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Abstract

Mutational patterns caused by APOBEC3 cytidine deaminase
activity are evident throughout human cancer genomes. In parti-
cular, the APOBEC3A family member is a potent genotoxin that
causes substantial DNA damage in experimental systems and
human tumors. However, the mechanisms that ensure genome
stability in cells with active APOBEC3A are unknown. Through an
unbiased genome-wide screen, we define the Structural Main-
tenance of Chromosomes 5/6 (SMC5/6) complex as essential for
cell viability when APOBEC3A is active. We observe an absence of
APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunc-
tion, consistent with synthetic lethality. Cancer cells depleted of
SMC5/6 incur substantial genome damage from APOBEC3A
activity during DNA replication. Further, APOBEC3A activity
results in replication tract lengthening which is dependent on
PrimPol, consistent with re-initiation of DNA synthesis down-
stream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates
elongated replication tracts and increases DNA breaks upon
APOBEC3A activity. Our findings indicate that replication fork
lengthening reflects a DNA damage response to APOBEC3A
activity that promotes genome stability in an SMC5/6-dependent
manner. Therefore, SMC5/6 presents a potential therapeutic vul-
nerability in tumors with active APOBEC3A.
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Introduction

Cytidine deamination caused by APOBEC3 enzymes is among the
most prevalent sources of endogenous mutagenesis in human cancers
(Alexandrov et al, 2020; Burns et al, 2013b; Chan et al, 2015; Cortez
et al, 2019; Jalili et al, 2020; Nik-Zainal et al, 2012; Roberts et al,
2013). APOBEC3 enzymes catalyze the conversion of cytidine to
uracil in single-stranded (ss)DNA substrates, which can result in
mutations after replication or uracil excision (Chen et al, 2006;
Richardson et al, 2014). The APOBEC3 enzymes function in the
innate immune system to deaminate and mutate viral genomes and
retroelements to restrict infection and retrotransposition (Chen
et al, 2006; Harris and Dudley, 2015; Richardson et al, 2014). Off-
target or aberrant activity of the enzymes results in damage to the
cellular genome (Baker et al, 2022; Burns et al, 2013a; Green et al,
2016; Haradhvala et al, 2016; Landry et al, 2011; Suspene et al,
2011; Venkatesan et al, 2021). Of the seven-member family
(APOBEC3A-H), APOBEC3A is expressed in the nucleus and
causes mutagenesis in experimental systems and human tumors,
which can be genotoxic at high levels (Burns et al, 2013a; Cortez
et al, 2019; DeWeerd et al, 2022; Petljak et al, 2022; Roberts et al,
2012). Mutational patterns of APOBEC3A activity are conserved
across yeast and mammalian experimental models (Burns et al,
2013a; Chan et al, 2015; Hoopes et al, 2016; Law et al, 2020; Petljak
et al, 2022; Roberts et al, 2012; Taylor et al, 2013).

In cancer, the genotoxic potential of APOBEC3A activity can be
exploited by inhibition of the essential DNA damage responses
which it activates. APOBEC3A deamination at replication forks
activates replication stress responses initiated by ATR kinase
signaling (Buisson et al, 2017; Green et al, 2017). Inhibition of ATR
abrogates the cell cycle checkpoint, enables the accumulation of
mutations during DNA replication, and ultimately promotes
replication catastrophe as cells move through mitosis (Buisson
et al, 2017; Green et al, 2017). Cytotoxicity of APOBEC3A activity
upon ATR inhibition illustrates a synthetic lethal interaction and
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the essential nature of DNA damage responses in tumor cells
undergoing mutagenesis. We employed the synthetic lethality
strategy to investigate DNA damage responses that are elicited by
the activity of APOBEC3A. Using a genome-wide CRISPR-based
screen, we determined that the optimal function of the Structural
Maintenance of Chromosomes 5/6 (SMC5/6) complex is essential
in cells with active APOBEC3A.

SMC5/6 is a highly conserved eight-member complex comprised
of SMC5 and SMC6 as well as six non-SMC element (NSMCE)
proteins (Aragon, 2018). SMC5 and SMC6 dimers form the hinge-
like backbone of the complex to which other subunits
attach (Alt et al, 2017; Yu et al, 2022). Similar to the related
condensin and cohesin SMCs, SMC5/6 interacts with DNA to
influence genome stability. Notably, SMC5/6 can bind to
both ssDNA and double-stranded (ds)DNA, and can stabilize
ssDNA-dsDNA junctions (Chang et al, 2022; Tanasie et al, 2022).
While condensin and cohesin act in chromosome folding and
segregation, the function of SMC5/6 in genome maintenance is less
well-defined.

Experimental suppression of SMC5/6, as well as germline defects
in SMC5/6 in human syndromes result in replication and repair
defects and chromosomal aberrations (Grange et al, 2022; Payne
et al, 2014; van der Crabben et al, 2016; Venegas et al, 2020;
Zhu et al, 2023). Despite these data indicating an important role for
the complex in genome integrity, SMC5/6 deficiency in human
cancer is poorly understood. In yeast and mammalian cells, SMC5/6
co-localizes with replication-associated proteins and nascent
DNA, indicating that the complex localizes to replication structures
(Alabert et al, 2014; Ampatzidou et al, 2006; Barlow et al, 2013;
Betts Lindroos et al, 2006; Winczura et al, 2019). Several
genome maintenance roles for SMC5/6 at replication forks
have been elucidated, such as regulation of fork reversal and
resolution of recombination intermediates that arise due to DNA
repair at impaired replication forks (Chen et al, 2009; Irmisch et al,
2009; Potts and Yu, 2005; Wu et al, 2012). Additionally, SMC5/
6 localizes to natural pausing sites at centromeres, telomeres,
and ribosomal DNA even in the absence of genome stress, suggesting
a role for support of replication through repetitive or fragile
regions (Agashe et al, 2021; Barlow et al, 2013; Menolfi et al, 2015;
Peng et al, 2018; Torres-Rosell et al, 2007). While the influence of
SMC5/6 on replicating DNA is established, a role for the protection
of forks undergoing cytidine deamination has not been defined.

In this study, we discovered a synthetic lethal interaction
between APOBEC3A activity and loss of SMC5/6. By modeling
SMC5/6 loss in cancer cell lines, we found that APOBEC3A activity
elicited high levels of DNA breaks leading to genotoxic cell death.
This synthetic lethal interaction was conserved from yeast to
human tumors. In cancer cells depleted of SMC5/6, deaminase-
induced DNA damage was maximal during DNA replication.
Intriguingly, we found that APOBEC3A activity led to an increased
length of replication forks as measured by DNA fiber imaging. The
increased length was dependent on PrimPol, thus, is likely due to
bypass of APOBEC3A-mediated replication obstacles by repriming
downstream of a DNA lesion. Interestingly, the increased fork
length was also dependent on SMC5/6. We propose a model in
which SMC5/6 stabilizes replication forks in cells undergoing
deaminase-mediated damage. These data demonstrate a new
mechanism by which genome integrity is maintained in the context
of APOBEC3A activity, and reveal a synthetic lethal interaction

that may provide opportunities for therapeutic targeting of SMC5/6
in cancer.

