fraction of theNFKB1 transcripts that were detected (*p < 0.05; **p< 0.01; ***p < 0.001; ns, not significant).
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Isoform switching in CLEC7A and OAS1 in a stimulus-specific manner

We sought to identify genes with stimulus-specific IS patterns. We identified an IS in CLEC7A, which codes for Dectin-1, a receptor that

recognizes fungal glucans, triggering the immune response.44 While this gene was not differentially expressed upon pathogen stimula-

tion, we did identify an IS specific to C. albicans stimulation in this gene, involving a decrease in expression of an NMD sensitive tran-

script, with the increase in expression of the canonical coding transcript and a non-coding transcript (Figure S8A). In contrast, IR loss in

CLEC7A was previously identified as a result of stimulation with multiple pathogen stimuli in monocytes. Additionally, no difference in

gene expression levels was found between IAV-stimulated and resting cells, where the change in splicing was most pronounced.45 While

we find IR loss in CLEC7A specifically upon C. albicans stimulation, this could therefore also indicate a shared transcriptional response to

pathogen stimuli.

Additionally, we identified an IS involving OAS1, which is involved in antiviral immunity. This gene is differentially expressed in

response to C. albicans, S. aureus and poly(I:C) (Figure S8B). We identified an IS in this gene resulting in an intron loss and a domain

gain. This IS was only observed for poly(I:C) stimulation, potentially indicating this transcript is necessary for antiviral immune responses

(Figure S8C). Previous work has identified common OAS1 haplotypes responsible for a decrease in protein abundance through the

expression of NMD sensitive transcript p42, which contributes to COVID-19 severity.46 We find this transcript to be downregulated

upon poly(I:C) stimulation. However, the transcript we find to be upregulated lacks the prenylation site needed for antiviral function,

as shown for p46.47
8 iScience 27, 110471, August 16, 2024



ll
OPEN ACCESS

iScience
Article
Detecting secreted peptides

We sought to obtain evidence of the protein-coding potential of novel transcripts found through long-read RNA sequencing.Mass spectrom-

etry was performed for 30 secretome samples from five donors’ stimulated PBMCs, which includes the samples from the individual for which

long read RNA sequencing was performed (see STAR Methods). These include 2 control samples and 1 of each 24-h pathogen stimulation

condition for each individual.

We designed a search database comprising all proteins that we suspected could be in the sample. This includes the GENCODE human

proteome, the proteomes of the pathogens used, as well as ORFs derived from novel transcripts found using long-read RNA sequencing.

Novel transcripts do not always correspond to novel ORFs; 32% of the novel transcripts had an ORF that was present in the GENCODE refer-

ence database (Figure S9). In the collection of 30 samples, a total of 38,703 peptides from 15,964 proteins were identified. We found 404

(7.37%) of identified proteins were known to be secreted according to the human protein atlas, which constitutes a significant enrichment

(OR = 2.12, p = 3.88x10�21, Fisher’s exact test). We did not detect microbial proteins in the samples. Many of the novel ORFs predicted

from the transcriptome have high similarity to GENCODE ORFs, resulting in a small number of novel peptides that could uniquely identify

these. After rigorous filtering, we were unable to confidently identify peptides that mapped uniquely to the predicted novel ORFs.
Wider deviations in expression in the secretome

To assess whether differences in transcript expression resulted in differences in the amounts of secreted proteins, we performed a label-free

quantification of the proteins in the cells’ supernatants. Using PCA, we found that a large portion of variation in the proteome was explained

by inter-individual differences and that these differences were larger than the differences induced by the immune stimuli (Figure S10).

We found a total of 418 differentially expressed proteins (DEPs) between the stimuli and control when controlling for individual variation.

Differential protein expression was not equally distributed between stimuli with over a third (N = 131) of the DEGs unique to poly(I:C) stim-

ulation (Figure S11A). With the exception of the S. aureus condition, more proteins were significantly downregulated than significantly upre-

gulated in the secretome (Figure S11; Table S18). We found few overlapping proteins per condition, which could indicate either a high spec-

ificity in response to different pathogens or a lack of protein secretion in a subset of samples.

