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Abstract
Until recently, innovations in surgery were largely represented by extensions or augmentations of the
surgeon’s perception. This includes advancements such as the operating microscope, tumor fluorescence,
intraoperative ultrasound, and minimally invasive surgical instrumentation. However, introducing artificial
intelligence (AI) into the surgical disciplines represents a transformational event. Not only does AI
contribute substantively to enhancing a surgeon’s perception with such methodologies as three-dimensional
anatomic overlays with augmented reality, AI-improved visualization for tumor resection, and AI-formatted
endoscopic and robotic surgery guidance. What truly makes AI so different is that it also provides ways to
augment the surgeon’s cognition. By analyzing enormous databases, AI can offer new insights that can
transform the operative environment in several ways. It can enable preoperative risk assessment and allow a
better selection of candidates for procedures such as organ transplantation. AI can also increase the
efficiency and throughput of operating rooms and staff and coordinate the utilization of critical resources
such as intensive care unit beds and ventilators. Furthermore, AI is revolutionizing intraoperative guidance,
improving the detection of cancers, permitting endovascular navigation, and ensuring the reduction in
collateral damage to adjacent tissues during surgery (e.g., identification of parathyroid glands during
thyroidectomy). AI is also transforming how we evaluate and assess surgical proficiency and trainees in
postgraduate programs. It offers the potential for multiple, serial evaluations, using various scoring systems
while remaining free from the biases that can plague human supervisors. The future of AI-driven surgery
holds promising trends, including the globalization of surgical education, the miniaturization of
instrumentation, and the increasing success of autonomous surgical robots. These advancements raise the
prospect of deploying fully autonomous surgical robots in the near future into challenging environments
such as the battlefield, disaster areas, and even extraplanetary exploration. In light of these transformative
developments, it is clear that the future of surgery will belong to those who can most readily embrace and
harness the power of AI.
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Introduction And Background
From the beginning of medical history dating back to the Babylonian Code of Hammurabi (1750 BCE) and
the Egyptian Smith Papyrus (ca. 1600-1500 BCE), progress in the field of surgery has been shaped by the
contributions made in the realms of anatomy, pharmacology, and technology [1]. Advances in the field
rested upon the substantial but finite powers of the human surgeon who stood at the center of the operating
suite, their hands and eyes assuming command of the surgical field. While there have been tremendous
inroads across the fronts of dozens of surgical disciplines, we can conveniently group most of them under
the principle of enhancing or expanding the breadth of the human umwelt.

Umwelt is a German term first coined by Estonian biologist Jakob Johann von Freiherr Uexküll (1864-1944).
He used the term “the world around us” or “the self world.” It was his way of describing the highly individual
perceptual space within which each human, each organism, establishes a functional identity through its
sensorium. It is also the physiological space within which the individual lives and acts [2]. To put this into
surgical perspective, surgeons can only visualize a surgical field with their eyes. We can extend the capacity
of the surgeons’ individual, neurophysiologically defined space [3] by providing them, for example, with
loupe magnification, an operative microscope, or even an overlay of anatomic structures derived from the
patient’s specific MRI studies. We can even enhance the surgeon’s visual sensitivity beyond visible light by
adding tissue markers or dyes that will fluoresce in the appropriate ultraviolet or infrared spectra [4]. While
it might seem, at first glance, that we have dramatically broadened the surgeon’s umwelt, we have not. We
have effectively created an engineering infrastructure that allows us to move what lies beyond the umwelt
and include it within it. For example, we did not alter the surgeon’s vision to gain access to previously
invisible segments of the electromagnetic spectrum (EMS) [5]. Nothing about the physical characteristics of
these segments of the EMS was altered; those segments remain invisible to the unaided eye.

Under nighttime conditions, soldiers operate efficiently with night vision goggles. Their motto is, “We own
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the night.” The goggles capture deficient levels of ambient photons still present at night but in quantities so
low as not to be visible to the human eye. The photons are amplified thousands of times by a microchannel
plate component. The amplified photons are then accelerated toward a phosphor screen or viewfinder,
causing the phosphor to glow and emit visible light. The brightness of the glow corresponds to the number of
amplified electrons impinging on the phosphor screen, creating a visible image from the initially dim scene.
We transformed the darkness not by altering the properties of the human eye but rather by the photonic
quality of the darkness itself [6]. In an analogous fashion, engineering technology has allowed surgeons to
maneuver surgical instrumentation in more limited surgical fields with the introduction of laparoscopic and
robotic instrumentation. But every one of these advances has relied upon the extant umwelt of the operator
(Figure 1).

FIGURE 1: The two ways AI can work in surgery.
A schematic showing the two ways in which AI can work in surgery. The first way is depicted here, and the second
way is by expanding the surgeon’s “umwelt” (Figure 2). It shows that AI can work effectively by expanding the
surgeon’s cognition, that is, by providing decision support by expanding the availability and analysis of data that
would otherwise be unavailable or inaccessible to the surgeon. AI-derived management will also substantially
increase the productivity of the operating room.

Author’s own illustration.

AI: artificial intelligence; OR: operating room; MRI: magnetic resonance imaging; AR: augmented reality

A new era dawned in the 21st century with the integration of artificial intelligence (AI) into surgical support
systems, heralding a profound wave of surgical innovation that surpassed human perception. In the past,
surgical technology catered to the surgeon’s senses, but the new form that innovation has taken can no
longer be satisfied with enhancing perception but, instead, strives to improve cognition [7]. For the first time
in medical history, the progress unfolding now might come at the cost of the surgeon’s judgment (Figure 2).
In the past, all progress was intricately tied to the surgeon’s expertise, but with the emergence of AI,
advancements in surgical outcomes may no longer rely solely on technique. They may stem from an analysis
of intricate databases, diagnostic decision support systems, predictive analytics, and enhancements in
surgical instrumentation and robotic manipulation that surpass human physical capabilities.
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FIGURE 2: How AI can work in surgery by expanding the surgeon’s
“umwelt.”
A schematic showing the second way in which AI can work in surgery. The method shown here is by effectively
expanding the surgeon’s “umwelt.” By expanding the surgeon’s ability to perceive, it makes the surgeon more
effective.

Author’s own illustration.

AI: artificial intelligence; ICU: intensive care unit

Furthermore, we must not limit our vision of AI to merely bolstering surgical capabilities within our
hospitals and clinics. We must envision the tangible benefit of applying AI to support autonomous surgical
robots capable of operating in terrestrial environments where climate, disaster, or war have rendered
surgical capacity unsustainable. AI will also be able to address the need for surgical intervention in
extraterrestrial scenarios where insurmountable distances will place patients beyond the reach of a human
surgeon.

Review
Past history
Postoperative Complications and Management

Postoperative complications account for more than a doubling of the mortality and the costs of surgery. In a
large single cohort study conducted by the University of Florida at Gainesville (UFG), the medical records of
over 50,000 surgical patients who had undergone major surgical procedures were employed to validate an
automated analytic framework designed to probabilistically forecast a patient’s risk of developing any one of
eight common severe life-major complications. The complications included sepsis, deep venous
thromboembolism, wound infection, acute kidney injury, a stay in the intensive care unit (ICU) after surgery
that lasted for more than 48 hours, the need for respiratory support on a ventilator for more than 48 hours,
neurologic impairment, cardiovascular complications, and death occurring during the postoperative follow-
up period of 24 months. The UFG model (named MySurgeryRisk) calculated the risk of eight different
complications with the area under the curve (AUC) ranging between 0.82 and 0.94 (99% confidence intervals
(CIs) = 0.81-0.94). The model also calculated the actuarial risk for death at 1, 3, 6, 12, and 24 months, with
AUC values ranging between 0.77 and 0.83 (99% CI = 0.76-0.85). In short, the UFG algorithm could provide a
dynamic, invaluable adjunct to the surgeon’s judgment on the severity of postoperative morbidity and
mortality the patient might incur due to surgery [8]. This kind of “probabilistic surgical reflection” was
alluded to earlier in the discussion about AI’s impact on surgery being considerably more aligned with
addressing cognitive issues than simply restricting itself to technical ones. As William J. Mayo astutely
observed in 1921: “That which can be foreseen can be prevented” [9].

Area Under the Curve Calculation and Receiver Operating Characteristic

The traditional calculation of the AUC of the receiver operating characteristic (ROC) curve measures how
well the probabilistic model can distinguish between two outcomes: postoperative course with or without
complications (Figure 3). The ROC is used to assess the sensitivity and specificity of the model. The ROC
plots the true positive rate (sensitivity) against the false positive rate (1 - specificity) at different threshold
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settings. AUC is a commonly used and well-accepted index of the overall performance of the AI model. For
example, an AUC of 0.50 would indicate that the model performed no better than random chance, a coin flip,
between the changes of postoperative complication. An AUC of 1.0 means the model discriminates between
the two outcomes without errors. Generally, an AOC of 0.7 is considered fair, 0.80 good, and 0.9 or higher
excellent. AUC is regarded as a helpful metric because, with it, a single number can be used to summarize
the overall performance of an AI model, making it easier to compare different models or assess the impact of
changes to the models (Figure 4). However, a high AUC alone does not ensure that AI will necessarily
produce a way of distinguishing between clinically useful endpoints nor inevitably produce better clinical
outcomes.

FIGURE 3: The area under an ROC curve.
The area under a curve refers to the two-dimensional space or region that is bounded by the curve itself and the
x-axis (or horizontal axis) over a given range or interval. The area under the curved line on the graph represents a
measurement or quantity that is accumulated over the x-axis.

Image source: ProfGigio, “The area under a ROC curve,” 2022. Accessed
via https://commons.wikimedia.org/w/index.php?curid=114508624. CC-BY-SA-4.0.

ROC: receiver operating characteristic; TPR: true positive rate; FPR: false positive rate; AUC: area under the
curve
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FIGURE 4: Receiver operating characteristic curve.
Receiver operating characteristic curve with the false positive rate and the true positive rate. The diagonal line
shows the performance of a random classifier, where the results are no better than random chance. Three
example classifiers (blue, orange, green) are shown.

Image source: MartinThoma, “ROC Curve,” 2018. Accessed via https://commons.wikimedia.org/wiki/File:Roc-
draft-xkcd-style.svg. CC-BY-NC-1.0.

ROC: receiver operating characteristic

Wound Infections

In the United States, surgical wound infections are estimated to cost over 25 billion dollars a year in
additional medical expenses. Careful wound surveillance remains a primary means of detecting and
intervening in the earliest stages of wound infection. In a joint study undertaken by two independent wound
centers at New York University, surgical researchers used 200 photographs of postoperative wound
infections to provide a machine learning (ML) database for AI. Errors made by AI in tracing out the extent of
wound disruption and infection were compared to the tracings made by knowledgeable surgeons who were
blinded to the identity of the patients. There was no significant difference between the performance of AI
and that of human surgeons. The study demonstrated that automated wound surveillance by AI was
comparable in sensitivity and specificity to surgical experts [10].