Results

Functional genomics screen identifies SMC5/6 as
essential in cells with APOBEC3A activity

To identify cellular processes that ensure genome protection from
the mutagenic activity of APOBEC3A, we employed a genome-wide
functional screening approach. THP1 (myeloid leukemia) cells with
integrated doxycycline (dox)-inducible APOBEC3A transgene
(THP1-A3A) and constitutive Cas9 transgene (Appendix Fig. S1a)
were transduced with the Brunello guide RNA (sgRNA) lentiviral
library which includes multiple sgRNAs for each human gene as
well as non-targeting control sgRNAs (Doench et al, 2016). A low
lentivirus:cell ratio (MOI 0.4) was used to allow screening for
knockout of each human gene independently within a pooled
population (Appendix Fig. S1b). Following transduction, control
cells (-dox) were cultured in parallel with cells induced to express
APOBEC3A (+dox) for 15 days (Fig. 1A). In both groups, cells
were harvested and sgRNAs were sequenced, normalized, and
analyzed by three independent pipelines to generate a gene score
for each gene represented in the Brunello library (Appendix
Fig. S1c). Sequencing coverage of the entire library was similar
across samples, regardless of dox treatment (Appendix Fig. S1d,e).

Comparison of APOBEC3A-expressing to control cells revealed
under-represented or absent sgRNAs, indicating genes that were
negatively selected (Dataset EV1). Negative selection is interpreted
as cell death due to synthetic lethality between target gene loss and
APOBEC3A expression. The top 250 negatively selected genes were
analyzed for gene ontology which revealed biological processes
clustered around DNA damage and repair, DNA and
RNA metabolism, and chromosome organization (Fig. 1B). Among
the negatively selected genes were ATR and CHEK1 (Fig. 1C),
which have previously been demonstrated to be synthetically lethal
with APOBEC3A expression (Buisson et al, 2017; Green et al,
2017). Furthermore, ATM sgRNA levels were unchanged, indicat-
ing no impact on the survival of APOBEC3A-expressing cells,
consistent with prior findings (Buisson et al, 2017; Green et al,
2017) (Fig. 1C).

Within chromosome organization, which was the most significant
GO term, SMC5 and NSMCE3, two members of the eight-protein
complex comprising SMC5/6, were significantly negatively selected
(Fig. 1C). Additional SMC5/6 genes were negatively selected, although
they appeared lower on the list. To validate this potential synthetic
lethal interaction, we depleted SMC5 in THP1-A3A cells and found
that, upon APOBEC3A expression, cells were significantly less viable
than controls (Fig. 1D). Thus, a functional SMC5/6 complex is
essential for the viability of cells expressing APOBEC3A.

SMC5/6 loss potentiates APOBEC3A-
mediated genotoxicity

To explore the reproducibility of a synthetic lethal interaction
between APOBEC3A and loss of SMC5/6, we depleted SMC5,
SMC6, and/or NSMCE4 in cell lines from different tissues. SMC5/6
complex formation relies on all subunits being intact, thus
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depletion of one gene results in SMC5/6 dysfunction (Gallego-Paez
et al, 2014; Potts and Yu, 2005; Venegas et al, 2020). Prior studies
demonstrated that Smc5/6 is essential in budding and fission yeast
(Lehmann, 2005), and complete deletion of SMC5/6 genes is
embryonically lethal in mice (Ju et al, 2013), but conditional
depletion of SMC5/6 is tolerated in mammalian cells (Atkins et al,
2020; Venegas et al, 2020). Thus, we used partial and inducible
depletion of SMC5/6 complex genes. In K562 (myeloid) and Jurkat
(T-cell) leukemia cells, shRNA was used to constitutively deplete
SMC5 (Fig. 2A; Appendix Fig. S2a). The HCT116 colorectal
carcinoma cells were engineered with auxin-inducible degron
(mAID) tags on NSMCE4A and SMC6 subunits for inducible
depletion of SMC5/6 upon treatment with indole-3-aceticacid
(IAA) as previously described (Appendix Fig. S2f) (Natsume et al,
2016; Venegas et al, 2020). K562, Jurkat, and HCT116 cells were
engineered to express dox-inducible APOBEC3A transgenes. The
doxycycline dose used induced a level of APOBEC3A expression
that resulted in minimal DNA damage. However, combined SMC5/
6 depletion and APOBEC3A expression significantly impaired
proliferation (Fig. 2B; Appendix Fig. S2b,c). Additionally, DNA
damage response signaling significantly increased upon

APOBEC3A expression in cells depleted of SMC5 as detected by
increased phosphorylation of histone variant H2AX (γH2AX), a
response to DNA breaks (Fig. 2C; Appendix Fig. S2d,g). Consistent
with these results, we found increased double-stranded DNA breaks
(DSBs) by neutral comet assay (Fig. 2D; Appendix Fig. S2e). We
hypothesized that substantial DNA damage would cause cell death.
Indeed, the culmination of genotoxicity was reflected by decreased
viability of cells with concurrent expression of APOBEC3A and
depletion of SMC5/6 (Fig. 2E; Appendix Fig. S2h).

APOBEC3A is known to sensitize cells to ATR inhibition
(ATRi) and prior reports indicate a role for yeast Smc5/6 in
signaling Rad53 (ATR) activation (Khan et al, 2022), therefore we
queried whether ATR and SMC5/6 are epistatic in preventing cell
death from APOBEC3A-induced genotoxicity. In cells depleted of
SMC5/6, we did not find a difference in phosphorylation of Chk1 at
ATR-dependent sites (Appendix Fig. S2i), suggesting that SMC5/6
loss does not alter ATR signaling in the cancer cells tested. We
found that SMC5 depletion further sensitized APOBEC3A-
expressing cells to ATRi (Fig. 2G; Appendix Fig. S2j), indicating
a non-epistatic relationship between ATR and SMC5/6 in genome
protection during deaminase activity.
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Figure 1. Functional genomics screen identifies synthetic lethality between loss of the SMC5/6 complex and expression of APOBEC3A.

(A) Schematic for functional genomics screen to identify synthetic lethality with APOBEC3A. The Brunello CRISPR-Cas9 guide RNA (sgRNA) library was used in THP1 cells
expressing a doxycycline (dox)-inducible, HA-tagged APOBEC3A transgene (THP1-A3A). sgRNAs were identified and quantified by sequencing at day 0 (baseline library
integration) and day 15 after dox treatment. Depletion of sgRNAs at day 15 in dox-treated cells relative to untreated controls represents potential synthetic lethal genes.
(B) The top 250 genes identified as potentially synthetic lethal with APOBEC3A are grouped by Gene Ontology (GO) terms. (C) Negatively selected sgRNAs in dox-treated
relative to untreated cells at day 15. SMC5/6 complex genes in red. Previously defined synthetic lethal interactions are denoted in blue. (D) THP1-A3A cells were depleted
of SMC5 by stable integration of shRNA. Cell lysates were probed with antibodies to HA and SMC5. Tubulin was used as a loading control. The viability of cells treated
with dox for 72 h or untreated was determined by FACS after staining for fluorescent-labeled calcein AM (live) and DNA (dead). The mean and SD of triplicate
experiments are shown. p values by two-tailed t-test. ****p < 0.0001 **p < 0.01. Source data are available online for this figure.
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APOBEC3A catalytic activity is required for synthetic
lethality with SMC5/6 loss