To determine which explanation is more likely, we visualized the specific (groups of) proteins associated with response stemming from the

stimuli. We clustered protein expression values normalized by individual and stimulus (Figure 7A; Table S19). The clustering revealed a sep-

aration between poly(I:C) samples and the rest of the stimuli. C. albicans showed a large overlap with poly(I:C) in the protein expression pro-

files. SomeC. albicans samples were grouped with poly(I:C) samples, which confirms the results from the differential protein expression anal-

ysis (34 common DEPs, Figure S11A). Other stimulus conditions could not reliably be separated from RPMI.

We identified a cluster of proteins that are highly expressed in poly(I:C) and C. albicans (cluster 4, Figure 7A). This group of proteins is

enriched for genes with functions in leukocyte migration and chemotaxis, exemplified by neutrophil migration. We identified further enrich-

ments of gene sets involved in the response to IL-1, humoral antimicrobial response, and cellular responses to LPS and type II interferons.

Analysis of the molecular functions of these genes indicated an enrichment of cytokine activity and receptor binding, GPCR receptor binding

and various catalytic functions, likely due to immune cell differentiation and immune responses involving the degradation of extracellular ma-

trix proteins during immune cell migration48 (Figure 7B; Table S20). We further assessed the proteins in cluster 4 through a gene network

analysis (Figure 7C; Tables S21 and S22). Of the 84 proteins in this network, 61 were differentially expressed on the protein level (72.6%,

any condition). Of these DEPs, 18 are involved in cytokine signaling (29.5%), of which 13 genes are chemokines (71.2%). A high proportion

of proteins are found in the extracellular region (n = 47, 77.0%), for instance through secretion in granules. The biological functions of the

DEPs in cluster 4 reflect those found for the complete set of proteins in cluster 4, mainly corresponding to pathways associated with functions

in neutrophil migration and chemotaxis (Table S23). As these pathways are not necessarily specific to these two stimuli, this may indicate

poly(I:C) and C. albicansmay bemore effective at eliciting differential protein secretion or have less delay in secretion compared to the other

stimuli.
Comparison with RNA expression

As established earlier, a multi-omics approach is currently the best way to understand the human immune response. Correlation between the

RNA and protein levels, or lack thereof, can provide important clues about the host response to pathogens. To assess the correlation of dif-

ferential gene and protein expression levels, we assessed the concordance of differential expression on the RNAand protein level. Thismetric

corresponds to the percentage of genes for which differential expression on both levels matched in directionality (out of all genes where DE

was observed on both levels) (Figure 7D; Table S24).

We observed an overall poor concordance of directionality and fold change of expression levels at the RNA and protein levels in the

different stimulus conditions, with the exception ofC. albicanswith 73% overall concordance. We overlaid the genes in group 4 from our clus-

tering analysis with the genes found to be DE on both RNA and protein levels. There was an overrepresentation of the genes in this cluster in

the total group of dual-level DE genes (OR = 6.99, p = 4.813e-16). Further analysis of concordant differential expression matches arising from

proteins in cluster 4 (triangles in Figure 7D), we observed high concordance in the genes inducedbyC. albicans and/or poly(I:C). Directionality

concordance for poly(I:C) and C. albicans for genes in in cluster 4 was significantly higher than overall directionality concordance (p = 0.0313

Poly(I:C), p = 0.0003C albicans, Fisher’s test one-tailed). The cluster 4 proteins in the LPS and S. aureus conditions are in the lower right quad-

rant, indicating that the increase of RNA translated into a decrease of secreted proteins for these genes (Figure 7D).
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Figure 7. Protein expression in the secretome

(A) Normalized protein expression detected from five donors in the five conditions. Donors are denoted with numbers 1 through 5. Clusters originating from

kmeans clustering are shown in the heatmap.

(B) Gene ontology Biological process (top) and molecular function (bottom) pathways of proteins found in cluster 4.

(C) Clustering of genes found in cluster 4. Genes are found to be differentially expressed on the protein level are in color, others greyed.

(D) Fold change of gene differential expression versus fold change of protein DE for genes that were differentially expressed on both levels, colored by stimulus.

Triangle-shaped points correspond with cluster 4 genes from A. Genes with concordant protein and RNA expression are in the upper right and lower left

quadrants.