Intraoperative Guidance

AI has had some early applications in the operating room. The inroads made by AI include procedure
duration prediction, gesture recognition, intraoperative cancer detection, intraoperative video analysis,
workflow recognition, an endoscopic guidance system, knot-tying, and automatic registration and tracking
of the bone in orthopedic surgery [11]. Human error now represents a more significant source of hazardous
errors than technology failures [12]. The operating room has long been seen as the most important source of
errors in hospital systems; over half of those errors are deemed avoidable [13]. One of the great limitations
in analyzing incident report data from operating rooms is that they function as large data streams from
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diverse sources. With the advent of AI, there might be a better way to approach, analyze, and measure the
data to achieve better outcomes.

Procedural Duration

There have been numerous attempts to apply AI to several different data streams from within the operating
room. For example, data extracted from the operative video stream and surgical instrumentation were
employed to predict the duration of surgical procedures. Over 80 laparoscopic procedures were reviewed,
and both data streams were available for analysis. Combining both yielded an average error of 37% with an
average halftime error of 28%, which compared favorably with prior baseline studies, which revealed an
average error and average halftime error that both exceeded 128% and were derived from the length of time
for which a given procedure had been scheduled to be in the operating room [14]. Many confounding factors
affect the predicted duration of a surgical procedure (experience of surgeon and anesthesiologist, type of
anesthetic agent used, technical difficulty of the procedure, availability of staff and instrumentation, etc.). A
recent analysis of a more homogenous case of ophthalmological surgeries revealed that applying so-called
“neuro-fuzzy inference systems” (NFIS) yielded the best predictions about procedural duration. NFIS are
systems that combine straightforward neural networks for ML but then incorporate fuzzy logic, which
includes intuitive guessing about where the correct answer lies [15].

Gesture Recognition

Because of the ubiquity of computerized devices and communication equipment, there are abundant
opportunities for members of the aseptic operative team to inadvertently contaminate themselves by
contact with a keyboard or other control surface. For this reason, a group of Korean surgeons decided to
create a contactless control surface that depended on hand and finger gestures to control the letter and
cursor function. Each team member was allowed to enter up to 30 individualized hand or finger gestures,
during which ML occurred. Once there was agreement that adequate training had taken place, the research
team investigated the incidence of keyboard contamination. Again, this experiment would have been
challenging just a few years ago. However, with AI, entire surgical teams could enter their hand gestures,
and there would be clarity between members of the team and problems with retention to reduce inadvertent
cross-contamination during operative procedures [16].

Intraoperative Cancer Detection

In oncological surgery, obtaining a gross total or near-total resection is one of the primary objectives of the
surgical procedure. One method for the detection of tumor cells in the resection bed is to use Raman
spectroscopy to identify cancer cells in vivo. However, with AI, ML can help create better separation
between artifact and spectrum indicating in vivo cancer cells. Using AI proved to make the detection of
tumor cells 20% more sensitive [17].

Endoscopic Guidance

Videotape collection can be a burdensome problem in the operating room, especially with laparoscopic or
endoscopic procedures where a single method can generate hours of videotape. As these videotapes are used
both for documentation and training purposes, it often proved difficult to get precisely to the place and the
operative frames where discussion could ensue. However, with AI, automatic segmentation of the various
lengths and intervals of the videotape was possible, which allowed for a much more efficient way of getting
to the points of interest or points of training in the video. AI could differentiate between the various steps in
the laparoscopic procedures and automatically bookmark specific segments for review with an overall
accuracy of 82% [18]. In a second, unrelated study, ML was employed to tell surgeons which pathway to
follow to remove and replace laparoscopic instruments in the field while diminishing the potential for
inadvertently damaging tissue or hitting an organ. AI reduced inadvertent instrument collisions by 29% and
correctly guessed what instruments would be used [19].

Registering and Tracking Bone

Registration is essential in any computer-assisted orthopedic surgery. The registration of bone from
preoperative scans defines the patient’s position and alignment of the operative site concerning the surgical
system. Recently, surgeons were able to use AI to preoperatively register the site and position of the
patient’s bone so a complete preoperative plan could be correctly aligned with the site. All subsequent steps
of the procedure will thus be directly affected by the registration accuracy. With the AI algorithm, there was
no need for input from the surgeon. The system showed a weighted pixel accuracy of 98.10 ± 0.99 with a
three-dimensional (3D) translational error of 2.75 ± 1.13 mm, which compared very well with intraoperative
invasive registration [20].

Intraoperative Guidance During Surgery
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AI is now being applied to a myriad of intraoperative guidance systems. For many of these systems, the
earliest reports being published are the first applications of AI, and it should be anticipated that the systems
will become more robust, precise, and widely deployed in the next few years. AI has been successfully
applied to developing a host of guidance system scenarios.

Endovascular Abdominal Aortic Aneurysm

A deep learning model was trained to identify a “Go/No-Go” guidance for determining a “landing zone”
during endovascular aneurysm repair (EVAR). The “No-Go” zone was defined by ending up in a position
where the stent inadvertently covered or occluded the lowest take-off of the renal artery. The AI model was
trained using image sets derived from 110 patients to identify and prevent suboptimal placement of the
EVAR. The AI guidance demonstrated a 97% success rate in detecting infringement on the renal arteries [21].

Anatomical Recognition in Association With Laparoscopic Cholecystectomy

One of the most common errors that can occur during an inoperative procedure is a mistake in visual
perception or an outright misidentification, leading to an error in judgment and a misinterpretation of an
enemy. In this regard, AI has proven helpful by providing enough deep learning to assist surgeons with real-
time anatomic guidance.

In one study, AI models were trained on over 2,600 random frames from 290 laparoscopic cholecystectomy
videos. These were procured from over 37 countries, 136 institutions, and 153 expert surgeons. AI was used
to identify anatomy within the surgical field. The study’s primary outcomes were intersection-over-union
(IOU) and an F1 score, which were validated spatial correlation indices. The mean IOU for identification of
the liver was 0.86 ± 0.12, gallbladder was 0.72 ± 0.19, and hepatocystic triangle was 0.65 ± 0.22. AI proved
helpful in identifying anatomic landmarks during laparoscopic surgery [22].

Parathyroid Gland Detection During Thyroidectomy

One of the critical steps in any thyroidectomy procedure is to correctly identify and spare the parathyroid
glands. Particularly in an intraoperative situation, this can often prove quite tricky. Developing an AI model
for determining the parathyroid glands could reduce the procedure’s morbidity. Video clips of parathyroid
glands were collected during routine thyroid lobectomy procedures. The images of the parathyroid glands
were confirmed. Then, they were used to form three types of data sets according to augmentation status,
namely, baseline, geometric transformation, and generative adversarial network-based image in-painting.
The AI model could correctly identify parathyroid glands on the baseline data 77% of the time. However, AI
performance was further enhanced by applying geometric transformation and image in-painting
augmentation methods. The geometric transformation data and augmentation data sets between these two
modalities proved superior to the image in-painting AI model. The average precision was 79% in the
transformation dataset vs. 78.6% in the inpainting dataset. However, the model was then subjected to
images of utterly different thyroidectomy approaches, and imaging in-painting proved to be the most
effective method for visualizing the parathyroid glands with AI; hence, using augmentation methods holds
excellent promise down the road for enhanced AI identification and guidance applications [23].

AI Intraoperative Guidance for Glioma Resections

Malignant gliomas are one of the most common intracranial tumors, and surgical resection is a part of the
standard treatment. Because gliomas can be diffusely infiltrative, resectioning them from the brain
parenchyma can be challenging. To enhance the tumor resection, 108 patients with gliomas were imaged
with MRI and then selected and divided into intraoperative magnetic resonance-assisted glioma section and
a control group where the conventional surgical resection was performed without MRI guidance. After the
tumor section, the patients were evaluated using the National Institute of Health Stroke Scale (NIHSS) score,
a Karnovsky score (another measure of neurological function), and postoperative intracranial infection
surveillance. The results indicated that AI-MRI intraoperative guidance dramatically improved the average
tumor resection over the control group (p < 0.05). There was no significant difference in the Karnovsky
scores, NIHSS scores, or infection rates between the two groups. The study clearly showed that using AI-MRI
interoperative guidance improved tumor resection [24].

Guidance Identifying Liver Vessels During Laparoscopic Liver Resection

The recognition of liver vessels during a parenchymal resection of the liver is a crucial part of the surgical
technique for laparoscopic liver resection. In one study, an AI model was developed to help recognize
hepatic veins and Glissonean pedicles in the liver. In total, 2,421 frames were extracted from 48 laparoscopic
liver resection video clips. The AI model’s false negative, false positive, and vessel differentiation ratings
averaged 4.36, 3.44, and 3.28, respectively, on a five-point scale. Studies suggested that AI guidance would
benefit minimally invasive surgery and surgical liver resection [25].
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Augmented Reality Image Overlay

Augmented reality-based image overlay (ARIO) refers to an image of the anatomy depiction that is
intraoperatively projected onto the operative field, specific to an individual patient. It has been, in many
regards, every surgeon’s secret dream. Unfortunately, it has been largely unrealized because of the sheer size
of the databases and the demands of co-registering the patient’s preoperative imaging data with the
patient’s pertinent anatomy. Not only must that data set consider how the patient is positioned on the table,
but it must also change the surgeon’s head position, as this also changes the point of view by which the
overlaid anatomy will be displayed. However, with the advent of access to greater computer storage and
processing speed via cloud-based servers and new, better models for imaging such as inpainting, Adaptive
Neuro-Fuzzy Inference System (ANFIS), Neural Radiance Fields (NeRF), or Gaussian splatting techniques,
rapid and seamless image reconstruction is now possible. The net effect is to make what was once an
imaging trick only achievable with supercomputers and place it within the reach of any operator with just a
moderately well-powered laptop [26]. So-called “tracking systems” permit the patient’s anatomy to be
“matched” to the radiographic database. These include tracking systems that use implantable osseous
registration marks, simple shape co-registration (e.g., dental registration), optical tracking, and infrared
tracking [27]. A whole host of factors impact not just the ease of co-registration in the operating room but
also directly impact the accuracy of that registration during colonoscopy to be able to sample and biopsy.
While with indwelling osseous markers, co-registration accuracy can approach a submillimeter limit, in
general, the level of accurate localization of five millimeters [28].