Next, we addressed whether the synthetic lethal phenotype
resulting from combined APOBEC3A expression and SMC5/6 loss
was due to deaminase-induced genotoxicity. To evaluate the
requirement for deamination activity, we constructed K562 cells
expressing a catalytically inactive mutant of APOBEC3A contain-
ing a C106S amino acid change (Appendix Fig. S3a,b). Cells
expressing APOBEC3A-C106S with SMC5 depletion had no
differences in proliferation, γH2AX levels, or DSB quantity (Fig. 2F;
Appendix Fig. S3c,d). Importantly, SMC5 depletion did not cause
increased APOBEC3A deaminase activity (Appendix Fig. S3a).
These data demonstrate that deaminase activity is required for the
synthetic lethal interaction between APOBEC3A expression and
SMC5/6 loss.

Along with APOBEC3A, APOBEC3B has been implicated
in tumor mutagenesis (Burns et al, 2013a; Burns et al, 2013b;
Caswell et al, 2024; Venkatesan et al, 2021). However, we
found that APOBEC3B expression did alter proliferation or
H2AX phosphorylation in SMC5-depleted cells (Appendix
Fig. S3e–g). Prevention of genotoxicity by SMC5/6 appears to be
specific to APOBEC3A among tumor-associated cytosine
deaminases.

SMC5/6 dsDNA binding activity protects cells from
APOBEC3A toxicity in yeast

Few studies have addressed the specific functions of SMC5/6 in
mammalian cells due to a lack of characterization of mutants
that perturb distinct activities of the complex. Recent structural
studies of the yeast Smc5/6 have enabled the generation of
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Figure 2. SMC5/6 loss potentiates APOBEC3A-mediated genotoxicity.

K562 cells engineered to express doxycycline-inducible HA-tagged APOBEC3A (K562-A3A) were depleted of SMC5 by RNAi (shSMC5) and compared to parental K562-
A3A cells. All results are representative of three independent biological replicates. (A) Immunoblot shows APOBEC3A expression (HA antibody) and SMC5 depletion.
Tubulin was used as a loading control. (B) Cell proliferation was measured by counting cells over the course of 7 days. Bars are SEM, p value by sum-of-squares F-test. (C)
DNA damage response signaling was assessed after 72 h of dox treatment by intracellular staining and flow cytometry analysis of the phosphorylated form of the histone
variant H2AX (γH2AX). The mean and SD of triplicate experiments are shown. (D) Comet assay results are shown as a dot plot of individual values, the bar is the median
of olive moments. (E) Cell viability was assessed by WST8 live cell quantitation of K562 cells after 7 days of dox treatment. Mean and SD are shown. (F) Intracellular
staining and flow cytometry analysis of γH2AX in K562 cells induced with dox for 72 h to express the catalytically inactive A3A*C106S mutant. Mean and SD are
shown. (G) The viability of K562-A3A cells was assessed by WST8 quantitation after treatment with ATR inhibitor (AZD6738) for 5 days at indicated doses. Legend
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figure.
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separation-of-function alleles of the complex that impair dsDNA
binding activities (Yu et al, 2022). Given that previous studies have
established yeast as a model system for studying APOBEC3A activity
(Chan et al, 2015; Elango et al, 2019; Hoopes et al, 2016), we asked
whether the Smc5/6 protective role against APOBEC3A toxicity is
conserved in yeast, and whether its DNA binding activity is required
for this protection.

A cryo-EM structure of the dsDNA-bound yeast Smc5/6
complex has identified DNA binding sites on multiple
subunits, with several points of contact between each subunit
and DNA (Yu et al, 2022). Mutating these sites on the Smc5
and Nse4 subunits led to reduced Smc5/6 chromosome
association and extreme sensitivity toward the alkylating agent
MMS, suggesting that these mutations may impede DNA
replication and repair needed for surviving alkylation damage
(Yu et al, 2022). We thus examined whether the dsDNA binding
mutant allele of Smc5 (smc5-DNAm, K89, K97, K98, K145, R146,
R147, K192 all to A) or Nse4 (nse4-DNAm; R251, R256, R257,
R258 all to E) were sensitive to the expression of human
APOBEC3A. To do so, we transfected human APOBEC3A
under a yeast promotor into mutant or wild-type cells. We
confirmed comparable APOBEC3A expression in all cells
(Fig. 3A,B). Consistent with prior studies, wild-type cells were
tolerant of deaminase activity as they grew similarly to those
transfected with empty vector at both 30 and 37 °C (Fig. 3C,D)
(Hoopes et al, 2016). In striking contrast, yeast harboring smc5-
DNAm or nse4-DNAm alleles exhibited poor viability upon
APOBEC3A expression (Fig. 3C,D). These data demonstrate
that SMC5/6 DNA binding is critical for cell growth when
APOBEC3A is active in yeast. Given that DNA binding is a
fundamental feature of SMC5/6, an extrapolation of this result is
that this activity also protects human cells from the genotoxic
effects of APOBEC3A.

APOBEC3A mutagenesis is incompatible with SMC5/6
dysfunction in cancer

To evaluate the interaction of APOBEC3A activity and SMC5/6 loss in
human cancers, we quantified APOBEC3A mutational signatures in
tumors with deleterious mutations in SMC5/6 subunit genes.
Deleterious mutations were defined as exonic missense, nonsense, or
frameshift base changes (Choi et al, 2012; McLaren et al, 2016).
Within TCGA, 160 tumors with deleterious mutations in SMC5/6
genes were identified (Fig. 4A). SMC5 and SMC6 were the most
frequently mutated genes of all subunits (Fig. 4B). For comparison, we
defined a control set of tumors with no mutations in SMC5/6 subunit
genes (n = 131) that were tissue-matched (Fig. 4A,C). Tumors with
dysfunctional SMC5/6 had a higher overall mutation burden (Fig. 4D),
consistent with the role of the complex in genome integrity. To
determine the source of mutagenesis in tumors with dysfunctional
SMC5/6, we examined single base substitution (SBS) signatures. All
SBS signatures that comprised more than 4% contribution to mutation
burden within each group of tumors are shown (Fig. 4E). The
APOBEC3A signatures, SBS2 and SBS13, comprised a substantial
portion of mutations in the control tumors but were notably absent in
the SMC5/6-mutant tumors (Fig. 4E). These data support our
experimental findings that combined dysfunction of SMC5/6 and
active APOBEC3A are incompatible in viable human tumors.