See also Figures S9–S12.
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We hypothesized in the IS analysis that a major regulatory mechanism in the host response to pathogens was the loss of IR for rapid protein

generation. We cross-referenced the secreted proteins to support this conjecture. By overlapping upregulated isoforms from IR loss events, we

found 20 cases from 7 genes (Table S25). Of these genes, 2 were upregulated on the protein level, supporting our hypothesis. The genes were

GZMB and B2M, which are important immune-regulatory genes that are both secreted.49,50 Considering the remaining 5 genes that weredown-

regulated on the protein level, however, this is not convincing evidence that IR loss in general provides a rapid increase of protein production.
DISCUSSION

The identification of novel transcripts and subsequent production of additional protein isoforms could help identify molecular mechanisms

that play a role in various biological processes, including immune responses. Various immune system processes have previously been found

to be regulated by alternative splicing.51–54 Immune responses display significant inter-individual differences. Donor-specific effects such as

sex and ancestry have been shown to significantly influence the transcriptome. Previous studies have further shown the impact of QTLs in the

heritability of cytokine production capacity.5,55–57 However, the effect of these processes on host defense mechanisms against pathogens,

together with the large inter-individual differences in transcription and protein expression, remain to be elucidated.

We have generated a long-read transcriptome of pathogen-challenged primary immune cells (PBMCs) together with the secreted prote-

ome to investigatemechanisms underlying immune responses during infection.We described the accurate identification of known and novel
10 iScience 27, 110471, August 16, 2024
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transcripts in both control and pathogen-challenged conditions. Of these transcripts, we identified a subset that is differentially expressed as

a result of pathogen stimulation, which we validated by short read RNA sequencing data (including 4 additional individuals) and publicly avail-

able CAGE data from neutrophils.

We examined IS that occurred as a result of pathogen stimulation, insight into transcripts that may play a role in pathogen responses. On a

genome-wide level, widespread IR losses were observed. Retained introns that rendered the transcript unusable in the control condition were

spliced out as a result of microbial stimulation; a trend we observed in all conditions regardless of microbe. We postulate that these are ex-

amples of unproductive splicing in unstimulated cells switching to productive splicing after stimulation enabling fast production of proteins

relevant for the immune response. Genes that undergo IR loss mainly have functions in mRNA splicing and processing and in immunity. Tis-

sue- or cell-type specific unproductive splicing has been widely observed as an autoregulatory process for mRNA splicing factors,58 which is

supported by our data in immune cells. We were, however, not able to confirm changes in protein expression of genes that underwent IR

losses using our secretome proteomics data, likely because these proteins are not generally secreted. A couple of pertinent examples

have been illustrated in greater detail. We identified an IS specific to the viral stimulus that involves a novel readthrough transcript of

CASP1 and CARD16. We found an instance of IS to a novel NFKB1 transcript with a shortened DNA binding domain that was found in all

four conditions. Additionally, we describe IS in CLEC7A and OAS1 for C. albicans and poly(I:C), which highlight stimulus-specific alternative

splicing. Taken together, these results highlight the potential for long-read sequencing to accurately resolve novel transcripts with potential

relevance in immune responses, including IR loss events that are generally difficult to detect using short-read sequencing.

The proteome was generated for all samples from all 5 individuals and highlighted significant differences between the secretome of in-

dividual donors, before and after response to immune stimuli. Concordance between the transcriptome and proteome levels was high in

poly(I:C) and C. albicans, and lower in LPS and S. aureus. We found that genes with high correlation on the RNA- and protein levels form

a cluster of protein expression, separating the former two stimuli from the latter. These proteins are enriched for secreted immune-related

proteins, indicating that pathogen stimulation successfully led to secretion of relevant proteins. This would indicate that cells have responded

faster to the poly(I:C) andC. albicans stimuli than to the LPS and S. aureus stimuli, because RNA andprotein were isolated simultaneously from

our samples. Delay in protein production after expression of anmRNAmay partially explain the lack of correlation of differential expression on