ARIO guidance systems have been applied in a host of settings. For example, AI overlays have helped
colorectal surgeons locate suspicious lesions on colonoscopy and helped reduce the number of missed
lesions [29]. Similarly, AI imaging strategies help identify suspicious, infiltrative lesions transmurally [30].
AI-driven imaging overlays helped improve the percentages of gross total resections [31]. In neurosurgery,
AR-related guidance systems allow surgeons to achieve more complete resection of intraparenchymal
neoplasms [32]. In orthopedics, ARIO guidance has helped reduce intraoperative time and improve
outcomes [33]. Finally, in robotic surgery, ARIO has helped reduce the number of closed or “keyhole”
approaches that have had to be converted to open procedures, reduced collateral muscle and skeletal
injuries, reduced the need for ventilatory support, and unintended collateral surgical injury [34]. In a similar
but unrelated study, 50 patients with gliomas in the insular region of the brain were divided into a control
group, which underwent standard resection, and an experimental group, which used a form of AI-MRI
intraoperative guidance. Again, the median extent of resection of the tumor mass increased significantly
from 79% (range = 58% to 98%) when MRI guidance was used. The p-value for the experimental group versus
the control group was less than 0.001. In addition, the Karnofsky performance status was significantly higher
in the experimental group than in the control group at three months after surgery, and the median
progression-free survival of the AI-MRI-assisted group was 18 months (range = 9 to 42 months) versus the
control group at 15 months (range = 3-32 months). The p-value was less than 0.01. Finally, the median
overall survival of the AI-MRI-assisted group was 28 months (range = 14 to 49 months) compared to the
control group which was 18 months (range = 77 to 38 months), with a p-value <0.035 [35].

AI Guidance in Vertebroplasty

Vertebroplasty, a minimally invasive spinal surgery, can be a challenging procedure due to the distortion of
the anatomy caused by fractures or tumor infiltration. Surgeons have traditionally relied on two-dimensional
(2D) fluoroscopic imaging for intraoperative guidance, but this technique has its limitations, particularly in
terms of patient radiation exposure. However, a recent study found that augmented reality (AR) combined
with AI could provide a novel and effective navigational technique. This technique superimposes virtual 3D
anatomic data onto real-time visual images, resulting in a fused AR image that improves accuracy and safety
during the procedure. The authors of the study found that the AR-AI-guided percutaneous vertebroplasty
technique was not only technically feasible but also resulted in significantly lower patient radiation
exposure compared to the standard fluoroscopically-guided group. The reduced dose-area product of 182.6 ±
106.7 milli-gray per centimeter squared and 5.2 ± 2.6 seconds of fluoroscopy time versus 367.8 ± 184.7 milli-
gray per centimeter squared and 10.4 ± 4.1 seconds for the control group, respectively, demonstrates the
effectiveness of this technique. This study’s findings suggest that AR-AI-guided percutaneous
vertebroplasty is a promising technique that can improve the accuracy and safety of the procedure while
reducing patient radiation exposure compared to the conventional fluoroscopic guidance technique [36].

AI and Surgical Technical Assessment

AI has been increasingly applied to assess surgical techniques. To determine the proficiency of surgical
trainees quantitatively and to ascertain their progress in a rigorous, automated fashion free from the risk of
supervisory bias and interrater variability offers postgraduate training programs a powerful new tool for
assessment. Intraoperative assessment is, as one surgeon put it, “blunt.” Inconsistent observation, data
gleaned from a select family of index cases, and postoperative statistics such as length of hospital stay,
morbidity, and mortality are, at best, crude and indirect indices of a trainee’s acquisition of surgical
experience. Many surgical educators have developed a host of standardized scales or inventories to quantify
the technical expertise of surgical trainees. They have included validated measures such as Objective
Structures Assessment of Technical Skills (OSATs), developed at the University of Toronto in the 1990s as a
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two-part assessment of surgical trainees [37]. It provides a well-developed, standardized checklist of
essential steps and milestones in common procedures. This checklist provides a global rating scale of
generalized surgical skills. The OSATs have been validated both for intraoperative procedures [38] and
bench-side training procedures [39].

However, the OSATs are not a panacea. The standardized assessment has been criticized for evaluator bias
unless precautions are taken to ensure that the surgeons doing the evaluations do not personally know the
trainees. In addition, issues have been raised about excessive variance related to the experience and
seniority of the surgical trainee, an inability to assess surgical “judgment” in the face of a surgical
emergency or intraoperative deterioration, a lack of assessment of interprofessional behavior and teamwork
skills, and, finally, a significant financial investment in equipment, disposable goods, and faculty time [40].

Similarly, surgical educators in the OB-GYN residency at the University of Washington created a seven-
station evaluation of all residents in their training program. The research used various procedures
performed on anesthetized pigs, including four standard laparoscopic procedures and three open surgical
procedures. Each resident was evaluated using three separate scoring systems at each surgical station. The
scoring systems included a procedure-specific checklist, global technical skill reading scales, and simple
pass/fail evaluation for each task. The three systems were compared for construct validity. The international
rating system and task-specific checklists exhibited high reliability in stratifying residents by experience and
expertise. Combined systems (i.e., checklist and global) also seemed capable of identifying trainees requiring
additional training and mentoring to raise their skill levels [41]. The researchers and surgeons involved in
the study took much time, care, and expense to provide a comprehensive surgical evaluation. When carrying
out the study, they reported that only 17% of the OB-GYN programs in the country deployed objective
assessments in evaluating their residents. In contrast, a full one-fourth of all postgraduate training
programs had no objective evaluation at all [42].

A staggeringly wide array of tests, assessments, scales, and inventories have been evaluated in the hopes of
accurately predicting which individuals possess the correct combination of psychomotor skills to become
good surgeons. These evaluations included outright neuropsychological testing, the Minnesota paper form
test (a test aimed at predicting manual dexterity), the Purdue pegboard test, as well as tests of visual-spatial
assessment (e.g., hidden figures test). The University of Toronto has been a leading center for surgical
education research. In a review paper [43] evaluating various measures of technical surgical proficiency, the
author pointed out that three major questions needed to be addressed in assessing the over-arching question
of surgical training. The first was to determine if there was a problem (or, at least, an “inefficiency”) in
teaching adequate technical skills. The second question was to assess if the current surgical teaching
methods were turning out excellent surgeons. Finally, the third question was whether the surgical faculty
perceived their responsibility to transmit technical expertise as part of their oversight.

There is no question that teaching surgical proficiency has become more complex. One reason is that there
are increasing restrictions on how long residents may remain on duty, resulting in fewer hours in the
hospital and the operating room. That also means less time in residency training available for practice and
contact with patients and faculty. It is also recognized that the medicolegal environment has undergone a
sea change in the last several decades as both government and educational authorities have enforced a much
closer supervisory oversight in the operating room. Regulations (e.g., the government-administered
Medicare) that urged surgical faculty to make their physical appearance in the operating room more evident
and exert more responsibility for the critical portions of surgical procedures than in the past also translated
into trainees needing more direct surgical responsibility in the operating room. This mandate for clinical
accountability meant less surgical independence and less opportunity for trainees to exert their surgical
judgment without consultation. In addition, as greater efficiencies were imposed on hospital-based
operations, patients moved through the hospital system more quickly than 50 years ago. In so doing, the
residents have far fewer opportunities to observe patients longitudinally, in serial fashion, as they proceed
from the clinic and preoperative assessment through surgery and then on to the postoperative period and
recovery. These factors negatively affect the scope of resident education and even patient outcomes [44].

In the final analysis, the thread of surgical continuity is much more challenging to preserve in patients now
than in years past. A half-century ago, Lippert et al. astutely pointed out that the notion of a surgical trainee
merely needing to acquire a specific set of psychomotor skills was an oversimplification [45]. Their argument
illuminates the fact that the acquisition of surgical techniques is a multifaceted process, advancing not only
with muscle memory and practice but also with a certain amount of intellectual growth and maturational
insight.

Surgical researchers at Columbia University used the Global Operative Assessment of Laparoscopic Skills
(GOALS) and it has been shown to have construct validity in the context of evaluating the performance of
surgical residents as they performed a laparoscopic removal of a gallbladder (i.e., a cholecystectomy).
GOALS was developed by Melina Vassiliou and colleagues at Columbia University as an outgrowth of the
earlier work they had done on upper esophagogastroduodenoscopy (EGD) and colonoscopy. The GOALS
proved an easy tool to use during simulated bench-style dissection but required endoscopists who were both
well-versed in their specialty and well-trained in the uniform application of rating criteria if interrater
variability was not to overwhelm the value of the test [46,47].

2024 Hamilton et al. Cureus 16(7): e63699. DOI 10.7759/cureus.63699 9 of 18

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


As ML began to be applied to surgical performance assessment, it brought with it a promising prospect, the
hope that quantifiable objective evaluation could be achieved while still preserving construct validity. ML
also held out the possibility that the assessment could be carried out without bias, the results would be
available almost immediately, and the testing could be administered without any need for a human
instructor or proctor to be present. Several different styles of ML have been applied to surgical assessment
with the most important ones being hidden Markov models (HMMs), support vector machines (SVMs), and
artificial neural networks (ANNs) [48].

HMMs are useful for modeling sequential data, such as the movements and actions performed during
surgery. They can capture the underlying states (e.g., surgical steps) and transitions between these states
based on the observed data (e.g., tool movements, video frames). HHMs are useful for modeling complex,
non-linear relationships in sequential data and providing quantifiable insights into discrete steps of a
surgical procedure [49]. SVMs are useful for classifying surgical skill levels based on features extracted from
surgical data (e.g., tool movements and video frames). They can model non-linear decision boundaries and
are effective with high-dimensional data, meaning data spread out across many columns and dimensions
[50]. ANNs are a class of ML models inspired by the brain’s neural networks. ANNs are composed of
interconnected nodes that can learn to perform tasks by considering examples without explicit
programming. ANNs can achieve high accuracy with large training databases [51]. In brief, for a given
surgical procedure, HMMs would excel at developing the sequential steps of the procedure, while SVMs
would be well suited to determining the level of proficiency exhibited by various candidates. SVMs excel at
providing algorithms for evaluating surgical procedures, while ANNs (especially, convolutional neural
networks) can learn from the extraction of raw surgical data (e.g., video) and then accurately map that data
back to the discrete procedural steps for classification.

One of the great advantages of employing such ML is that one can feed in a series of videotapes and allow
the agent sufficient time and enough iterations of the procedures on the video to begin to identify critical
milestones of the procedure. It can produce a checklist and evaluate how well the trainee can carry out the
procedure without incurring the problems of biased observers [52]. ML can also combine its checklist with
other databases. For example, they are carrying out a robotic surgical procedure (like with the Da Vinci
system; Intuitive Surgical, Sunnyvale, CA) that allows ML to feed in additional kinetic data streams from the
robot’s articulated arms, or derived from sensor systems embedded in the instrumentation, or even worn on
the surgeon’s extremities to accelerate the development of better-pooled data for technical assessment [53].
In addition, there is a need for a finer, more granular range of skills assessment so that proficiency can be
broken down into a more graduated performance than, say, a simple binary classification, such as novice or
expert [54].