SMC5/6 loss promotes APOBEC3A-mediated DNA
damage during replication

It was previously shown that APOBEC3A activity at replication forks
results in mutations on both leading and lagging strands, stalled DNA
replication, and activation of DNA damage signaling (DeWeerd et al,
2022; Green et al, 2016; Haradhvala et al, 2016; Hoopes et al, 2016;
Landry et al, 2011; Seplyarskiy et al, 2016). Damaged replication forks
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can result in replication stress and/or DNA breaks. We hypothesized
that APOBEC3A activity at replication forks was a source of
genotoxicity in SMC5/6-depleted cells. We used immunofluorescent
staining of cyclin A to mark replicating K562-A3A cells (Sobczak-
Thepot et al, 1993) and γH2AX foci to quantify DNA damage
(Fig. 5A; Appendix Fig. S4a). In cells with intact SMC5/6, most
APOBEC3A-induced γH2AX foci occurred in replicating cells
(Fig. 5B,C; Appendix Fig. S4b). Depletion of SMC5 resulted in
increased DNA damage upon APOBEC3A expression, as shown by a
significant increase in cells with ≥5 γH2AX foci, nearly all of which
occurred in cyclin A-positive cells (Fig. 5B,C; Appendix Fig. S4b). We
then used a double thymidine block to synchronize cells at the G1-S
junction and followed cells after release for 24 h throughout the cell
cycle (Fig. 5D). We observed a significant accumulation of γH2AX in

cells expressing APOBEC3A as they progressed through DNA
replication (Fig. 5E). Notably, APOBEC3A-expressing cells depleted
of SMC5 accumulated higher levels of γH2AX throughout DNA
replication relative to those with intact SMC5 (Fig. 5E). These
findings are consistent with prior reports of APOBEC3A causing
genome damage during DNA replication (Green et al, 2016; Hoopes
et al, 2016; Seplyarskiy et al, 2016), which we now show is exacerbated
by the loss of SMC5/6.

Circumstances in which replication forks are stalled may provide
more ssDNA substrate for deamination events. SMC5/6 has been
implicated in perturbations and control of the G2/M cell cycle
checkpoint. In plants, defective SMC5/6 promotes cell cycle
progression upon DNA damage despite appropriate activation
of the replication checkpoint (Wang et al, 2018). In yeast,
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Nse2-mediated SUMOylation of Rqh1, a RecQ helicase, is important
for replication checkpoint signaling (Khan et al, 2022). Therefore, we
evaluated cell cycle profiles in SMC5/6-depleted cells to determine
whether replication fork stalling could explain the exacerbated
genotoxicity from APOBEC3A activity. We found that cell cycle
profiles were unchanged by SMC5/6 loss (Appendix Fig. S4c). Given
the exclusive activity of APOBEC3A on ssDNA substrates (as
compared to dsDNA), we evaluated the availability of ssDNA in cells
depleted of SMC5/6. We observed that SMC5 depletion did not alter
the amount of nascent ssDNA as detected by native BrdU staining
(Appendix Fig. S4d). These data show that neither cell cycle
perturbations nor ssDNA substrate availability explain the excessive
genotoxicity caused by APOBEC3A in the absence of SMC5/6.

We next examined the localization of γH2AX foci with respect
to sites of replication stress labeled by RPA foci. Following

combined SMC5/6 depletion and APOBEC3A induction in
HCT116-A3A cells, we observed an increase in RPA and γH2AX
foci relative to controls (Fig. 5F–H). A substantial increase in co-
localization of RPA and γH2AX foci was detected in cells with both
APOBEC3A expression and SMC5/6 depletion (Fig. 5I). These data
demonstrate a physical proximity of replication stress and DSB
signaling, which suggests that DNA breaks are arising from
damaged replication forks.

SMC5/6 is required for replication tract lengthening in
APOBEC3A-expressing cells

To understand how replication forks were affected by deaminase
activity upon SMC5/6 loss, we examined the impact of APOBEC3A
activity on replication fork dynamics using single-molecule DNA
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after release and compared to asynchronously cycling (cyc.) cells. The cell cycle was analyzed by propidium iodide (PI) staining. Bars are the mean of three biological
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(E, G–I). Source data are available online for this figure.
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fiber spreading (Quinet et al, 2017). Cells were pulsed sequentially
with thymidine analogs IdU (red) and CldU (green) for a duration
of 30 min each then analyzed for total replication tract length
(IdU+ CldU) (Fig. 6A). Over a time course of APOBEC3A
induction, we found that initial responses to deaminase activity
resulted in shorter replication tracts (Fig. 6B) which is consistent
with a prior study performed in HCT116 cells (Mehta et al, 2020).
Surprisingly, we found that after an extended duration (>24 h),
APOBEC3A expression resulted in a dose-dependent increase in
total tract length, indicative of replication fork elongation
(Fig. 6B,C). APOBEC3A-mediated fork elongation was observed
in multiple cell types (Fig. 6D–G) and was dependent on deaminase
activity (Fig. 6H). In all cell types, SMC5/6 depletion led to
abrogation of APOBEC3A-dependent replication fork lengthening
(Fig. 6D–G). Interestingly, SMC5/6 depletion mitigated the fork
elongation caused by APOBEC3A yet also resulted in DNA damage
and cell death (Fig. 2). In the NCI-H2347 non-small cell lung
cancer cell line, we found that type I interferon (IFN) treatment
upregulated endogenous APOBEC3A expression (Appendix
Fig. S5a) which correlated with an increase in replication tract
length (Fig. 6I). A recent study showed that IFN β treatment of
cancer cell lines caused accelerated replication speed (Raso et al,
2020). While many effects of IFN may contribute to changes in
replication dynamics, we found that SMC5 depletion abrogated

fork elongation in NCI-H2347 cells even in the presence of IFN
(Fig. 6I; Appendix S5b). Thus, results from cells expressing
endogenous APOBEC3A mimic those from cells with ectopic
expression. Together, these data suggest that the activity of SMC5/6
which enables replication elongation in the context of APOBEC3A
activity is protective against genotoxicity.

PrimPol promotes APOBEC3A-mediated elongation of
replication tracts

Next, we sought to determine the mechanism by which APO-
BEC3A leads to longer replication tracts. APOBEC3A catalyzes the
conversion of cytidine to uracil, which is excised by DNA
glycosylases, leaving an abasic site (Chen et al, 2006; Richardson
et al, 2014), which presents an obstacle for replicative polymerases.
The dual primase-polymerase, PrimPol, is capable of re-initiating
DNA synthesis downstream of replication obstacles (Mouron et al,
2013; Quinet et al, 2021; Quinet et al, 2020). To determine if
PrimPol functions in repriming downstream of APOBEC3A-
mediated DNA lesions, we expressed APOBEC3A or empty vector
(EV) in PrimPol-knockout U2OS cells (Quinet et al, 2020) and
measured replication tract length. Loss of PrimPol abrogated the
replication tract lengthening generated by expression of APO-
BEC3A (Fig. 7A).
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Figure 6. SMC5/6 is required for APOBEC3A-mediated replication fork elongation.