RNA and protein level. This delay is presumably even longer in the secretome as proteins need to be first produced and subsequently

secreted.59

Multi-omics approaches are a promising method to further our understanding of immune responses. Our study scratches the surface of

biological insight to be reaped from a combination of multi-omics and long-read sequencing data and was hindered only by the aforemen-

tioned limitations in the samples themselves. Removing these limitations will undoubtedly result in deeper mechanistic understanding and

will translate into better outcomes for patients. Insights gained from this methodology can be used immediately in rare disease diagnostics

applications, such as the reannotation of variants using more accurate reference transcriptomes for specific tissues,60 contributing to the

development of more personalized medicine.
Limitations of the study

The extent to which conclusions can be drawn about immune response mechanisms is limited by the low sample size for long-read

sequencing. In this explorative study meant to provide insights into the novel technical possibilities utilizing latest sequencing approaches,

we generated long-read sequencing data for only a single individual because of the expensive nature of this technology in combination with

the required sequencing depth and the number of conditions studied. This design did not allow us to investigate the inter-individual differ-

ences in the transcriptome. Novel transcripts that were detected could thus be specific to this individual. Future follow-up including the

sequencing of more individuals using accurate long-read sequencing methods and functional studies could provide additional insight

into the more general relevance of these transcripts in immune responses. This study focused on the appraisal of the transcriptome and pro-

teome in PBMCs, which consist of multiple cell types. Use of freshly isolated PBMCs accurately represents the complete immune cell popu-

lation in the peripheral blood and allows for communication between cell types during pathogen stimulation, thereby potentially giving an

accurate representation of this cell population in vivo. However, no information on cell type specificity of transcripts is available. This could be

resolved by recent developments in single cell long-read sequencing.61

We focused our study on the secretome to reduce the complexity of the protein mixture analyzed, and to obtain better peptide coverage

of the secreted proteins that play an important role in immune signaling. However, this limited our view on the complete proteome affected

by immune stimuli. Also, there is the added complication that only a small number of peptides exist that could discriminate between proteo-

forms. To detect the proteoforms derived from our long-read sequencing data, much deeper shotgun proteomics must be performed.62

These limitations are reasons why no evidence of novel transcripts could be validated with the proteome.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Staphylococcus aureus ATCC Cat.25923

Candida albicans heat-killed blastoconidia strain ATCC MYA-3573, UC 820

Biological samples

Peripheral blood mononuclear cells Radboud University Medical Center,

Nijmegen, The Netherlands

N/A

Chemicals, peptides, and recombinant proteins

Ficoll-Paque Plus Cytiva, VWR Cat.17-1440-03

RPMI 1640 Medium (Dutch modification) Gibco, Thermo Fisher Scientific Cat.22409031

Lipopolysaccharide Sigma-Aldrich Cat.L4005 from E. coli serotype 055:B5

Poly(I:C) Invivogen Cat.tlrl-pic

Sodium dodecyl sulfate, ReagentPlus�, R98.5% Sigma-Aldrich Cat.L4509-100G

Triethylammonium bicarbonate buffer, 1M pH 8.5 Sigma-Aldrich Cat.T7408-100mL

Dithiothreitol, crystalline powder, = 97%

(Ellman0s reagent), Mr 154.3

Merck, Sigma-Aldrich Cat.DTT-RO

Iodoacetamide, Bio ultra Merck, Sigma-Aldrich Cat.I1149

Phosphoric acid, BioUltra, R85% (T) Merck, Sigma-Aldrich Cat.79617

Sequence grade modified Trypsin, 100 mg Promega Cat.V5117

Formic Acid ULC/MS, 100mL Biosolve Cat.06914143

Acetonitrile OPTIMA LC-MS 2.5L Acros Organics BVBA Cat.A955-212

trifluoroacetic acid ULC-MS, 25mL Biosolve Cat.202341A8

Critical commercial assays

RNeasy RNA isolation kit Qiagen Cat.74104

QuantSeq 30 mRNA-Seq Library Prep Kit-FWD Lexogen Cat.016

Iso-Seq-Express-Template-Preparation protocol PacBio pacb.com/wp-content/uploads/Procedure-

Checklist-Iso-Seq-Express-Template-

Preparation-for-Sequel-and-Sequel-II-

Systems.pdf

Qubit dsDNA High Sensitivity assay Thermo Fisher Scientific Cat.Q32851

Agilent 2200 TapeStation; High Sensitivity

D1000 ScreenTape

Agilent Cat.5067

Deposited data

Raw long read sequencing data This paper EGA: EGAS00001006779

Raw and processed short read sequencing data This paper EGA: EGAS50000000007

Raw mass spectrometry data This paper PRIDE: PXD045237 and https://doi.org/

10.6019/PXD045237

Software and algorithms

isoseq3 v3.4.0 PacBio github.com/PacificBiosciences/IsoSeq

IsoQuant v3.1.2 Prjibelski et al.63 github.com/ablab/IsoQuant

FastQC v0.11.5 Babraham Bioinformatics github.com/s-andrews/FastQC

Trim Galore! V.0.4.4_dev Babraham Bioinformatics github.com/FelixKrueger/TrimGalore

