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Abstract

Purpose To evaluate the diagnostic performance of image-based artificial intelligence (AI) studies in predicting
muscle-invasive bladder cancer (MIBC). (2) To assess the reporting quality and methodological quality of these
studies by Checklist for Artificial Intelligence in Medical Imaging (CLAIM), Radiomics Quality Score (RQS), and
Prediction model Risk of Bias Assessment Tool (PROBAST).

Materials and methods We searched Medline, Embase, Web of Science, and The Cochrane Library databases up
to October 30, 2023. The eligible studies were evaluated using CLAIM, RQS, and PROBAST. Pooled sensitivity,
specificity, and the diagnostic performances of these models for MIBC were also calculated.

Results Twenty-one studies containing 4256 patients were included, of which 17 studies were employed for the
quantitative statistical analysis. The CLAIM study adherence rate ranged from 52.5% to 75%, with a median of 64.1%.
The RQS points of each study ranged from 2.78% to 50% points, with a median of 30.56% points. All models were
rated as high overall ROB. The pooled area under the curve was 0.85 (95% confidence interval (CI) 0.81–0.88) for
computed tomography, 0.92 (95% CI 0.89–0.94) for MRI, 0.89 (95% CI 0.86–0.92) for radiomics and 0.91 (95% CI
0.88–0.93) for deep learning, respectively.

Conclusion Although AI-powered muscle-invasive bladder cancer-predictive models showed promising
performance in the meta-analysis, the reporting quality and the methodological quality were generally low, with a
high risk of bias.

Critical relevance statement Artificial intelligence might improve the management of patients with bladder
cancer. Multiple models for muscle-invasive bladder cancer prediction were developed. Quality assessment is
needed to promote clinical application.

Key Points
● Image-based artificial intelligence models could aid in the identification of muscle-invasive bladder cancer.
● Current studies had low reporting quality, low methodological quality, and a high risk of bias.
● Future studies could focus on larger sample sizes and more transparent reporting of pathological evaluation, model
explanation, and failure and sensitivity analyses.
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1. Image-based artificial intelligence models 
could aid in identification of muscle-invasive 
bladder cancer.

2. Current studies had low reporting quality, 
low methodological quality, and a high risk 
of bias.

3. Future studies could focus on larger sample 
size and more transparent reporting of 
pathological evaluation, model explanation, 
failure analysis, and sensitivity analysis.

Introduction
Bladder cancer (BCa) constitutes a significant global
health challenge, with an estimated 550,000 new cases and
200,000 deaths worldwide annually [1]. Muscle-invasive
bladder cancer (MIBC) is a particularly aggressive form of
BCa, defined by the invasion of the tumor into or beyond
the superficial muscularis propria of the bladder wall [2].
This subtype is characterized by higher mortality rates,
earlier metastasis, and a worse prognosis compared to
non-muscle-invasive bladder cancer (NMIBC) [3, 4].
Identifying MIBC promptly is crucial, as it necessitates
more aggressive treatments, including radical cystectomy
(RC) and adjuvant therapy, which are critical for
improving patient outcomes [4, 5].
Clinically, cystoscopy with transurethral resection of

bladder tumor (TURBT) is usually the diagnostic
approach for identifying MIBC in patients suspected of
BCa. While effective, this invasive procedure can occa-
sionally under-sample muscular tissue, resulting in false
negative rates of approximately 10% to 15% [6]. The
Vesical Imaging-Reporting and Data System (VI-RADS),
based on multiparametric magnetic resonance imaging

(MRI), has emerged as a valuable non-invasive alternative,
offering high sensitivity and specificity in differentiating
MIBC from NMIBC [7, 8]. However, the utility of VI-
RADS is limited by the long acquisition times, high costs
of MRI examinations, and dependence on the subjective
experience of the radiologist interpreting the images.
Recent advancements in artificial intelligence (AI),

particularly in radiomics and deep learning (DL), provide
a promising avenue for the pre-operative identification of
MIBC. AI techniques can analyze medical images by
extracting hand-crafted radiomic features or using self-
learned DL features to predict disease status through
sophisticated classification algorithms [9–11]. These
technologies have shown potential in enhancing the
accuracy and efficiency of MIBC diagnosis [12–32].
Despite the promise, there is a wide variation in the
reported results across studies [33, 34]. Furthermore, the
overall quality of these studies has not been thoroughly
assessed, especially concerning critical methodological
aspects such as patient selection, model development, and
performance evaluation [33, 34], hindering the clinical
application of AI techniques in identifying MIBC.
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In this study, we aimed to (1) systematically review and
evaluate the diagnostic performances of current AI stu-
dies on the prediction of MIBC and (2) use the Checklist
for Artificial Intelligence in Medical Imaging (CLAIM),
Radiomics Quality Score (RQS), and Prediction model
Risk of Bias Assessment Tool (PROBAST) to compre-
hensively assess the reporting quality and methodological
quality of these models [35–37].