The Holy Grail of surgical proficiency is to develop a thorough, sensitive, accurate method of evaluation
using AI that can assess a surgeon’s technical proficiency with sufficient speed and sensitivity capable of
stratifying the effects of experience, practice, and facility with a procedure. The feedback should be free of
the distortions introduced by including different evaluators, too many procedural differences, alternate
venues (e.g., bench surgery versus operating room), varied settings (human, animal, or simulated tissue),
different approaches (open procedure versus minimally invasive), and, finally, the actual measures being
collected. Standardization needs to be improved, and the possibility of comparing it with the experiential
framework of a single individual, between individuals in a given program, or between training programs is
fraught with methodological shortcomings [55].

One double-blinded randomized controlled study evaluated a group of novice trainees who were asked to
practice fundamental laparoscopic skills suturing skills (FLS) until they were deemed to have reached an
expert level of proficiency. In the study, novices were randomized into four groups concerning the timing
and quality of the feedback they received when they made errors. The group that received both “instant”
buzzer (audio) feedback and verbal “error” feedback from an examiner each time they made a mistake
performed significantly better on a laparoscopic fundoplication than any other group. This “instant
feedback” group' achieved proficiency in half the trials required by the delayed group and received higher
scores in the operating room where they performed the fundoplication procedure. This group was compared
to the other groups, including those that received only delayed feedback. Their enhanced performance
indicates that combining multiple modalities of feedback tightly coupled to the commission of errors can
improve psychomotor skill acquisition [56].

AI can be used to directly access video footage both as a way of evaluating procedural proficiency and as a
method for analyzing variations in surgical techniques and how they relate to surgical outcomes [57]. One
study compared the analysis performed by AI to that of expert surgical raters (using the Global Evaluation
Assessment of Robotic Skills, or GEARS), looking at nearly 100 videotaped segments of peritoneal closures.
There was an excellent correlation between what expert raters labeled technical efficiency and what the AI
algorithms had isolated as observed tool movement. Human analysts using GEARS assessed bimanual
dexterity, and these measures correlated closely with the AI-derived measures of bimanual (or
simultaneous) instrument movement. The study demonstrated an excellent correspondence between AI-
derived parameters and the validated measures used by trained, expert evaluators [53].

As much of the material in a hospital’s procedural databases is in the form of intraoperative video, all of it
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might, one day, be subject to routine AI-derived evaluation. It would yield exciting insights concerning
anatomic variants and routine “squeeze points” in the procedure where direct line-of-sight visualization,
exposure, or specific maneuvers offer procedural challenges or insights into best practices [58]. This material
could be made available for AI analysis in a timely fashion if there were technical errors or concerns about
procedural proficiency for granting specific credentialing. That said, there are deep-seated concerns in the
surgical community about the potential for abuses of unauthorized access and violations of privacy.
Furthermore, there is growing recognition that perfunctory, routine review of all videotape footage
produced in the operating room suites could lead to mandated archiving of all surgical footage. It is feared
that it might create new opportunities for medicolegal challenges [59].

AI for Ultrasound Guidance for Delivery of Regional Anesthesia

Often, regional anesthetic is delivered under ultrasound guidance for a period; however, interpretation of
the anatomy can be difficult not only because the anatomic structures themselves are distorted in an arcuate
fashion (because of the head of the ultrasound device) but also because the anesthesiologist must also
manipulate a needle in the field at the same time as obtaining the ultrasound. In one study, the authors used
AI to help identify critical anatomic features to facilitate the delivery of ultrasound-guided regional
anesthetic. In this case, the authors also used a heads-up display, which assisted the user in visualizing the
anatomy while still having their hands free to operate the ultrasound head and the needle without having to
look over at a screen and look away from the field. B-mode ultrasound images (video) were labeled, and the
frames were then labeled and used to train ML algorithms to provide associations between the labeling
anatomy and the underlying structures. The anesthesiologists found the AI-enhanced ultrasound anatomy
helpful for creating landmarks for the anesthetic delivery [60].

AI has been shown to generate beneficial virtual models of the patient’s anatomy for preoperative imaging
and patient-specific data. Various orthopedic conditions (congenital, trauma, acquired, inflammatory) can
be categorized and described using AI systems. ML can then recognize certain features and patterns in
medical imaging, enabling orthopedic surgeons to decide on the most useful and suitable approaches. In
orthopedic surgery, AI imaging combines several modalities, including traditional X-rays, CT scans, and MRI
scans. During surgery, AI has proven helpful for navigation and guidance. Specifically, AI has been very
useful in guiding the sizing and accurate placement of bony implants for joint replacement and guaranteeing
ideal alignment. The degree of accuracy AI provides surpasses that of unassisted human error. In addition,
AI has also been found to help evaluate postoperative risks of infection and guide rehabilitation and
postoperative care by using wearable technologies and machine learning to help deliver personalized
therapy and remote monitoring of patients’ feelings and progression [61].

AI Guidance in Orthopedic Surgery

AI algorithms have been successfully applied to the detection and localization of tumors in the proximal
femur. In a study, over five hundred radiographs of the femoral head were used to train a convolutional
neural network (CNN) model for this task. The dataset included 94 radiographs with malignant neoplasms,
120 with benign neoplasms, and the remainder were normal. The resulting model achieved an impressive
area under the receiver operating characteristic curve (AUROC) of 0.953 (95% CI = 0.926-0.980).
Furthermore, the diagnostic accuracy of the CNN (0.853) was significantly higher than that of four subject
matter experts who were asked to evaluate the same films (0.794) (p = 0.001). The mean sensitivity,
specificity, precision, and F1 score of the CNN model were 0.822, 0.912, 0.829, and 0.822, respectively,
whereas the mean values for the four doctors were 0.751, 0.889, 0.762, and 0.797, respectively [62]. These
results demonstrate the utility of AI as an adjunct tool for evaluating radiographs of the femoral head.

A similar approach has been applied to the evaluation of soft tissue knee injuries. Researchers developed a
CNN algorithm designed to identify tibial plateau fractures with adjacent meniscal defects on MRI scans.
When compared to arthroscopic findings, the algorithm achieved a sensitivity of 69.9%, a specificity of
93.2%, and an accuracy of 95.3%. This study documented the correspondence between preoperative AI-based
diagnoses and eventual intraoperative findings [63].

A recent meta-review investigated the use of AI in 12 studies analyzing over 300,000 postoperative
radiographs following total hip arthroplasty (THA) and total knee arthroplasty. The combined AI-based
implant identification achieved an AUC ranging from 0.992 to 1.0. The AI models were also able to predict
the risk of dislocation post-arthroplasty, with an AUC of 76.67 over 8,500 training radiographs. Additionally,
the model was asked to identify the loosening of THA implants with 88.3% accuracy using 420 training
radiographs. The review concluded that there is great promise in using AI for postoperative evaluation,
especially with regards to THA but noted slight methodological differences between the studies and called
for a more robust, universal algorithm to be applied across multiple institutions in the future [64].

Multimodal Molecular Imaging for Robotic Surgery

In a fascinating and challenging application of AI for intraoperative guidance, a European consortium
developed techniques whereby radionuclides could be delivered to a tumor bed (in this case, esophageal
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cancer). This so-called “molecular imaging” essentially used low-level radiation in the tumor target to assist
a da Vinci robot with intraoperative localization. In addition, molecular imaging was combined with CT,
MRI, and intraoperative ultrasound to yield a potent combination of radio localization and tumor
projection. This multimodal imaging yielded a potent and innovative anatomic overlay to guide surgeons in
their tumor resection using a robotic periscopic technique (that allows a true stereoscopic 3D image of the
operative field). This combined intraoperative imaging using a molecular approach with a radioactive tracer,
magnetic imaging, and intraoperative ultrasound demonstrates how AI can be used to coordinate multiple
imaging modalities [65]. This preliminary study and proof of concept suggest that integrating molecular
imaging might bring precision surgery to a new level that combines nuclear medicine with computer-
assisted diagnostic planning and robotic navigation and detection.

Intraoperative Decision Support

There are innumerable ways in which AI may be applied “extra-operatively,” that is, outside the context of
the actual surgical therapy delivered to the patient on the operating table. Dr. Jennifer Eckhoff, an AI and
Innovation Fellow at the Massachusetts General Hospital, has summed up what she believes will be the
“killer app” of ML in surgery thus: “Simultaneously processing vast amounts of multi-modal data,
particularly imaging data, and incorporating diverse surgical expertise will be the number one benefit that
AI brings to medicine” [66]. In particular, surgeons will be able to cull out not just the perils in general, the
risk calculated through the numeric spread of the herd, but instead drill down on the unique, personal
factors that define risk and benefit for their patient. Through the hitherto unimaginable calculations of the
millions of cases, AI can help us arrive at the mathematical delineation of a single individual, the
exceptional circumstances that may give them an edge at responding better to surgery, or the personal
weaknesses that might inevitably bring disaster. Surgery has always been a game of numbers, but we have
never seen numbers with such breathtaking clarity. There are AI models that can tell the surgeon how likely
it is that the patient may succumb to sepsis [67], the potential that this patient will wean quickly off on a
ventilator in the ICU [68], the odds of survival [54], and the likelihood the patient will not live [69].

However, AI alters everything it focuses on. It is not just in assessing the patient for whom changes will be
wrought. AI will help evaluate who might make the better transplant candidate [70], how best to assign
operating room block time to derive higher productivity from the operating rooms [71], better anticipate bed
availability [72], and schedule staff [73] and surgical inventory [74] to extract additional efficiency and
quicker room turnover [75]. AI will also be able to handpick the best surgeons for each kind of procedure, the
ones with the greatest experience, the shrewdest judgment, and the best outcomes [76]. 

We will all be facing a brave new world for sure.

Future: going into the unknown, doing the inconceivable
“This, therefore, is a faded dream of the time when I went down into the dust and noise of the Eastern
market-place, and with my brain and muscles, with sweat and constant thinking, made others see my visions
coming true. Those who dream by night in the dusty recesses of their minds wake in the day to find that all
was vanity; but the dreamers of the day are dangerous men, for they may act their dream with open eyes, and
make it possible” [77].

Many have pointed to the decades straddling the middle of the twentieth century as the “golden age of
Medicine” [78]. The field of medicine had reached new heights of popularity in the eyes of the public, riding
atop a wave of dizzying accomplishments that included a host of new vaccines, a vast array of new antibiotic
therapies, the first heart-lung bypass, and the earliest inroads into organ transplantation. It reached its
apogee with the introduction of the Salk vaccine, which finally began to end polio. But many see the end of
the first half of the twenty-first century as holding the potential for becoming a second Golden Age because
of the arrival of AI on the scene because of its ability to propel the advent of mRNA vaccines (that were first
deployed in the COVID-19 pandemic), remote wearable health monitors, breakthroughs in preventive health
maintenance, and enhanced chemotherapy and immunotherapy for systemic cancer. Amid all these factors,
none is as much of a game-changer as the injection of AI into medical education and healthcare
management. It promises more comprehensive access to many segments of the population who have had
difficulty being embraced by the medical system. In an economy where healthcare costs soar and medical
care and insurance represent almost one-fifth of the American economy, AI promises to bring economies of
scale and enhanced efficiency that could amount to savings of up to 10%, roughly $200 billion per year [79].