Cutadapt v1.18 Martin et al.64 github.com/marcelm/cutadapt

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Salmon v1.9.0 Patro et al.65 github.com/COMBINE-lab/salmon

NOISeq v3.19 Tarazona et al.66 bioconductor.org/packages/release/

bioc/html/NOISeq.html

swanvis v2.0 Reese et al.67 github.com/mortazavilab/swan_vis

IsoformSwitchAnalyzeR v1.16.0 Vitting-Seerup et al.68 bioconductor.org/packages/release/bioc/

html/IsoformSwitchAnalyzeR.html

CPAT v1.2.4 Wang et al.69 code.google.com/archive/p/cpat/

hmmscan v3.3.2 Eddy70 hmmer.org/

Pfam Eddy70 hmmer.org/

SignalP5 Almagro et al.71 services.healthtech.dtu.dk/services/

SignalP-5.0/

Cytoscape v3.10.0 Shannon et al.72 cytoscape.org

EnrichmentMap Reimand et al.73 apps.cytoscape.org/apps/enrichmentmap

dcGOR Fang et al.74 dcgor.r-forge.r-project.org

Metamorpheus v1.0.0 Miller et al.75 smith-chem-wisc.github.io/MetaMorpheus

FlashLFQ v 1.2.4.294 Millikin et al.76 github.com/smith-chem-wisc/FlashLFQ

ComplexHeatmap Gu et al.77 bioconductor.org/packages/release/bioc/

html/ComplexHeatmap.html

gProfiler Raudvere et al.27 biit.cs.ut.ee/gprofiler/gost

Scripts used to generate the results in this paper This paper github.com/cmbi/hpi_isoseq_paper

Other

FANTOM5 CAGE data of CD14 monocytes FANTOM525 fantom.gsc.riken.jp/5/datafiles/latest/basic/

human.primary_cell.CAGEScan/CD14%2b

%20monocyte%20derived%20endothelial

%20progenitor%20cells%2c%20donor1.

NCig10041.11229-116C5.hg19.GCTATA.

clusters.bed.gz

GENCODE annotations v39 GENCODE gencodegenes.org/human/release_39.html
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Peter A.C. ’t Hoen

(peter-bram.thoen@radboudumc.nl).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Raw long read RNA-seq (PacBio) data have been deposited at EGA under accession number EGAS00001006779. Raw short read RNA-

seq (QuantSeq) data have been deposited at EGA under accession number EGAS50000000007. Mass spectrometry proteomics data

have been deposited to the ProteomeXchange Consortium via the PRIDE78 partner repository with the dataset identifier PXD045237

and https://doi.org/10.6019/PXD045237.
� All original code used to generate the results described in this paper can be found at https://github.com/cmbi/hpi_isoseq_paper.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

PBMCs were retrieved from healthy, anonymized donors, as part of the human functional genomics project (HFGP). The HFGP study was

approved by the Ethical Committee of Radboud University Nijmegen, the Netherlands (no. 42561.091.12). Experiments were conducted ac-

cording to the principles expressed in the Declaration of Helsinki. Samples of venous bloodwere drawn after informed consent was obtained.
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METHOD DETAILS

Ex vivo PBMC experiments

Venous blood was drawn from five healthy donors5 and collected in 10mL EDTA tubes. Isolation of peripheral blood mononuclear cells

(PBMCs) was conducted as described elsewhere.4 In brief, PBMCs were obtained from blood by differential density centrifugation over Ficoll

gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) after 1:1 dilution in PBS. Cells were washed twice in saline and re-suspended in serum-free

cell culture medium (Roswell Park Memorial Institute (RPMI) 1640, Gibco) supplemented with 50 mg/mL gentamicin, 2 mM L-glutamine and

1 mM pyruvate. Cells were counted using a particle counter (Beckmann Coulter, Woerden, The Netherlands) after which the concentration

was adjusted to 5 3 106/mL. Ex vivo PBMC stimulations were performed with 53105 cells/well in round-bottom 96-well plates (Greiner Bio-