(A) Schematic of DNA fiber assay and representative fiber tract. (B, C) Total tract length (μM) of DNA fibers (CldU+ IdU) representing complete replication tracts from
U2OS-A3A cells treated with 1 ug/ml dox for indicated time points (B) and indicated dox doses for 72 h (C). (D–G) Total tract length (μM) of complete fibers
(CldU+ IdU) in K562-A3A (D), USOS-A3A (E), HCT116-A3A (F), and Jurkat-A3A cells (G) treated with dox for 72 h. (H) Total tract length (μM) of DNA fibers from K562
and U2OS cells induced with dox for 72 h to express catalytically inactive APOBEC3A (A3A*C106S). (I) Total tract length of DNA fibers from NCI-H2347 cells transfected
with siRNA targeting SMC5 or control and treated with type I IFN for 72 h. Data information: for panels (B–I) DNA fiber assays were performed in biological triplicate and
analyzed by Kruskal–Wallis test. Bars are median. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. Source data are available online for this figure.
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PrimPol-mediated repriming leaves short ssDNA gaps behind
the replication fork where damaged DNA was skipped (Fig. 7B)
(Quinet et al, 2017; Taglialatela et al, 2021; Tirman et al, 2021).
Post-replicative gaps are too small to be visualized at the resolution
of DNA fiber imaging (Quinet et al, 2017), therefore replication
tracts undergoing PrimPol-mediated repriming should appear
longer despite containing ssDNA gaps. To determine whether
APOBEC3A activity results in post-replicative ssDNA gap forma-
tion, we used a modified version of the DNA fiber protocol in
which genomic DNA is treated with an ssDNA-specific S1
endonuclease after pulse labeling with IdU and CldU (Quinet
et al, 2017). Shorter DNA fibers result upon S1 treatment if ssDNA
gaps are present (Fig. 7B). Treatment with S1 nuclease led to
significantly decreased DNA fiber length in cells with active
APOBEC3A (Fig. 7B). Our findings suggest that APOBEC3A likely
does not cause an increased rate of DNA synthesis but rather causes
apparent elongation of replication tracts due to “skipping” of base
lesions by PrimPol.

We queried whether PrimPol loss would cause substantial DNA
damage in cells that express APOBEC3A, similar to the phenom-
enon noted with SMC5/6 loss. Instead, we found that cells depleted
of PrimPol did not have increased levels of γH2AX when
APOBEC3A was expressed (Fig. 7C; Appendix Fig. S6a,b). These
data suggest that PrimPol mediates replication tract lengthening
but not genome stability upon APOBEC3A-induced DNA lesions.
Additionally, we found that simultaneous depletion of both
PrimPol and SMC5 slightly decreased the number of cells with
γH2AX staining in APOBEC3A-expressing cells relative to those

with selective SMC5 depletion. These results suggest that PrimPol
and SMC5 coordinate a response to APOBEC3A-induced DNA
lesions at replication forks (Fig. 7D).

Discussion

Tumor genome sequencing has demonstrated that mutagenesis
from APOBEC3A is widespread throughout human cancers
(Alexandrov et al, 2020; Petljak and Alexandrov, 2016), however
the mechanisms that enable the dysregulated activity of APO-
BEC3A in cancer remain elusive. Several genomic determinants
that enhance APOBEC3A activity have been elucidated recently,
including a preference for acting at TC dinucleotides, stem-loop
structures, and ssDNA at replication forks (Buisson et al, 2019;
Buisson et al, 2017; Jalili et al, 2020; Langenbucher et al, 2021; Nik-
Zainal et al, 2012; Petljak et al, 2019; Seplyarskiy et al, 2016). The
mechanisms by which cells respond to APOBEC3A activity in
order to maintain genome integrity have also been examined and
include the replication checkpoint (Buisson et al, 2017; Green et al,
2017) as well as HMCES, which protects abasic sites in ssDNA
(Biayna et al, 2021; Mehta et al, 2020). These prior studies
demonstrate that multiple genome-protective responses are
required to prevent cytotoxicity from APOBEC3A. We now report
a previously unknown, conserved mechanism of genome protection
from APOBEC3A activity enacted by the SMC5/6 complex.

In addition to defining a dependence on SMC5/6, we found that
cells with APOBEC3A expression exhibit elongated replication
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tracts relative to controls. This is counterintuitive to what would be
expected of a response to base damage in ssDNA. Prior studies
have found that conditions in which replication forks accelerate,
such as PARP inhibition, are associated with genome instability
and DNA damage (Maya-Mendoza et al, 2018; Merchut-Maya
et al, 2019; Zhong et al, 2013). In contrast, the lengthening of
nascent strands in DNA fibers after APOBEC3A activity is likely
due to extension of DNA synthesis beyond obstacles rather than an
increased rate of DNA synthesis. While we found that replication
tract elongation occurred after 24–72 h of APOBEC3A expression,
we found that shorter exposure to APOBEC3A resulted in
decreased tract length (Fig. 6B). These data are consistent with a
prior study found that brief APOBEC3A expression within 4 h
caused shorter replication tracts (Mehta et al, 2020). We posit
that the differences between these two findings reflect early versus
late responses to APOBEC3A activity; deamination-induced
damage may initially result in fork slowing or stalling, however
the same forks may be able to progress upon activation or
recruitment of DNA damage tolerance pathways. Similar to our
findings, a recent study demonstrated that APOBEC3A
activity leads to ssDNA gaps in replication tracts, which is
dependent on PrimPol (Kawale et al, 2024). Additionally, in that
study, inhibition of fork reversal, a DNA damage tolerance
mechanism that results in shorter tracts, resulted in increased
ssDNA gaps indicative of a shift to PrimPol activity. These data,
along with our findings, suggest that multiple fork protection
mechanisms are capable of managing damage caused by deamina-
tion, and may have varied effects on tract length. We envision a
time-dependent adaptation to APOBEC3A activity in PrimPol
upregulation and recruitment to stalled forks with subsequent re-
initiation of DNA synthesis. Indeed, in a study of cisplatin-induced
replication stress, PrimPol was found to be upregulated and
chromatin-associated only upon treatment with a second dose of
cisplatin (Quinet et al, 2020). In fact, we found that fork
lengthening in response to APOBEC3A was dependent on
PrimPol, which may not be recruited to replication forks
immediately upon deamination.

The SMC5/6 complex has structural and catalytic functions, all
of which have been demonstrated to play roles in genome stability
(Aragon, 2018; Peng and Zhao, 2023). Although the function of
SMC5/6 in genome maintenance is not fully understood, recent
single-molecule studies demonstrate stable binding of Smc5/6 to
ssDNA-dsDNA junctions, which mimic DNA replication and
repair structures (Chang et al, 2022; Tanasie et al, 2022).
This observation suggests that the DNA binding activity of Smc5/
6 can be important for protecting junction-containing structures,
which increase due to APOBEC3A activity during replication.
Our yeast data support this idea. Thus, a potential model to explain
the synthetic lethal interaction between APOBEC3A activity and
loss of SMC5/6 is that deaminase activity at the replication
fork leads to ssDNA gaps generated by PrimPol, which are
protected from cleavage by SMC5/6 binding DNA. In this model,
SMC5/6 loss can destabilize forks and gaps, leading to DNA breaks
and genotoxicity (Fig. 7D). Future studies should determine
whether SMC5/6 binding to ssDNA, dsDNA, or ss-dsDNA
junctions is key for protecting cells from APOBEC3A-induced
lesions. Additionally, the potential for SMC5/6 to prevent
genotoxicity from mutagens beyond APOBEC3A is an important
future direction.