Keeping up with all the areas within the disparate medical subspecialties where AI has made stunning
progress is challenging. The pace of AI’s ascendancy has been swift, especially in areas of medicine where
imaging is the central focus of much of what the healthcare professional provides; this includes pathology,
radiology, dermatology, and ophthalmology. Some have estimated that there is a 50% chance or better that
AI will outperform physicians (and surgeons) by 2050 [80]. In many cases, this improvement will represent
nothing more than refinements of what we have seen trending in the last few years from the introduction of
AI within healthcare.
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Miniaturization of Surgical Instrumentation

What changes AI will bring to the field of surgery in the not-too-distant future almost makes the rest of the
alterations in healthcare appear muted and pale by comparison. Experts expect significant changes in three
areas: the miniaturization of surgical instrumentation and micro-robotics. Both laparoscopic and robotic
technologies have made enormous inroads in miniaturization because they represent minimally invasive
technologies. Both kinds of technologies will gain significant advantages as surgical instrumentation shrinks
in size. The trend in miniaturization responds to (a) a drive to reduce the instrument’s volume balanced
against (b) a sizeable dexterous workspace [81]. Much of the minimally invasive instrumentation requires a
tether or linkage to operate the instrument. To allow for further miniaturization, engineers must design
more sophisticated tetherless instruments. This freedom from a tether will enable instruments to be
introduced into the body through a conduit. This route would allow the instrument to travel into the organ
or be delivered nearby. The control over such instruments would likely be electromagnetic so that they can
operate at a distance. The general idea would be that the patient would “swallow the surgical
instrumentation,” or, in the case of a cardiovascular instrument, it would be delivered by injection [82].
Small microgrippers (1.5 mm diameter) have been built that can be injected into a bovine bladder, travel to a
site in the bladder, obtain a tissue biopsy there, and then return with a suitable amount of specimen in its
jaw [83]. Deploying swarms of such miniaturized surgical instrumentation would quickly overwhelm a
human surgeon’s ability to track dozens of such instruments so that task would have to be managed with the
help of AI. Similarly, miniaturized instrumentation is also foreseen when creating miniaturized robotic
platforms for natural orifice transluminal endoscopy [84].

Globalization of Surgical Education

The COVID-19 pandemic pressured academic medical departments to develop the infrastructure and assets
to allow students to study and attend classes remotely. There is a need for more qualified healthcare
practitioners worldwide. Even medically advanced countries have increasingly begun looking to the global
marketplace to recruit staff to meet their needs [85]. New technologies such as AR virtual reality and
simulation platforms have made collaborative international training more accessible. Furthermore, the
interest in access to global surgical education is mutual. Not only are the leading economies in the world
reaching out to low and middle-income countries (LMICs) but there is also interest in these host countries
to develop a more accessible global surgical education. The shortage of surgeons in the United States
continues to increase, and the current expectation is that 25% of the surgical workforce in the United States
will be opposed to being composed of international medical graduates [86].

Robotic Hybrid and Autonomous Robots

Numerous avenues of robotic research with AI are currently being pursued. Most of these efforts involve
robotic assistants or surgical robots (such as da Vinci) in the operating room. There are compelling reasons
to pursue the development of autonomous surgical robots. The first is that robots can perform surgical tasks
with more precision and accuracy than humans. Second, surgical robots may help reduce surgeon fatigue
and burnout and the concomitant errors that arise from these two conditions. Autonomous robotic systems
are uniquely suited to perform repetitive and delicate tasks without physical limitations and without the
potential for human error that surgeons face, especially during lengthy procedures. The third point is that
autonomous surgical robots would provide expanded access to surgical care. Autonomous robots will have
the potential to perform complex surgical procedures where human surgical expertise is unavailable, or
coverage is vastly inadequate. As there is a limitation on the number of trained human surgeons available,
the development of fully autonomous surgical robots will offer substantial relief. Robotic surgery is heavily
weighted toward minimally invasive surgery, and most robotic operations produce smaller incisions and
more rapid recovery times. This trend should continue as autonomous surgical robots are refined and
perfected. Finally, we can expect autonomous surgical robots to be constantly improving. Given ML models,
robots would continually be learning from their past surgical experiences, and there is the potential that
they could be pooling their shared surgical experiences through mutual linkages. Finally, there is recognition
that there are unique environments to which human surgeons are poorly suited. The three main areas where
this is most relevant include the battlefield, disaster areas, and extraterrestrial space travel.

It is recognized that autonomous surgical robots could provide critical surgical care in hard-to-reach areas
and perform procedures with great precision without human supervision or intervention. While telesurgery
is feasible in many scenarios, circumstances can arise where a human surgeon operating a “surgical drone
robot” from a distance will not work. The first issue is latency, which means there can be a significant delay
or lag between when the human operator issues a surgical command and when the transmitted command is
transmitted to the robot so it can carry out the order. Second, communications are notoriously susceptible
to disruption in isolated, environmentally hazardous conditions or on the battlefield. In short, someone
would have to face a situation in which telesurgery is being carried out at a distance, and then there is an
interruption of the connection between the human surgeon and the drone robot. A completely autonomous
robot would be far more desirable under such conditions. Finally, such a telesurgery system would also have
to be carefully protected because it would be susceptible to hacks, which would be extraordinarily disrupted.
Indeed, roving robotic medics would be a welcome addition to the battlefield. In addition, such medics could
be designed and constructed in such a way as to be able to carry injured soldiers to safety for other medical
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evacuation or a disposition to a forward battalion field station. While such telepresence systems are
becoming more accessible to design and produce, they still have not undergone sufficient rigorous testing to
be deployed to handle wounded personnel in the field.

However, there is one environment where there is now gradual recognition that autonomous surgical robots
will provide the only reasonable long-term solution: space travel. First, there needs to be a density of
individuals in space to mandate the placement of a full-time surgeon in residence. Second, the only
surgeons who could fill that role would be individuals who were also fully trained for the rigors of space
missions. A small habitat station on the moon would still permit some potential for telesurgery because any
signal latency between a surgical operator on Earth and a drone robot on the moon is small. The distance
between the Earth and the moon is only 385,000 km, which puts the latency at approximately 1.3 seconds.
However, by contrast, a mission to Mars provides different conditions. The distance between Earth and Mars
is between 78 million and 378,000,000 km, depending on their relative orbital positions. That would put the
latency between transmission on Earth and reception of the signals in the space station on Mars between 4.3
minutes and 24 minutes (when the planets would find themselves on opposite sides of the sun in their
respective orbits). This latency is far too long to permit any meaningful telepresence. For this reason,
autonomous robots are the most likely alternative solution.

At a minimum, it is recognized that autonomous surgical robots must perform a particular constellation of
surgical procedures during space travel. These would include treating traumatic injuries, which could
undoubtedly occur during space missions and could be sustained during extravehicular activities or
accidents. Trauma would presumably run the gamut from penetrating injuries to fractures and internal
bleeding. In addition, autonomous surgical robots would need to be able to perform emergency surgeries for
acute conditions such as appendicitis and cholecystitis, which can occur without prodrome and warning
period. In these situations, delayed treatment until return to Earth might not be possible and could
represent a life-threatening situation. There are at least, to date, two reports of suspected appendicitis in
Russian cosmonauts, one of which resulted in an emergency return to Earth. There can also be referred
symptoms of urolithiasis and or prostatitis, which mimic those of appendicitis [87]. Given the incidence and
frequency of appendicitis and cholelithiasis in age groups, they are likely to overlap substantially with those
of astronauts. It has been suggested that potential candidates for prolonged space travel undergo
prophylactic appendectomy and cholecystectomy [88]. In a similar vein, many would suggest that potential
astronaut candidates who are going to be assigned to long sustained missions in space undergo MRI cerebral
angiography to exclude aneurysmal pathology and diminish the likelihood of intracranial hemorrhagic
events in space. Autonomous surgical robots would need to provide wound care and control bleeding in a
microgravity environment. Hemostasis is particularly challenging in a zero-G environment where blood and
fluids can float away from the surgical site [89]. For this reason, specialized devices and techniques would
have to be developed to handle the blood loss in microgravity.

Space offers other unique challenges. For example, because of surface tension issues, fluids tend to pool and
form domes that can fragment on disruption by instruments. These fragments can float away and be
dispersed throughout the spacecraft, representing a substantial biohazard. Furthermore, the microgravity
environment encourages the floating of the bowl so that it abuts the abdominal wall, which would produce a
theoretical hazard for instrumenting the peritoneum. One solution that has been proposed is the creation of
a hermetically sealed enclosure over the surgical site, and designs would either use pressurized air or sterile
fluid as a differential between the anatomic site and cabin atmospheric pressure to prevent evisceration and
floating debris [90].

In addition, autonomous surgical robots would likely have to be able to carry out minimally invasive
procedures such as laparoscopic or robotic surgery in space. There would be an additional advantage here in
that it would keep the surgical field reasonably isolated from the environment of the spacecraft itself.
Techniques such as gas insufflation would be needed to maintain proper surgical conditions. When
autonomous robots carry out major surgical procedures, there is a need to administer anesthetics and
maintain patient stability during the procedure. A combination of local and intravenous anesthetic would be
preferred over general; however, it is recognized that general anesthetic might also need to be utilized.
Finally, autonomous surgical robots would have to be able to prevent contamination of the surgical field and
the spacecraft from microbes in a particulate manner. Therefore, specific sterile techniques and containment
systems for deep space would be critical.

Several factors continue to drive up the cost of healthcare delivery, including an aging population with
increasing medical needs, rising frequency of accessing and utilizing healthcare services, and the
development and proliferation of advanced new technologies. However, much of these expenditures can be
traced to outright waste, inefficient delivery of goods and services, and overtreatment [91,92]. The
application of AI in multiple medical models [93] suggests that the integration of AI in the realms of
diagnostic algorithms, treatment architectures, programs of risk reduction and prevention, and
improvements in scheduling and patient throughput could effectively reduce healthcare spending in the
United States alone by as much as 5-10%, representing savings of $200 billion to $360 billion in annual
expenditures [79]. Grave concerns about the risks of broadening AI applications include substantial job
losses. Estimates in the United Kingdom suggest up to 35% of jobs could be lost over the next 20 years [94].
Additionally, there are clinical data risks, including direct harm from AI errors [95]. Technical risks such as
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data biases, privacy, and security concerns are also significant [96]. Socio-ethical concerns arise from a lack
of transparency [97].