One, Kremsmünster, Austria) for 24 h at 37�C and 5% carbon dioxide. Cells were treated with lipopolysaccharide (E. coli LPS, 10 ng/mL),

Staphylococcus aureus (ATCC25923 heat-killed, 13106/mL), TLR3 ligand Poly I:C (10 mg/mL), Candida albicans yeast (UC820 heat-killed,

13106/mL), or left untreated in regular RPMI medium as normal control. After the incubation period of 24h and centrifugation, supernatants

were collected and stored at �80�C until further processing. For the RNA isolation, cells were stored in 350 mL Rneasy Lysis Buffer (Qiagen,

Rneasy Mini Kit, Cat nr. 74104) at �80�C until further processing.
RNA and protein isolation

RNA was isolated from the samples using the Rneasy RNA isolation kit (Qiagen) according to the protocol supplied by the manufacturer. The

RNA integrity of the isolated RNA was examined using the TapeStation HS D1000 (Agilent), and was found to be R 7.5 for all samples. Ac-

curate determination of the RNA concentration was performed using the Qubit (ThermoFisher).

We extracted the secretomeof the 24-h stimulated PBMCs. To 250 mL of supernatant, 250 mL buffer containing 10% sodiumdodecyl sulfate

(SDS) and 100 mM triethylammonium bicarbonate (TEAB), pH 8.5 was added. Proteins were reduced by addition of 5 mM dithiothreitol and

incubation for 30 min at 55�C and then alkylated by addition of 10 mM iodoacetamide and incubation for 15 min at RT in the dark. Phosphoric

acid was added to a final concentration of 1.2% and subsequently samples were diluted 7-fold with binding buffer containing 90%methanol in

100 mM TEAB, pH 7.55. The samples were loaded on a 96-well S-Trap plate (Protifi) in parts of 400 mL, placed on top of a deepwell plate, and

centrifuged for 2 min at 1,500 x g at RT. After protein binding, the S-trap plate was washed three times by adding 200 mL binding buffer and

centrifugation for 2 min at 1,500 x g at RT. A new deepwell receiver plate was placed below the 96-well S-Trap plate and 125 mL 50 mM TEAB

containing 1 mg of trypsin was added for digestion overnight at 37�C. Using centrifugation for 2min at 1,500 x g, peptides were eluted in three

times, first with 80 mL 50 mM TEAB, then with 80 mL 0.2% formic acid (FA) in water and finally with 80 mL 0.2% FA in water/acetonitrile (can) (50/

50, v/v). Eluted peptides were dried completely by vacuum centrifugation.
Long-read library preparation and sequencing

Libraries were generated from one donor using the Iso-Seq-Express-Template-Preparation protocol according to the manufacturer’s recom-

mendations (PacBio, Menlo Parc, CA, USA).We followed the recommendation for 2-2.5kb libraries, using the 2.0 binding kit, on-plate loading

concentrations of final IsoSeq libraries was 90pM (C. albicans, S. aureus, Poly(I:C), RPMI) and 100pM (LPS) respectively. We used a 30h movie

time for sequencing.

The five samples were analyzed using the isoseq3 v3.4.0 pipeline. Each sample underwent the same analysis procedure. First CCS1 v6.3.0

was runwithmin accuracy set to 0.9. IsoSeq lima v2.5.0 was run in IsoSeqmode as recommended. IsoSeq refinewas run with ‘—require-polya’.

The output of IsoSeq refine was used as input for IsoQuant v3.1.263 with GRCh38.p13 v43 primary assembly from GENCODE. The settings

were set for full length PacBio data, and quantification included ambiguous reads. In IsoQuant, transcripts were considered novel if their

intron chains did not match intron chains found in GENCODE annotation version 39. Transcripts with fewer than 5 reads across all samples

were excluded from further analyses (Table S26).