Materials and methods
Literature search strategy and study selection
The study protocol is registered in the International Pro-
spective Register of Systematic Reviews (CRD42023446035).
This systematic review was conducted according to the
recommendations published in the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
for Diagnostic Test Accuracy statement [38]. PRISMA
checklist is provided in the Supplementary material 1.
Medline via PubMed, Embase via Ovid, Web of Science,

and The Cochrane Library were searched for eligible stu-
dies from inception to October 30, 2023 using a combi-
nation of the following terms: “bladder cancer”, “muscle
invasion or staging”, “radiomics or deep learning”, and
“computed tomography or magnetic resonance imaging or
ultrasound”. The language was restricted to English. The
detailed search queries were displayed in Supplementary
Material 2. In addition, we screened the bibliographies of
initially searched articles for additional relevant studies.
After the removal of duplicated studies, two researchers

with 2 and 7 years of experience in genitourinary imaging
screened the titles and abstracts of the identified studies.
Studies were excluded if the type of the article was one of
the following: review, editorial, abstract, and case report.
The remaining studies were full-text assessed. To be
included, the articles must have fulfilled the following: (1)
population: patients with primary BCa; (2) index test:
development or validation of radiomics or DL models
using computed tomography (CT), MR, or ultrasound
images; (3) outcomes: the muscle invasion status con-
firmed by at least one pathological evaluation method; (4)
original articles. Studies were excluded from meta-
analysis if they lacked adequate data sufficient to recon-
struct the 2 × 2 contingency table.

Data extraction
Relevant data were extracted from each eligible publication
using a standardized form recording the following infor-
mation: study year, data collection strategy, number of
centers, target population, prediction level, sample size,
MIBC ratio, gold standard, internal validation method,
external validation method, modality, annotation method,
number of readers per case, reader agreement, feature
extractionmethod, number of extracted features, number of

selected features, and final classifier algorithm. The feature
number of DL models was the number of neurons in the
first fully-connected layer since the convolutional layers
were considered as feature extractors. The following diag-
nostic accuracy measures were also recorded for meta-
analysis: true positive, true negative, false positive, and false
negative. When a study involved training and test cohorts,
the diagnostic performance in the test cohort was selected
for the model’s prediction power; When a study involved
external and internal cohorts, the diagnostic performance in
the external cohort was selected for the model’s prediction
power. If several prediction models were developed in one
study, the model with the best performance was chosen.

CLAIM, RQS, and PROBAST evaluation
The same two researchers independently assessed all eli-
gible publications with CLAIM, RQS, and PROBAST.
When a discrepancy occurred, an agreement was reached
after discussions with two senior researchers. The con-
sensus data were used in the following analyses. For
CLAIM, the study reporting was evaluated by a total of 42
items. The item adherence rate was the percentage of
adhering studies over all applicable studies among the item,
while the study adherence rate was the percentage of
adhering items over all applicable items among the study.
The RQS, which consists of 16 criteria, is a recently
accepted tool to measure the methodological rigor of
radiomics workflow. The total RQS points are the sum of
points from checkpoint 1, checkpoint 2, and checkpoint 3,
with the ideal RQS points being 100% (36/36.00). For
PROBAST, the risk of bias (ROB) was assessed across four
domains: participants, predictors, outcome, and analysis.
Signaling questions within each domain were answered
with one out of five options: “yes, “ “probably yes, “ “prob-
ably no, “ “no, “ “no information”. If there was any “no/
probably no” in signaling questions, the domain was labeled
as having high ROB. If all signaling question is “yes/prob-
ably yes”, the domain was labeled as having low ROB. If
there was no “no/probably no” but any “no information” in
signaling questions, the domain was labeled as having
unclear ROB. The overall ROB of the four domains was
then determined using the same criteria.