Conclusions
The world of medicine is constantly evolving, and the integration of AI into surgical therapy is now one of
the driving forces behind this transformative progress. As we strive toward a future where AI assumes an
increasingly pivotal role in healthcare, it becomes evident that those who are swift to adopt this
groundbreaking technology will be the trailblazers in their field. One of the most promising applications of
AI in surgery lies in its potential to enhance procedural safety. The precision and accuracy of AI algorithms
can empower surgeons to perform even the most complex operations with greater ease and precision,
thereby reducing the risk of complications and improving patient outcomes.

The benefits of AI extend far beyond the confines of the operating theater. By meticulously monitoring
patients during their postoperative recovery, AI systems can detect early warning signs of complications,
enabling healthcare providers to intervene promptly and mitigate the development of serious issues.
Admittedly, change is seldom an effortless endeavor, and many individuals may understandably harbor
reservations about embracing new technologies. However, the substantial potential advantages that AI can
bring to surgical therapy and patient care cannot be overstated. We must remain open-minded and receptive
to these innovative advancements. Furthermore, the creation of reliable autonomous robots is rapidly
becoming a priority in the healthcare sector, both for surgical deployment on the battlefield and in disaster-
stricken areas. These robotic marvels possess the capacity to undertake tasks that are too perilous or
challenging for human surgeons, potentially saving countless lives in the years to come. Moreover,
autonomous surgical robots will be vital in prolonged space travel and extraterrestrial colonization. In
conclusion, integrating AI into surgical therapy is an exhilarating and rapidly evolving field, brimming with
the potential to revolutionize patient care. The “dreamers of the day” will be the ones willing to embrace the
changes wrought by AI and forge a path through the new technological landscape to reach a brighter, safer
future for all.

Additional Information
Author Contributions
All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the
work.

Concept and design:  Allan Hamilton

Acquisition, analysis, or interpretation of data:  Allan Hamilton

Drafting of the manuscript:  Allan Hamilton

Critical review of the manuscript for important intellectual content:  Allan Hamilton

Disclosures
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might
have an interest in the submitted work. Other relationships: All authors have declared that there are no
other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements
The author would like to gratefully acknowledge the editorial assistance of Christina Partica and Allyson
Molzahn in the preparation of this manuscript.

References
1. DeBakey ME: A surgical perspective. Ann Surg. 1991, 213:499-531. 10.1097/00000658-199106000-00001
2. Bains P: Umwelten. Semiotica. 2001, 2001:137-67. 10.1515/semi.2001.020
3. Martin KD: Ecologies of corporeal space. Critical and Clinical Cartographies: Architecture, Robotics,

Medicine, Philosophy. Radman A (ed): Edinburgh University Press, Edinburg, Scotland; 2017. 187-204.
10.1515/9781474421126

4. Ma L, Fei B: Comprehensive review of surgical microscopes: technology development and medical
applications. J Biomed Opt. 2021, 26:010901. 10.1117/1.JBO.26.1.010901

5. Wilhelm D, Vogel T, Ostler D, et al.: Enhanced visualization: from intraoperative tissue differentiation to
augmented reality. Visc Med. 2018, 34:52-9. 10.1159/000485940

6. Because the night belongs to raiders: special ops in Nangarhar. (2011). Accessed: May 15, 2024:

2024 Hamilton et al. Cureus 16(7): e63699. DOI 10.7759/cureus.63699 15 of 18

javascript:void(0)
javascript:void(0)
https://dx.doi.org/10.1097/00000658-199106000-00001?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/00000658-199106000-00001?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1515/semi.2001.020?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1515/semi.2001.020?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1515/9781474421126?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1515/9781474421126?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1117/1.JBO.26.1.010901?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1117/1.JBO.26.1.010901?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1159/000485940?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1159/000485940?utm_medium=email&utm_source=transaction


https://www.afghanistan-analysts.org/en/reports/war-and-peace/because-the-night-belongs-to-raiders-
special-ops-in-na....

7. Nwoye E, Woo WL, Gao B, Anyanwu T: Artificial intelligence for emerging technology in surgery: systematic
review and validation. IEEE Rev Biomed Eng. 2023, 16:241-59. 10.1109/RBME.2022.3183852

8. Datta S, Loftus TJ, Ruppert MM, et al.: Added value of intraoperative data for predicting postoperative
complications: the MySurgeryRisk PostOp extension. J Surg Res. 2020, 254:350-63. 10.1016/j.jss.2020.05.007

9. W. Bruce Fye Center for the History of Medicine: aphorisms/quotes . (2024). Accessed: May 15, 2024:
https://libraryguides.mayo.edu/historicalunit/aphorisms.

10. Howell RS, Liu HH, Khan AA, et al.: Development of a method for clinical evaluation of artificial
intelligence-based digital wound assessment tools. JAMA Netw Open. 2021, 4:e217234.
10.1001/jamanetworkopen.2021.7234

11. Birkhoff DC, van Dalen AS, Schijven MP: A review on the current applications of artificial intelligence in the
operating room. Surg Innov. 2021, 28:611-9. 10.1177/1553350621996961

12. Reason J: Understanding adverse events: human factors . Qual Health Care. 1995, 4:80-9.
10.1136/qshc.4.2.80

13. Paterson-Brown S: Improving patient safety in the operating room - everyone’s responsibility . Clin Risk.
2010, 16:6-9. 10.1258/cr.2009.090006

14. Bodenstedt S, Wagner M, Mündermann L, et al.: Prediction of laparoscopic procedure duration using
unlabeled, multimodal sensor data. Int J Comput Assist Radiol Surg. 2019, 14:1089-95. 10.1007/s11548-019-
01966-6

15. Devi SP, Rao KS, Sangeetha SS: Prediction of surgery times and scheduling of operation theaters in
ophthalmology department. J Med Syst. 2012, 36:415-30. 10.1007/s10916-010-9486-z

16. Cho Y, Lee A, Park J, Ko B, Kim N: Enhancement of gesture recognition for contactless interface using a
personalized classifier in the operating room. Comput Methods Programs Biomed. 2018, 161:39-44.
10.1016/j.cmpb.2018.04.003

17. Jermyn M, Desroches J, Mercier J, et al.: Neural networks improve brain cancer detection with Raman
spectroscopy in the presence of operating room light artifacts. J Biomed Opt. 2016, 21:94002.
10.1117/1.JBO.21.9.094002

18. Hashimoto DA, Rosman G, Witkowski ER, et al.: Computer vision analysis of intraoperative video:
automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg. 2019, 270:414-21.
10.1097/SLA.0000000000003460

19. Weede O, Monnich H, Müller B, Wörn H: An intelligent and autonomous endoscopic guidance system for
minimally invasive surgery. IEEE International Conference on Robotics and Automation. 2011, 5762-8.
10.1109/ICRA.2011.5980216

20. Liu H, Baena FRY: Automatic markerless registration and tracking of the bone for computer-assisted
orthopaedic surgery. IEEE Access. 2020, 8:42010-20. 10.1109/ACCESS.2020.2977072

21. Li A, Javidan AP, Namazi B, Madani A, Forbes TL: Development of an artificial intelligence tool for
intraoperative guidance during endovascular abdominal aortic aneurysm repair. Ann Vasc Surg. 2024,
99:96-104. 10.1016/j.avsg.2023.08.027

22. Madani A, Namazi B, Altieri MS, et al.: Artificial intelligence for intraoperative guidance: using semantic
segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg. 2022, 276:363-9.
10.1097/SLA.0000000000004594

23. Ku EK, Min SK, Shin DH, Chung YS, Kim YJ, Kim KG, Joon-Hyop L: Artificial intelligence for intraoperative
guidance: Using an object detection model in conjunction with data augmentation to detect parathyroid
glands during thyroidectomy [preprint]. Lancet. 2021, 10.2139/ssrn.3916131

24. Wei J, Zhang C, Ma L, Zhang C: Artificial intelligence algorithm-based intraoperative magnetic resonance
navigation for glioma resection. Contrast Media Mol Imaging. 2022, 2022:4147970. 10.1155/2022/4147970

25. Une N, Kobayashi S, Kitaguchi D, et al.: Intraoperative artificial intelligence system identifying liver vessels
in laparoscopic liver resection: a retrospective experimental study. Surg Endosc. 2024, 38:1088-95.
10.1007/s00464-023-10637-2

26. Costa S, Fiori S: Image compression using principal component neural networks . Image Vis Comput. 2001,
19:649-68. 10.1016/S0262-8856(01)00042-7

27. Edwards PE, Chand M, Birlo M, Stoyanoy D: The challenge of augmented reality in surgery . Digital Surgery.
Atallah S (ed): Springer, Cham; 2021. 121-35. 10.1007/978-3-030-49100-0_10

28. Besharati Tabrizi L, Mahvash M: Augmented reality-guided neurosurgery: accuracy and intraoperative
application of an image projection technique. J Neurosurg. 2015, 123:206-11. 10.3171/2014.9.JNS141001

29. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK: Artificial intelligence in colorectal
cancer screening, diagnosis and treatment. A new era. Curr Oncol. 2021, 28:1581-607.
10.3390/curroncol28030149

30. Tokat M, van Tilburg L, Koch AD, Spaander MC: Artificial intelligence in upper gastrointestinal endoscopy .
Dig Dis. 2022, 40:395-408. 10.1159/000518232

31. Bari H, Wadhwani S, Dasari BV: Role of artificial intelligence in hepatobiliary and pancreatic surgery . World
J Gastrointest Surg. 2021, 13:7-18. 10.4240/wjgs.v13.i1.7

32. Awuah WA, Adebusoye FT, Wellington J, et al.: Recent outcomes and challenges of artificial intelligence,
machine learning, and deep learning in neurosurgery. World Neurosurg X. 2024, 23:100301.
10.1016/j.wnsx.2024.100301

33. Shaikh HJ, Hasan SS, Woo JJ, Lavoie-Gagne O, Long WJ, Ramkumar PN: Exposure to extended reality and
artificial intelligence-based manifestations: a primer on the future of hip and knee arthroplasty. J
Arthroplasty. 2023, 38:2096-104. 10.1016/j.arth.2023.05.015

34. Moglia A, Georgiou K, Georgiou E, Satava RM, Cuschieri A: A systematic review on artificial intelligence in
robot-assisted surgery. Int J Surg. 2021, 95:106151. 10.1016/j.ijsu.2021.106151

35. Chen LF, Yang Y, Ma XD, Yu XG, Gui QP, Xu BN, Zhou DB: Optimizing the extent of resection and
minimizing the morbidity in insular high-grade glioma surgery by high-field intraoperative MRI guidance.
Turk Neurosurg. 2017, 27:696-706. 10.5137/1019-5149.JTN.18346-16.1