ATR activity mitigates APOBEC3A-mediated replication fork
damage (Buisson et al, 2017; Green et al, 2017). Here we
demonstrate that ATR and SMC5/6 act independently to prevent
cytotoxicity from APOBEC3A. ATR activity was recently shown to
promote repair of APOBEC3A-induced ssDNA gaps (Kawale et al,
2024). Therefore, it is possible that SMC5/6 stabilizes gap-
containing structures and ATR acts independently to repair gaps
resulting in compounded toxicity when both are inhibited in
APOBEC3A-expressing cells. It is alternatively possible that SMC5/
6 protects ssDNA gaps is through homology-directed repair
(HDR). Post-replicative gaps are repaired in part through template
switching, a replication-specific HDR pathway (Tirman et al, 2021).
SMC5/6 regulates the resolution of HDR intermediates during
replication-associated repair (Ampatzidou et al, 2006; Chen et al,
2009; Irmisch et al, 2009). Additionally, PrimPol has been proposed
to prevent mutagenesis from APOBEC3 enzymes by stimulating
HDR to limit error-prone DNA synthesis (Pilzecker et al, 2016).
Thus, SMC5/6 may be important for a PrimPol-initiated HDR
pathway.

A model in which ssDNA gap-containing forks are generated by
APOBEC3A activity and require SMC5/6 for stabilization is
supported by several of our findings. First, we found that PrimPol
loss alone in cells with active APOBEC3A does not cause increased
DNA damage. Loss of PrimPol would be predicted to decrease
ssDNA gap generation and, therefore, mitigate the potential for the
formation of DNA breaks. Additionally, our data demonstrate that
PrimPol loss partially rescues DNA damage caused by SMC5/6 loss.
In the absence of PrimPol, fewer ssDNA gaps would be expected
thus the need for SMC5/6 to prevent cleavage is diminished.
Alternative mechanisms of ssDNA gap protection by SMC5/6, such
as shielding from nucleases or stabilizing to prevent breaks, would
also fit in this model.

A non-epistatic model is also possible in which PrimPol and
SMC5/6 may promote fork protection independently of one
another. PrimPol may not be the only DNA damage tolerance
mechanism that is enabled by SMC5/6. Indeed, we find that yeast,
which lacks a PrimPol homolog, can tolerate the expression of
APOBEC3A as long as SMC5/6 is intact. In yeast, and perhaps also
in mammalian cells, SMC5/6 may enable additional mechanisms of
fork protection through fork reversal (Thompson and Cortez, 2020)
or gap-filling (Peng and Feng, 2016), as previously proposed. In the
future, modeling of functional SMC5/6 mutants in mammalian
cells may provide an opportunity to mechanistically examine the
consequences of SMC5/6 dysfunction. These studies would also
provide specific SMC5/6 activities or subunits that may be targeted
for cancer treatment without generating undue toxicity to non-
malignant cells.

While SMC5/6 has multiple functions, complex formation relies
on all subunits being intact (Gallego-Paez et al, 2014; Potts and
Yu, 2005; Venegas et al, 2020). Germline defects in SMC5/
6 subunits associated with human diseases provide insight into
how compromise of a single SMC5/6 subunit disrupts genome
stability. For example, SMC5/6-destabilizing mutations in
NSMCE3 cause lung disease-immunodeficiency-chromosomal
breakage syndrome (LICS) (van der Crabben et al, 2016), and
NSMCE2 or SMC5 mutations result in primordial dwarfism and
insulin resistance (Payne et al, 2014; Zhu et al, 2023). In this study,
we find that deleterious mutations in SMC5/6 subunits correlate
with high tumor mutational burdens in human cancers. Our
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findings are consistent with a recent in silico study showing
that tumors with alterations in SMC5/6 genes display markers of
genome instability, such as aneuploidy (Roy et al, 2023).
These data raise questions regarding the etiology of mutagenesis
and the sensitivity of those tumors to genotoxic agents. Interest-
ingly, we find that SBS10 and SBS14, signatures consistent
with DNA polymerase epsilon (pol ε) dysfunction, are over-
represented in SMC5/6-mutant tumors. Experimental data in yeast
suggest that SUMOylation of pol ε by SMC5/6 promotes
DNA synthesis (Meng et al, 2019; Winczura et al, 2019). Our
findings in human cancers indicate a similar dependence of pol ε
function on SMC5/6. Identification of additional mutational
processes in SMC5/6-mutant tumors may provide insight into
the contexts in which SMC5/6 dysfunction is permissive of
mutagenesis. These studies may indicate opportunities to exploit
mutagenesis in tumors with dysfunctional SMC5/6 as a therapeutic
vulnerability.

Methods

Human cell culture, small molecules, and
plasmid transfection

HCT116-NSE4A/SMC6-mAID, a kind gift from the lab of Ian
Hickson (Venegas et al, 2020), U2OS-A3A, U2OS PrimPol
knockout (Quinet et al, 2020), and 293T cells (used for lentiviral
production) were maintained in DMEM media supplemented
with 10% tetracycline-free FBS and 1% Pen-Strep. THP1, K562,
Jurkat, and NCI-H2347 cells were maintained in RPMI media
supplemented with 10% tetracycline-free FBS and 1% Pen-Strep.
Except where indicated, all cell lines were purchased from ATCC
and tested for mycoplasma at least twice per year. All cells
were grown at 37 °C in a humidified atmosphere containing 5%
CO2. Cells were treated with 1000 U/ml of type I interferon
(Biotechne) every 48 h. The ATR inhibitor AZD6738 was added
to the media at doses and time points indicated. Vehicle
(DMSO) was added to controls. Expression vectors containing
APOBEC3A (pcDNA-A3A-GFP) (Landry et al, 2011) or GFP
alone (pcDNA-GFP) were transfected using Lipofectamine 2000
(Thermo Fisher).

Lentivectors and cell line generation

THP1-A3A, U2OS-A3A, and U2OS-C106S cells were generated by
lentiviral transduction as previously described (Everett et al, 2009;
Green et al, 2017; Green et al, 2016; Landry et al, 2011). Cas9 was
introduced to THP1-A3A using lentivirus (lenti-Cas9-blast)
(Sanjana et al, 2014). Blasticidin (Santa Cruz) selection began
24 h after transduction until non-transduced controls were 100%
non-viable. Inducible HCT116-NSE4A/SMC6-mAID-A3A were
generated by lentiviral transduction using a dox-inducible
pFLRU-A3A lentivector with Thy1.2 selection marker. Cells were
bead sorted using magnetic anti-Thy1.2 beads (Miltenyi) until a
stable >95% Thy1.2+ population was achieved. K562-A3A, K562-
A3A*C106S, and Jurkat-A3A were generated by lentiviral trans-
duction using the dox-inducible pSLIK-A3A lentivector with G418
resistance as previously described (Green et al, 2017). All A3A
transgenes have a C-terminal HA tag.