Statistical analysis
Heterogeneity was evaluated using the following methods:
(1) the Cochran Q test, with a p-value of < 0.05 indicating
significant heterogeneity, and (2) the Higgins I2 test. I2

values of 0–25%, 25–50%, 50–75%, and > 75% represent
very low, low, medium, and high heterogeneity, respec-
tively. The weight of each study was calculated with the
inverse variance method, in which the weight given to
each study is chosen to be the inverse of the variance of
the effect estimate, minimizing the uncertainty of the
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pooled effect estimate. In the case of medium and high
heterogeneity, the random-effect model was favored over
the fixed-effect model. Diagnostic accuracy was assessed
using the hierarchical summary receiver operating char-
acteristic (HSROC) curves and areas under the HSROC
(AUC). Sensitivity, specificity, positive likelihood ratio,
and negative likelihood ratio were also calculated. Meta-
regression was performed to explore the potential sources
of heterogeneity.
All calculations were performed with a 95% confidence

interval (95% CI). A difference was considered statistically
significant when the p-value was smaller than 0.05. We
used the “metandi” and “midas” modules in Stata 17 for
statistical analyses [39, 40].

Results
Characteristics of included studies
A flowchart depicting the study selection process is shown
in Fig. 1. The search strategy identified 171 studies after
removing duplicates. Among these, 21 studies met the
inclusion criteria. The included studies are summarized in
Table 1 and Fig. 2.
The included 21 studies were published between Sep-

tember 2017 and May 2023, of which approximately

two-thirds (15/21, 71.4%) were published within the past
three years. Most of the studies (20/21, 95.2%) were ret-
rospectively designed except for one [24]. The population
of these studies varied. Ten studies included patients with
BCa [12–14, 17, 18, 22, 24–27], one study analyzed
patients with high-grade urothelial carcinoma [16], and
other studies analyzed patients with urothelial carcinoma
[15, 16, 19–21, 23, 28–32]. Four studies performed lesion-
level prediction while others performed patient-level
prediction [12, 13, 30, 32]. The sample size of the
studies ranged from 54 to 468 patients, with a total of
4256 patients and 4388 lesions analyzed in 21 studies.
The prevalence of MIBC ranged from 23.1% to 71.2%,
with a median of 37.2%. The reference standard for
the diagnosis of MIBC also varied. Ten studies
diagnosed MIBC by specimens from different surgical
techniques of TURBT, RC, or partial cystectomy (PC)
[15, 17, 19, 23, 25–27, 30–32]. Three studies only inclu-
ded RC patients [16, 21, 29]. Two studies only included
TURBT patients [12, 24]. However, there were still five
studies that did not specify the source of the specimen
[13, 14, 20, 22, 28]. The most common internal validation
method was random-split validation [16, 18–26, 31, 32],
while most studies (15/21, 71.4%) did not perform

Fig. 1 Systematic review flow diagram designed according to PRISMA
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external validation except for six studies
[17, 19, 24, 27, 30, 32].

AI technique details of the included studies
The AI technique details of the included studies are sum-
marized in Table 2. All the studies analyzed a single mod-
ality. The most common modality was MRI (n= 12),
followed by CT (n= 8) and ultrasound (n= 1). Manual
annotation (n= 15) was the major method for delineating
the region of interest (ROI), while other studies used semi-
automatic (n= 4) or fully-automatic (n= 2) segmentation
algorithms. Fourteen studies extracted hand-crafted radio-
mic features, five studies extracted self-learned DL features
[13, 19, 21, 24, 29, 32], and two studies extracted both types
of features [23, 30]. Extracted feature counts ranged from 63

to 23,688 in the included studies, and the selected feature
counts ranged from 6 to 2048.

Quality evaluation
The CLAIM study adherence rates, RQS points, and
number of yes/probably yes in PROBAST of each study
were shown in Fig. 3.

CLAIM
The study adherence rates on CLAIM of each study are
shown in Fig. 4. The study adherence rate on CLAIM
ranged from 52.5% to 75%, with a median of 64.1%. Five
studies had a CLAIM study adherence rate lower than
60.0% [12, 13, 25, 28, 29]. The detailed CLAIM evaluation
can be found in Supplementary Material 3.