2024 Hamilton et al. Cureus 16(7): e63699. DOI 10.7759/cureus.63699 16 of 18

https://dx.doi.org/10.1109/RBME.2022.3183852?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/RBME.2022.3183852?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jss.2020.05.007?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jss.2020.05.007?utm_medium=email&utm_source=transaction
https://libraryguides.mayo.edu/historicalunit/aphorisms?utm_medium=email&utm_source=transaction
https://libraryguides.mayo.edu/historicalunit/aphorisms?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1001/jamanetworkopen.2021.7234?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1001/jamanetworkopen.2021.7234?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1177/1553350621996961?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1177/1553350621996961?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1136/qshc.4.2.80?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1136/qshc.4.2.80?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1258/cr.2009.090006?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1258/cr.2009.090006?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s11548-019-01966-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s11548-019-01966-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s10916-010-9486-z?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s10916-010-9486-z?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.cmpb.2018.04.003?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.cmpb.2018.04.003?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1117/1.JBO.21.9.094002?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1117/1.JBO.21.9.094002?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0000000000003460?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0000000000003460?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/ICRA.2011.5980216?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/ICRA.2011.5980216?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/ACCESS.2020.2977072?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/ACCESS.2020.2977072?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.avsg.2023.08.027?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.avsg.2023.08.027?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0000000000004594?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0000000000004594?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.2139/ssrn.3916131?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.2139/ssrn.3916131?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1155/2022/4147970?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1155/2022/4147970?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00464-023-10637-2?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00464-023-10637-2?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/S0262-8856(01)00042-7?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/S0262-8856(01)00042-7?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/978-3-030-49100-0_10?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/978-3-030-49100-0_10?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3171/2014.9.JNS141001?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3171/2014.9.JNS141001?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/curroncol28030149?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/curroncol28030149?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1159/000518232?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1159/000518232?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.4240/wjgs.v13.i1.7?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.4240/wjgs.v13.i1.7?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.wnsx.2024.100301?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.wnsx.2024.100301?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.arth.2023.05.015?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.arth.2023.05.015?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.ijsu.2021.106151?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.ijsu.2021.106151?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.5137/1019-5149.JTN.18346-16.1?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.5137/1019-5149.JTN.18346-16.1?utm_medium=email&utm_source=transaction


36. Auloge P, Cazzato RL, Ramamurthy N, et al.: Augmented reality and artificial intelligence-based navigation
during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur Spine J. 2020, 29:1580-9.
10.1007/s00586-019-06054-6

37. Martin JA, Regehr G, Reznick R, MacRae H, Murnaghan J, Hutchison C, Brown M: Objective structured
assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997, 84:273-8. 10.1046/j.1365-
2168.1997.02502.x

38. Niitsu H, Hirabayashi N, Yoshimitsu M, et al.: Using the Objective Structured Assessment of Technical Skills
(OSATS) global rating scale to evaluate the skills of surgical trainees in the operating room. Surg Today.
2013, 43:271-5. 10.1007/s00595-012-0313-7

39. Reznick R, Regehr G, MacRae H, Martin J, McCulloch W: Testing technical skill via an innovative "bench
station" examination. Am J Surg. 1997, 173:226-30. 10.1016/s0002-9610(97)89597-9

40. Darzi A, Datta V, Mackay S: The challenge of objective assessment of surgical skill . Am J Surg. 2001,
181:484-6. 10.1016/s0002-9610(01)00624-9

41. Goff BA, Lentz GM, Lee D, Houmard B, Mandel LS: Development of an objective structured assessment of
technical skills for obstetric and gynecology residents. Obstet Gynecol. 2000, 96:146-50. 10.1016/s0029-
7844(00)00829-2

42. Goff BA, Lentz GM, Lee DM, Mandel LS: Formal teaching of surgical skills in an obstetric-gynecologic
residency. Obstet Gynecol. 1999, 93:785-90. 10.1016/s0029-7844(98)00506-7

43. Reznick RK: Teaching and testing technical skills. Am J Surg. 1993, 165:358-61. 10.1016/s0002-
9610(05)80843-8

44. Ahmed N, Devitt KS, Keshet I, et al.: A systematic review of the effects of resident duty hour restrictions in
surgery: impact on resident wellness, training, and patient outcomes. Ann Surg. 2014, 259:1041-53.
10.1097/SLA.0000000000000595

45. Lippert FG 3rd, Spolek GA, Kirkpatrick GS, Briggs KA, Clawson DK: A psychomotor skills course for
orthopaedic residents. J Med Educ. 1975, 50:982-3. 10.1097/00001888-197510000-00011

46. Hogle NJ, Liu Y, Ogden RT, Fowler DL: Evaluation of surgical fellows' laparoscopic performance using
Global Operative Assessment of Laparoscopic Skills (GOALS). Surg Endosc. 2014, 28:1284-90.
10.1007/s00464-013-3324-6

47. Vassiliou MC, Kaneva PA, Poulose BK, et al.: Global Assessment of Gastrointestinal Endoscopic Skills
(GAGES): a valid measurement tool for technical skills in flexible endoscopy. Surg Endosc. 2010, 24:1834-
41. 10.1007/s00464-010-0882-8

48. Lam K, Chen J, Wang Z, et al.: Machine learning for technical skill assessment in surgery: a systematic
review. NPJ Digit Med. 2022, 5:24. 10.1038/s41746-022-00566-0

49. Rabiner L, Juang B: An introduction to hidden Markov models . IEEE ASSP Magazine. 1986, 3:4-16.
10.1109/MASSP.1986.1165342

50. Noble WS: What is a support vector machine? . Nat Biotechnol. 2006, 24:1565-7. 10.1038/nbt1206-1565
51. Yanik E, Intes X, Kruger U, et al.: Deep neural networks for the assessment of surgical skills: a systematic

review. J Def Model Simul. 2022, 19:159-71. 10.1177/15485129211034586
52. Deo RC: Machine learning in medicine . Circulation. 2015, 132:1920-30.

10.1161/CIRCULATIONAHA.115.001593
53. Yang JH, Goodman ED, Dawes AJ, et al.: Using AI and computer vision to analyze technical proficiency in

robotic surgery. Surg Endosc. 2023, 37:3010-7. 10.1007/s00464-022-09781-y
54. Binkley J, Bukoski AD, Doty J, Crane M, Barnes SL, Quick JA: Surgical simulation: markers of proficiency. J

Surg Educ. 2019, 76:234-41. 10.1016/j.jsurg.2018.05.018
55. van Hove PD, Tuijthof GJ, Verdaasdonk EG, Stassen LP, Dankelman J: Objective assessment of technical

surgical skills. Br J Surg. 2010, 97:972-87. 10.1002/bjs.7115
56. Stefanidis D, Scerbo MW, Montero PN, Acker CE, Smith WD: Simulator training to automaticity leads to

improved skill transfer compared with traditional proficiency-based training: a randomized controlled trial.
Ann Surg. 2012, 255:30-7. 10.1097/SLA.0b013e318220ef31

57. Amin A, Cardoso SA, Suyambu J, et al.: Future of artificial intelligence in surgery: a narrative review .
Cureus. 2024, 16:e51631. 10.7759/cureus.51631

58. Pakkasjärvi N, Luthra T, Anand S: Artificial intelligence in surgical learning. Surgeries. 2023, 4:86-97.
10.3390/surgeries4010010

59. Hashimoto DA, Rosman G, Rus D, Meireles OR: Artificial intelligence in surgery: promises and perils . Ann
Surg. 2018, 268:70-6. 10.1097/SLA.0000000000002693

60. Bowness J, El-Boghdadly K, Burckett-St Laurent D: Artificial intelligence for image interpretation in
ultrasound-guided regional anaesthesia. Anaesthesia. 2021, 76:602-7. 10.1111/anae.15212

61. Tariq A, Gill AY, Hussain HK: Evaluating the potential of artificial intelligence in orthopedic surgery for
value-based healthcare. Int J Multidiscip Sci. 2023, 2:27-35. 10.47709/ijmdsa.v2i1.2394

62. Park CW, Oh SJ, Kim KS, et al.: Artificial intelligence-based classification of bone tumors in the proximal
femur on plain radiographs: system development and validation. PLoS One. 2022, 17:e0264140.
10.1371/journal.pone.0264140

63. Xie X, Li Z, Bai L, et al.: Deep learning-based MRI in diagnosis of fracture of tibial plateau combined with
meniscus injury. Sci Program. 2021, 2021:1-8. 10.1155/2021/9935910

64. Gurung B, Liu P, Harris PD, et al.: Artificial intelligence for image analysis in total hip and total knee
arthroplasty : a scoping review. Bone Joint J. 2022, 104-B:929-37. 10.1302/0301-620X.104B8.BJJ-2022-
0120.R2

65. Wendler T, van Leeuwen FW, Navab N, van Oosterom MN: How molecular imaging will enable robotic
precision surgery : the role of artificial intelligence, augmented reality, and navigation. Eur J Nucl Med Mol
Imaging. 2021, 48:4201-24. 10.1007/s00259-021-05445-6

66. AI is poised to “revolutionize” surgery. (2023). Accessed: May 2, 2024: https://www.facs.org/for-medical-
professionals/news-publications/news-and-articles/bulletin/2023/june-2023-volume-108....

67. Sood A, Abdollah F, Sammon JD, et al.: Postoperative sepsis prediction in patients undergoing major cancer
surgery. J Surg Res. 2017, 209:60-9. 10.1016/j.jss.2016.09.059

2024 Hamilton et al. Cureus 16(7): e63699. DOI 10.7759/cureus.63699 17 of 18

https://dx.doi.org/10.1007/s00586-019-06054-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00586-019-06054-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1046/j.1365-2168.1997.02502.x?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1046/j.1365-2168.1997.02502.x?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00595-012-0313-7?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00595-012-0313-7?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0002-9610(97)89597-9?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0002-9610(97)89597-9?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0002-9610(01)00624-9?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0002-9610(01)00624-9?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0029-7844(00)00829-2?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0029-7844(00)00829-2?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0029-7844(98)00506-7?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0029-7844(98)00506-7?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0002-9610(05)80843-8?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/s0002-9610(05)80843-8?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0000000000000595?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0000000000000595?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/00001888-197510000-00011?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/00001888-197510000-00011?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00464-013-3324-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00464-013-3324-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00464-010-0882-8?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00464-010-0882-8?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/s41746-022-00566-0?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/s41746-022-00566-0?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/MASSP.1986.1165342?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/MASSP.1986.1165342?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/nbt1206-1565?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/nbt1206-1565?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1177/15485129211034586?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1177/15485129211034586?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00464-022-09781-y?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00464-022-09781-y?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jsurg.2018.05.018?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jsurg.2018.05.018?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1002/bjs.7115?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1002/bjs.7115?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0b013e318220ef31?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0b013e318220ef31?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.7759/cureus.51631?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.7759/cureus.51631?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/surgeries4010010?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/surgeries4010010?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0000000000002693?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/SLA.0000000000002693?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1111/anae.15212?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1111/anae.15212?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.47709/ijmdsa.v2i1.2394?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.47709/ijmdsa.v2i1.2394?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1371/journal.pone.0264140?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1371/journal.pone.0264140?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1155/2021/9935910?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1155/2021/9935910?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1302/0301-620X.104B8.BJJ-2022-0120.R2?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1302/0301-620X.104B8.BJJ-2022-0120.R2?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00259-021-05445-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s00259-021-05445-6?utm_medium=email&utm_source=transaction
https://www.facs.org/for-medical-professionals/news-publications/news-and-articles/bulletin/2023/june-2023-volume-108-issue-6/ai-is-poised-to-revolutionize-surgery/?utm_medium=email&utm_source=transaction
https://www.facs.org/for-medical-professionals/news-publications/news-and-articles/bulletin/2023/june-2023-volume-108-issue-6/ai-is-poised-to-revolutionize-surgery/?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jss.2016.09.059?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jss.2016.09.059?utm_medium=email&utm_source=transaction