Genome-wide CRISPR-Cas9 knockout screen in
THP1-A3A cells

Functional screen
Pooled lentivirus encoding the Brunello guide RNA library was
generated as previously described (Shalem et al, 2014). Large-scale
spinfection was carried out with the same conditions described
above, using 12-well plates with 2 × 106 cells per well. Each well was
transduced with 50 μl Brunello library lentivirus. Wells were pooled
into 15 cm plates after spinfection and overnight incubation and
selected using puromycin for 7 days. Following puromycin
selection, THP1-A3A-Cas9 cells were plated in triplicate into a
12-well plate at a concentration of 2 × 106 cells per well.
Doxycycline was added to +dox wells every 48 h beginning on
day 0. About 400 × 106 cells cultured in parallel received vehicle
control (water) at equal volume. Cells from dox-treated and
untreated wells were harvested on the day of dox induction and
after 15 days of dox treatment. Genomic DNA was extracted using
a Genomic DNA mini kit (Invitrogen) on a pre-PCR bench under
sterile conditions to avoid DNA contamination.

Amplification and sequencing of library gRNAs
Guide RNAs were amplified by PCR from cellular genomic DNA and
amplified using one-step PCR with barcodes on reverse primers, as
previously described (Shalem et al, 2014). Illumina next-generation
sequencing was applied to an amplicon generated from each
integrated gRNA (Shalem et al, 2014). Briefly, we used all collected
gDNA (1000× coverage) divided into 100 μL PCR reactions with 5 μg
of DNA per reaction. Takara ExTaq DNA Polymerase was used with
the following PCR program: [95° 2 min (98° 10 s, 60° 30 s, 72°
30 s) × 24, 72° 5 min]. PCR products were gel-purified using the
QiaQuick Gel Extraction Kit (Qiagen). Quality assessment was done
by qubit (for concentration), bioAnalyzer (for size distribution), and
Kapa Library Quantification (for clusterable molarity). The purified
pooled library was then sequenced on a HiSeq4000 with ∼5% PhiX
added to the sequencing lane.

Genome-wide screen analysis
To count the number of reads associated with each sgRNA taken
from the raw Fastq file, we first extracted the sgRNA targeting
sequencing using a regular expression containing the three
nucleotides flanking each side of the sgRNA 20 bp target. sgRNA
spacer sequences were then aligned to a preindexed Brunello library
(Addgene) using the short-read aligner “bowtie” using parameters
(-v 0 -m 1). Data analysis was performed using custom R scripts,
which are uploaded to github.com/khayer/CRISPRkat and pipeline
steps are summarized in Fig. S1c. Dataset EV1 shows the output
only for MAGeCK version 0.5.9.5 where the counts were normal-
ized to the 1000 non-targeting control sgRNA contained in the
Brunello library.

Gene depletion by RNAi

Short-hairpin RNA
Commercially available shRNA lentiviral vectors (Sigma,
TRCN0000147948, TRCN0000148162, TRCN0000147348, and
TRCN0000147918) were used to construct SMC5-depleted K562-
A3A and Jurkat-A3A cell lines. Cells were infected with shRNA
lentivirus, selected in 1 mg/mL puromycin until non-transduced
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controls were 100% non-viable. Of note, constitutive shRNA-
mediated depletion of SMC5 was lost after 3–4 months in culture.
Many vials were frozen after each cell line generation to preserve
those with maximal gene depletion. Cells were only cultured for use
in experiments for <6 weeks. Confirmation of gene depletion was
done at least monthly while cells were in culture.

Small interfering RNA
Pooled siRNA oligonucleotides (25 pmol) targeting SMC5 (Horizon
SMARTpool) were transfected into 1 × 106 cells using the
RNAiMAX transfection reagent (Invitrogen) according to the
manufacturer’s protocol. Gene depletion was confirmed by
immunoblot and/or quantitative PCR.

Antibodies

Commercially available antibodies used for immunoblotting,
immunofluorescence, intracellular staining, and DNA fiber spread-
ing were obtained from Santa Cruz Biotechnology (Tubulin, Ku86,
SMC5, and SMC6), GeneTex (SMC5), Novus Biologicals (Cas9
Antibody 7A9-3A3), Abcam (RPA and BrdU), Biolegend (HA),
Cell Signaling (HA, γH2AX, cyclin A, and pChk1-S317), Invitrogen
(PGK1), the NIH AIDS Reagent Program (APOBEC3A/B), and BD
Biosciences (γH2AX-488, γH2AX-647, and BrdU). Secondary
antibodies for immunoblotting were obtained from Jackson
ImmunoResearch (goat anti-rabbit IgG, goat anti-mouse IgG).
Secondary antibodies for immunofluorescence were obtained from
Invitrogen (Alexa Fluor 488 goat anti-mouse IgG, Alexa Fluor 568
goat anti-rabbit IgG). Secondary antibodies for DNA fiber
spreading were obtained from Invitrogen (Alexa Fluor 488 chicken
anti-rat IgG, Alexa Fluor 546 goat anti-mouse IgG).

Viability assays

To assess the proportions of live and dead cells, staining was
performed using the Live/Dead Kit (Invitrogen) according to the
manufacturer’s instructions. Data were collected using a Fortessa
Flow Cytometer (BD Biosciences) or Accuri C6 Flow Cytometer
(BD Biosciences) and analyzed by FlowJo software. To assess
viability by metabolic activity, cells were plated in triplicate in a 96-
well plate, precultured for 24 h, and then 50 μl media with and
without doxycycline was added to each well every other day. About
10 μl WST8 reagent from the Cell Counting Kit-8 (Dojindo) was
added to each well 4–6 h prior to analysis using a microplate reader
(BMG Labtech Omega).

Proliferation assay

On day 0, cells were plated at a density of 200,000 cells per well in a six-
well plate. Each cell type was grown in the presence and absence of 1 μg/
mL doxycycline. Cells grown in the presence of doxycycline received
doxycycline doses every other day. On days 3, 5, and 7, data were
collected using an automatic cell counter (Countess, Thermo Fisher).

Intracellular γH2AX detection by flow cytometry

Cells were harvested, fixed, and permeabilized using reagents from
the CytoFix/CytoPerm Kit (BD Biosciences) according to the
manufacturer’s instructions. Cells were stained with a fluorophore-

conjugated γH2AX antibody (BD Alexa Fluor 488 or 647 Mouse
Anti-H2AX (pS139)) at a ratio of 10 μl antibody per 100 μl cells
(<1 × 106 cells/sample). Data were collected using a Fortessa Flow
Cytometer (BD Biosciences) or Accuri C6 Flow Cytometer (BD
Biosciences) and analyzed by FlowJo software.

Cell synchronization and cell cycle analysis

Cell synchronization was achieved by double thymidine block as
previously described (Chen and Deng, 2018), with the following
minor modifications: 2 mM thymidine was added to cells for 24 h
then removed by change of media. After 9 h recovery, thymidine
was again added for 24 h. Following the removal of the second
thymidine pulse, cells were analyzed at time 0 and released into
thymidine-free media. To analyze the cell cycle, cells were fixed in
70% ice-cold ethanol, washed in PBS, and resuspended in staining
solution containing Triton X, RNAseA, and 1 mg/mL propidium
iodide (Biotum). Data were collected using an Accuri C6 Flow
Cytometer and analyzed by FlowJo software.