We sought to validate the novel transcripts identified using long-read sequencing using FANTOM5 CAGE data of CD14 monocytes

(https://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.CAGEScan/CD14%2b%20monocyte%20derived%20endothelial%20

progenitor%20cells%2c%20donor1.NCig10041.11229-116C5.hg19.GCTATA.clusters.bed.gz) that allows for the identification of transcripts

with a matching TSS from this 50 sequencing data.25 Transcripts with novel 50 were considered to be supported with a CAGE peak if within

150 basepairs from the TSS.
Short-read library preparation and sequencing

RNA input was normalized to 200 ng for all samples/donors and libraries were generated using the QuantSeq 30 mRNA-Seq Library Prep Kit-

FWD from Lexogen (Lexogen) in accordance with the manufacturers’ protocol. In order to ensure high quality libraries, two separate prep-

arations were performed, limiting the number of samples to 30 per preparation. Endpoint PCR was performed with 19–22 cycles, as indicated

by a quantitative PCR on a 1:10 aliquot of a subset of double stranded cDNA libraries. Accurate quantification and quality assessment of the

generated libraries was performed using Qubit dsDNA High Sensitivity assay (Thermo Fisher Scientific) and Agilent 2200 TapeStation (High

Sensitivity D1000 ScreenTape, Agilent). Molarity of individual libraries was calculated using the cDNA concentration (Qubit) and average frag-

ment size (TapeStation). Safeguarding sufficient read-depth for each sample, libraries were split in two separate runs. In each run, the baseline

RPMI condition across all donors and time-points was included, in turn allowing sequencing bias assessment. The cDNA libraries of 35
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samples were pooled equimolarly to 100 fmol. After a final dilution of both pools to a concentration of 4 nM, they were sequenced on a

NextSeq 500 instrument (Illumina) with a final loading concentration of 1.4 pM.

FastQC v0.11.5 (BabrahamBioinformatics) was used to assess the quality of the obtained sequencing data, followed by removal of adapter

sequences and poly(A) tails by TrimGalore! V.0.4.4_dev (Babraham Bioinformatics) and Cutadapt v1.18.64 SinceQuantSeq reads only provide

coverage of the 30 end of transcripts, we generated a set of transcripts representative of the full transcriptome by grouping transcripts based

on unique 30 sequences. Therefore, we separately mapped the filtered and trimmed reads to the long read transcriptome with Salmon v1.9.0

in mapping-based mode with decoys.65

Differential expression analyses

Tomeasure differential gene expression from long-read RNA sequencing, low abundance genes were filtered using a 10 CPM threshold with

the conform package in python. Differentially expressed genes (DEGs) and transcripts were calculated for each condition versus control using

theNOISeq R package66 from the abundances generated with isoquant. TMMnormalization was chosen and q-value threshold for DEwas set

at 0.95.

DEGs were generated from the salmon-mapped short-read RNA sequencing data using the samples from the same donor using

NOISeq.66 The two control samples (RPMI) per donor were treated as technical replicates. TMM normalization was chosen and q-value

threshold for DE was set at 0.95. We validated the DEGs detected from long-read sequencing with those generated with the short-read

data by comparing the linear correlation of the log2fold change values for each condition combination between both datasets using the

lm() R function.

The up- and downregulated DEGs per condition-control pair were analyzed for pathway enrichment separately using gProfiler.27 We used

Gene Ontology biological process and molecular function and TRANSFAC transcription factor motifs gene sets.79,80 A term size filter of be-

tween 100 and 500 was used to generate the final enrichment profiles.

Isoform switching

A first-pass isoform switching analysis was performed using swanvis v2.0.67 For a second-pass isoform switching analysis, the resulting gene-

level isoform switch p-values were imported into IsoformSwitchAnalyzeR v1.16.0 package in R.68 Thresholds for isoform switching were set at

10 DPI (differential percent isoform use) and nominal p-value <0.05. Sequences corresponding to the significant isoform switches were

analyzed with CPAT v1.2.4,69 hmmscan v3.3.2 with Pfam,70 and SignalP571 as a part of the IsoformSwitchAnalyzeR package.

Pathway analysis and gene network analysis of genes that were found to undergo isoform switchingwas performed in Cytoscape.72 Default

pathway analysis was performed, filtering for Gene Ontology Biological Process gene sets. An Enrichment Map was built from the enriched

gene sets with a Jaccard similarity cutoff of 0.4.73

Genes found to undergo intron retention gains/losses and genes with domain gains/losses were separately analyzed using gProfiler. We

usedGeneOntology Biological Process gene sets with a with a term size filter between 100 and 500 genes.We separately analyzedgeneswith

domain gains or losses were using dcGOR.74We used the gene ontologymolecular function gene sets with a term size filter between 100 and

500 genes.