68. Stivi T, Padawer D, Dirini N, Nachshon A, Batzofin BM, Ledot S: Using artificial intelligence to predict
mechanical ventilation weaning success in patients with respiratory failure, including those with acute
respiratory distress syndrome. J Clin Med. 2024, 13:1505. 10.3390/jcm13051505

69. Griffin F: Artificial intelligence and liability in healthcare [preprint] . Health Matrix. 2021, 31:65-106.
70. Briceño J, Calleja R, Hervás C: Artificial intelligence and liver transplantation: looking for the best donor-

recipient pairing. Hepatobiliary Pancreat Dis Int. 2022, 21:347-53. 10.1016/j.hbpd.2022.03.001
71. Yesantharao Y, Lee E, Kraenzlin F: Surgical block time satisfaction: a multi-institutional experience across

twelve surgical disciplines. Perioper Care Oper Room Manag. 2020, 21:100128. 10.1016/j.pcorm.2020.100128
72. Lobo A, Barbosa A, Guimarães T, Lopes J, Peixoto H, Santos MF: Better medical efficiency by means of

hospital bed management optimization: a comparison of artificial intelligence techniques. Prog Artif Intell.
2023, 1411:260-73. 10.1007/978-3-031-49011-8_21

73. Stonko DP, Dennis BM, Betzold RD, Peetz AB, Gunter OL, Guillamondegui OD: Artificial intelligence can
predict daily trauma volume and average acuity. J Trauma Acute Care Surg. 2018, 85:393-7.
10.1097/TA.0000000000001947

74. Carter MW, Hawa T, Busby C: A simple and practical approach to improving the cost effectiveness of
surgical inventory management. Health Syst. 2022, 1-12. 10.1080/20476965.2024.2325991

75. Lee DJ, Ding J, Guzzo TJ: Improving operating room efficiency. Curr Urol Rep. 2019, 20:28. 10.1007/s11934-
019-0895-3

76. O'Logbon J: What can surgery learn from other high-performance disciplines?. Ann Med Surg (Lond). 2020,
55:334-7. 10.1016/j.amsu.2020.04.007

77. Lawrence TE: Seven Pillars of Wisdom. Wilson J (ed): Private Publication, London; 1926.
78. Brandt AM, Gardner M: The Golden Age of Medicine? Medicine in the Twentieth Century . Cooter R,

Pickstone J (ed): Taylor & Francis, London; 2020. 10.4324/9781003078456-2
79. Sahni N, Stein G, Zemmel R, Cutler DM: The potential impact of artificial intelligence on healthcare

spending. The Economics of Artificial Intelligence: Health Care Challenges. Agrawal A, Gans J, Goldfarb A,
Tucker C (ed): University of Chicago Press, Chicago; 2024. 49-86. 10.7208/Chicago/9780226833125.001.0001

80. Grace K, Salvatier J, Dafoe A, Zhang B, Evans O: When will AI exceed human performance? Evidence for AI
experts. J Artif Intell Res. 2018, 62:729-54. 10.1613/jair.1.11222

81. Zhi X, Bai W, Yeatman EM: Kinematic parameter optimization of a miniaturized surgical instrument based
on dexterous workspace determination. IEEE International Conference on Advanced Robotics and
Mechatronics. 2021, 112-8. 10.1109/ICARM52023.2021.9536104

82. Fernandes R, Gracias DH: Toward a miniaturized mechanical surgeon . Mater Today. 2009, 12:14-20.
10.1016/S1369-7021(09)70272-X

83. Leong TG, Randall CL, Benson BR, Bassik N, Stern GM, Gracias DH: Tetherless thermobiochemically
actuated microgrippers. Proc Natl Acad Sci U S A. 2009, 106:703-8. 10.1073/pnas.0807698106

84. Wang X, Meng MQH: Robotics for natural orifice transluminal endoscopic surgery: a review . J Robot. 2012,
1-9. 10.1155/2012/512616

85. Labonté R, Mohindra K, Schrecker T: The growing impact of globalization for health and public health
practice. Annu Rev Public Health. 2011, 32:263-83. 10.1146/annurev-publhealth-031210-101225

86. Sheldon GF, Ricketts TC, Charles A, King J, Fraher EP, Meyer A: The global health workforce shortage: role
of surgeons and other providers. Adv Surg. 2008, 42:63-85. 10.1016/j.yasu.2008.04.006

87. Campbell MR, Johnston SL 3rd, Marshburn T, Kane J, Lugg D: Nonoperative treatment of suspected
appendicitis in remote medical care environments: implications for future spaceflight medical care. J Am
Coll Surg. 2004, 198:822-30. 10.1016/j.jamcollsurg.2004.01.009

88. Ball CG, Kirkpatrick AW, Williams DR, et al.: Prophylactic surgery prior to extended-duration space flight: is
the benefit worth the risk?. Can J Surg. 2012, 55:125-31. 10.1503/cjs.024610

89. Hayden JA, Pantalos GM, Burgess JE, Burgess JE: A hermetically sealed, fluid-filled surgical enclosure for
microgravity. Aviat Space Environ Med. 2013, 84:1298-303. 10.3357/asem.3751.2013

90. Panesar SS, Ashkan K: Surgery in space. Br J Surg. 2018, 105:1234-43. 10.1002/bjs.10908
91. Pandemic preparedness and COVID-19: an exploratory analysis of infection and fatality rates, and

contextual factors associated with preparedness in 177 countries, from Jan 1, 2020, to Sept 30, 2021. Lancet.
2022, 399:1489-512. 10.1016/S0140-6736(22)00172-6

92. Bentley TG, Effros RM, Palar K, Keeler EB: Waste in the U.S. Health care system: a conceptual framework .
Milbank Q. 2008, 86:629-59. 10.1111/j.1468-0009.2008.00537.x

93. Khanna NN, Maindarkar MA, Viswanathan V, et al.: Economics of artificial intelligence in healthcare:
diagnosis vs. treatment. Healthcare (Basel). 2022, 10:2493. 10.3390/healthcare10122493

94. Howard J: Artificial intelligence: implications for the future of work . Am J Ind Med. 2019, 62:917-26.
10.1002/ajim.23037

95. Scheetz J, Rothschild P, McGuinness M, et al.: A survey of clinicians on the use of artificial intelligence in
ophthalmology, dermatology, radiology and radiation oncology. Sci Rep. 2021, 11:5193. 10.1038/s41598-
021-84698-5

96. Manne R, Kantheti SC: Application of artificial intelligence in healthcare: changes and challenges . Curr J
Appl. 2021, 40:78-89. 10.9734/CJAST/2021/v40i631320

97. Mora-Cantallops M, Sánchez-Alonso S, García-Barriocanal E, Sicilia MA: Traceability for trustworthy AI: a
review of models and tools. Big Data Cogn Comput. 2021, 5:20. 10.3390/bdcc5020020

2024 Hamilton et al. Cureus 16(7): e63699. DOI 10.7759/cureus.63699 18 of 18

https://dx.doi.org/10.3390/jcm13051505?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/jcm13051505?utm_medium=email&utm_source=transaction
https://ssrn.com/abstract=3850983?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.hbpd.2022.03.001?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.hbpd.2022.03.001?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.pcorm.2020.100128?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.pcorm.2020.100128?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/978-3-031-49011-8_21?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/978-3-031-49011-8_21?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/TA.0000000000001947?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1097/TA.0000000000001947?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1080/20476965.2024.2325991?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1080/20476965.2024.2325991?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s11934-019-0895-3?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1007/s11934-019-0895-3?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.amsu.2020.04.007?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.amsu.2020.04.007?utm_medium=email&utm_source=transaction
https://scholar.google.com/scholar?q=intitle%3ASeven Pillars of Wisdom&utm_medium=email&utm_source=transaction
https://dx.doi.org/10.4324/9781003078456-2?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.4324/9781003078456-2?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.7208/Chicago/9780226833125.001.0001?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.7208/Chicago/9780226833125.001.0001?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1613/jair.1.11222?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1613/jair.1.11222?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/ICARM52023.2021.9536104?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1109/ICARM52023.2021.9536104?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/S1369-7021(09)70272-X?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/S1369-7021(09)70272-X?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1073/pnas.0807698106?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1073/pnas.0807698106?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1155/2012/512616?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1155/2012/512616?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1146/annurev-publhealth-031210-101225?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1146/annurev-publhealth-031210-101225?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.yasu.2008.04.006?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.yasu.2008.04.006?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jamcollsurg.2004.01.009?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/j.jamcollsurg.2004.01.009?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1503/cjs.024610?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1503/cjs.024610?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3357/asem.3751.2013?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3357/asem.3751.2013?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1002/bjs.10908?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1002/bjs.10908?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/S0140-6736(22)00172-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1016/S0140-6736(22)00172-6?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1111/j.1468-0009.2008.00537.x?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1111/j.1468-0009.2008.00537.x?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/healthcare10122493?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/healthcare10122493?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1002/ajim.23037?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1002/ajim.23037?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/s41598-021-84698-5?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.1038/s41598-021-84698-5?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.9734/CJAST/2021/v40i631320?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.9734/CJAST/2021/v40i631320?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/bdcc5020020?utm_medium=email&utm_source=transaction
https://dx.doi.org/10.3390/bdcc5020020?utm_medium=email&utm_source=transaction

	The Future of Artificial Intelligence in Surgery
	Abstract
	Introduction And Background
	FIGURE 1: The two ways AI can work in surgery.
	FIGURE 2: How AI can work in surgery by expanding the surgeon’s “umwelt.”

	Review
	Past history
	FIGURE 3: The area under an ROC curve.
	FIGURE 4: Receiver operating characteristic curve.

	Future: going into the unknown, doing the inconceivable

	Conclusions
	Additional Information
	Author Contributions
	Disclosures
	Acknowledgements

	References