Immunoblotting and immunofluorescence

Cell lysates were prepared by harvesting cells in LDS buffer and
boiling for 15 min, then adding 20% β−mercaptoethanol. Lysates
were run on Bis-Tris gels and transferred to a nitrocellulose
membrane. After incubation with primary and secondary anti-
bodies, membranes were developed using ECL Western blotting
reagents (Pierce) on a GelDoc Go system (BioRad). For immuno-
fluorescence, cells were cultured on coverslips. Following
treatment, cells were pre-extracted using 0.5% Triton X in PBS
for 15 min on ice to visualize chromatin-bound proteins (i.e.,
RPA). All other immunofluorescence experiments proceeded as
follows: cells were fixed with 4% paraformaldehyde for 15 min at
room temperature (RT), permeabilized with 0.5% Triton X for
10 min at RT, and blocked with 5% BSA for 1 h at RT. Primary
antibodies were diluted in 5% BSA and incubated with slides for
1 h to overnight. Secondary antibodies used were anti-mouse or
rabbit Alexa Fluor 488 and 568 (BD Biosciences). Nuclei were
visualized by 4.6-diamidino-2-phenylindole (DAPI, Thermo
Fisher). Images were acquired using an inverted fluorescent
microscope with an attached camera (Leica) and processed using
ImageJ. Protein foci and cell staining were analyzed in a blinded
fashion.

Comet assay

Neutral comet assays were performed using CometAssay (Trevi-
gen) according to the manufacturer’s protocol with minor
modifications as previously described (Wood et al, 2020). In brief,
cells were harvested and resuspended at 3 × 105 cells/mL in ice-cold
PBS, combined with molten LMAgarose, plated onto a comet slide,
and allowed to dry at 4 °C. Slides were incubated in lysis solution
for 1 h at 4 °C and then immersed in 1X TBE buffer for 30 min at
4 °C. Then slides underwent electrophoresis at 25 V for 30–45 min
at 4 °C in 1X TBE buffer. After electrophoresis, slides were washed
in DNA precipitation solution (1 M ammonium acetate, 95%
ethanol) and fixed in 70% ethanol for 30 min. Fixed slides were
dried overnight at room temperature in the dark, stained with 1X
SYBR Gold (Applied Biosystems), and washed twice with water.
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Images were acquired using a fluorescence microscope (Leica).
Images were scored using the OpenComet plugin in ImageJ.

Yeast strains and genetic techniques

All strains used are in W303 background (ade2-1 can1-100 ura3-1
his3-11,15, leu2-3, 112 trp1-1 rad5-535) containing wild-type RAD5.
smc5-DNAm and nse4-DNAm strains are from Yu, et al (2022).
APOBCE3A expression plasmid containing hygromycin drug-
resistant marker is a derivative of pySR419-A3A (Hoopes et al,
2016) (gifted from Dr. Steven A. Roberts). This plasmid and its
control vector were transformed into yeast cells individually using
the standard method and cells were grown on YPD plates
containing hygromycin (300 μg/mL) at 30 °C for 48 h. Cell growth
for three independent transformants in each case were assessed at
30 and 37 °C.

DNA fiber assay

U2OS and HCT116 cells were first pulse-labeled for 30 min with
20 μM IdU, washed three times with 1X DPBS, and then pulsed
with 100 μM CldU for 30 min. For K562 and Jurkat cells, cells were
first pulsed with 20 μM IdU and then flushed with 100 μM CldU for
30 min. After pulse, cells were harvested and collected in ice-cold
DPBS (~1500 cells/μL). For the DNA fiber assay with the ssDNA-
specific S1 nuclease (S1 Fiber), cells were permeabilized with
CSK100 (100 mM NaCl, 10 mM MOPS pH 7, 3 mM MgCl2,
300 mM sucrose and 0.5% Triton X-100 in water) after the CldU
pulse for 10 min at room temperature, treated with the S1 nuclease
(Thermo Fisher Scientific) at 20 U/mL in S1 buffer (30 mM sodium
acetate pH 4.6, 10 mM zinc acetate, 5% glycerol, 50 mM NaCl in
water) for 30 min at 37 °C, and collected in PBS-0.1% BSA with cell
scraper. Nuclei were then pelleted at ∼4600×g for 5 min at 4 °C,
then resuspended in PBS (nuclei cannot be quantified, so an initial
number of cells plated should be considered when resuspending to
a final concentration of 1500 nuclei/μl). To spread fibers, 2 μL of
cell solution was placed on a charged glass slide, mixed with 6 μL of
lysis buffer (200 mM Tris-HCl pH 7.4, 0.5% SDS, 50 mM EDTA),
and gravity was used to spread DNA fibers. DNA fibers were fixed
in a 3:1 solution of methanol and acetic acid, denatured in 2.5 M
HCl for 1 h, and blocked in pre-warmed 5% BSA at 37 °C for 1 h.
IdU and CldU were detected using mouse anti-BrdU (1:20,
Invitrogen) and rat anti-BrdU (1:75, Abcam), respectively for
1.5 h at room temperature in a humid chamber followed by anti-
mouse Alexa-546 (1:50) and anti-rat Alexa-488 (1:50) for 1 h at
room temperature in a humid chamber. Slides were mounted with
Prolong Gold Antifade Solution (Invitrogen) and cured overnight
at room temperature, protected from light. Fibers were imaged with
a 63X oil objective on a Leica DM4 B. Quantification and
measurement of fibers was done in ImageJ by blinded analysis.

Mutational signature analysis

Mutation calls of the SMC5/6 complex genes were obtained from the
Genomic Data Commons Data Portal at https://docs.gdc.cancer.gov
(v.36) (Grossman et al, 2016). Those predicted to cause negative effects
on the proteins’ functions by either Ensembl VEP (McLaren et al,
2016) or SIFT (Choi et al, 2012) were classified as deleterious
mutations. Additionally, single base substitutions (SBSs) of 9493

TCGA tumors were obtained from the COSMIC database at https://
www.synapse.org/#!Synapse:syn11726601/files. Tumors with one or
more deleterious mutations in the SMC5/6 complex were defined by
merging these two datasets and were later used in downstream
analysis. In contrast, other genes mutated in tumors with intact SMC5/
6 complex were used as a comparison gene set (Table EV1). A set of
control tumors was then defined as those which carried detrimental
mutations of the comparison gene set. Differences in mutational
burden and APOBEC enrichment between samples were inspected
and visualized using the R packages ggplot2 and tidyverse, while the
statistical difference was accessed by a two-sided Mann–Whitney test.
The R package MutationalPatterns (Manders et al, 2022) was used to
study the contribution of other COSMIC SBS signatures (v3.2).

Statistical analysis

All statistical tests were performed in R or GraphPad (Prism).
Biological and/or technical triplicate tests were used to ensure
robustness and reproducibility of data. Standard deviations,
standard error of the mean, and p values were generated using
paired and unpaired two-tail t-tests, F-tests, or Anova.

Data availability

All data presented in this manuscript are available from the
corresponding author upon request. Images from Fig. 5 are
available at Bioimage Archive (S-BIAD1152).

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44318-024-00137-x.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44318-024-00137-x.
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