LC-MS/MS analysis

Peptides were re-dissolved in 20 mL loading solvent A (0.1% trifluoroacetic acid in water/acetonitrile) (98:2, v/v)) of which 4 mL was injected for

LC-MS/MS analysis on an Ultimate 3000 RSLCnano system in-line connected to a Q Exactive HF mass spectrometer (Thermo). Trapping was

performed at 10 mL/min for 4 min in loading solvent A on a 20 mm trapping column (made in-house, 100 mm internal diameter (I.D.), 5 mm

beads, C18 Reprosil-HD, Dr. Maisch, Germany). The peptides were separated on a 250 mm Waters nanoEase M/Z HSS T3 Column, 100 Å,

1.8 mm, 75 mm inner diameter (Waters Corporation) kept at a constant temperature of 45�C. Peptides were eluted by a non-linear gradient

starting at 1%MS solvent B reaching 33%MS solvent B (0.1% formic acid (FA) in water/acetonitrile (2:8, v/v)) in 100min, 55%MS solvent B (0.1%

FA in water/acetonitrile (2:8, v/v)) in 135 min, 97%MS solvent B in 145 min followed by a 5-min wash at 97%MS solvent B and re-equilibration

with MS solvent A (0.1% FA in water).

The mass spectrometer was operated in data-dependent acquisition mode, automatically switching between MS and MS/MS acquisition

for the 16 most abundant ion peaks per MS spectrum. Full-scan MS spectra (375–1500 m/z) were acquired at a resolution of 60,000 in the

Orbitrap analyzer after accumulation to a target value of 3,000,000. The 16 most intense ions above a threshold value of 15,000 were isolated

with a width of 1.5 m/z for fragmentation at a normalized collision energy of 28% after filling the trap at a target value of 100,000 for maximum

80 ms. MS/MS spectra (200–2000 m/z) were acquired at a resolution of 15,000 in the Orbitrap analyzer.

Protein identification and quantification

Two search databases were constructed; one database for proteoform detection and one database for quantification. The database used for

sensitive detection of proteoformswas generated using a slightly adapted version of the LongRead Proteogenomics pipeline byMiller et al.75

Since the pipeline uses a different long-read transcriptomics tool, small syntax adjustments were made to accommodate the use of Isoquant

output. Additionally, a custom script was written to have Isoquant output mimic the required input format. The pipeline generated a

GENCODE-PacBio hybrid database. The proteome from C. albicans (taxon ID 5476) and S. aureus (taxon ID 1280) were downloaded from
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UniProt and added to the search database. The search database used for quantification was created by downloading the proteome from

H. sapiens (taxon ID 9609), C. albicans (taxon ID 5476) and S. aureus (taxon ID 1280) from UniProt. Metamorpheus default contaminants

were added to both search databases.

Mass spectra were identified using Metamorpheus v1.0.0.81 The Human Proteome Project Mass Spectrometry Data Interpretation Guide-

lines version 3.0 were applied.82 Quantification was performed using FlashLFQ v 1.2.4.29476 with all five individuals set as biological replicates

and the two control (RPMI) samples per individual set as technical replicates. The following options enabled: normalization, shared peptide

quantification, Bayesian fold change analysis, andmatch between runs (Table S27). An adapted version of SQANTI protein was used to search

for novel peptides in the Metamorpheus identifications. Enrichment of secreted proteins was determined using the predicted secreted pro-

teins from Human protein atlas83 as reference.
Protein clustering

FlashLFQ raw protein expression values originating from the quantification database search were first square root transformed. To normalize

for donor effects, the mean protein expression value per gene/individual was subtracted from all the expression values from the same gene/

individual. Then Z score normalization was performed across all individuals per gene. K-means clustering was then performed using the

kmeans() function in R with seed #82 and default parameters. We found four clusters to optimally represent the data according to the elbow

plots (Figure S12). A heatmapwas constructedwith those clusters using theComplexHeatmappackage.77 The proteins identifiers assigned to

cluster #4 were converted to gene names and analyzed using gProfiler for enrichment analysis using both Gene Ontology Biological Process

andMolecular Function gene sets. We further analyzed the protein found to form cluster 4 through a protein network analysis in Cytoscape.72
QUANTIFICATION AND STATISTICAL ANALYSIS

Results were analyzed using R v4.1.3. All of the statistical details of experiments can be found in the STAR Methods section. *p < 0.05;

**p < 0.01; ***p < 0.001; ns, not significant.
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