Fig. 2 Overview of study characteristics. A Aggregate number of patients included in the study; B Year of publication; C Data collection strategy; D Data
source; E Internal validation method; F External validation method
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The item adherence rates for CLAIM are displayed in
Table 3. The item adherence rate for CLAIM ranged from
0.0% to 100.0%, with a median of 85.7%. A total of 14
items had poor adherence rates (CLAIM item adherence
rate < 60.0%), including data preprocessing (item 9,
42.9%), de-identification (item 12, 0.0%), missing data
handling (item 13, 9.5%), alternative reference standard
choosing (item 15, 6.3%), pathological evaluation standard
(item 16, 4.7%), pathological evaluation method (item 17,
0.0%), pathological evaluation variability measurement
(item 18, 0.0%), sample size estimation (item 19, 0.0%),
model parameters initialization method (item 24, 14.3%),
sensitivity analysis (item 30, 0.0%), explainability or
interpretability method (item 31, 23.8%), external data
validation (item 32, 33.3%), failure analysis (item 37,
14.3%), and full study protocol (item 41, 0.0%).

RQS
The RQS points of each study are shown in Fig. 5, and the
median RQS points for each criterion are displayed in
Table 4. The RQS points of each study ranged from 2.78%
to 50% points, with a median of 30.56% points. The
detailed RQS evaluation and checklist can be found in
Supplementary Material 3.
Most of the studies (18/21, 85.7%) had presented their

image protocols except for three [13, 18, 29], while no study
reported the use of a public protocol. Less than half of the
studies (6/21, 28.6%) did not perform multiple segmenta-
tions to control the inter- or intra-rater variability of feature
extraction [13, 14, 24, 29, 30, 32], no study analyzed inter-
scanner differences and temporal variabilities of the features.
All studies that used radiomic features and one study that
used both radiomic and DL features reduced the dimension
of features, while most DL-only studies (4/21, 19.0%) did not
perform feature selection on DL features. Seven studies
(33.3%) combined clinical information with radiomic mod-
els [15–18, 20, 25, 31], and nine (42.9%) compared the
radiomic models with radiologist’s diagnosis or VI-RADS
category [15–17, 19, 20, 23, 28, 31, 32]. The models per-
formed better than radiologists in internal validation, but
their generalizability to external validation data was not as
good as experienced radiologists. Only one study discussed
the relevance between radiomic features and clinical/histo-
logical phenotypes [22]. Most studies (20/21, 95.2%)
reported the discrimination statistics except for one [29],
but only less than half of the studies (8/21, 38.1%) reported
calibration statistics [15, 17–20, 25, 27, 30] as well as (9/21,
42.9%) the cut-off analysis [15, 17, 19, 20, 25–27, 31, 32].
Only one study (4.8%) used prospectively collected data [24].
Only one did not (1/21, 4.8%) perform validation of
radiomic signatures [12], and seven (33.3%) externally
validated their models on data from other institutes

Fig. 3 Diagram showing reporting quality, methodological quality, and risk of bias of each study. The x-axis is the CLAIM adherence rate. The y-axis is the
number of yes or probably yes in the PROBAST evaluation. The size of each point is the RQS points

Fig. 4 Diagram showing reporting quality by year and sample size. The x-
axis is the year of publication. The y-axis is the CLAIM adherence rate. The
size of each point is the sample size
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[15, 17, 19, 24, 27, 30, 32]. Only eight studies (38.1%) used
decision curve analysis to determine the clinical utility of
models [15, 17–20, 25, 26, 30]. Finally, no study conducted
cost-effectiveness analyses or shared code or representative
data for model development and inference.

PROBAST
The results of the PROBAST evaluation are shown in
Fig. 6 and Table 5. In total, all studies were rated as
having a high overall risk of bias. Models in two
studies were rated as unclear ROB in participants
domain due to poor-documented eligibility criteria
[13, 29]. In the predictors domain, models in four stu-
dies were rated as high ROB [24, 26, 28, 29], and
models in ten studies were rated as unclear ROB
[14–16, 18, 20, 21, 23, 30–32]. The annotation was done
by more than one rater but the inter-rater variability was
not analyzed, resulting in probably different predictor
definitions for all participants. Blind annotation was the
major source of high or unclear ROB. Raters in two
studies annotated the image with knowledge of patho-
logical evaluation results [24, 26], and twelve studies did
not specify whether the annotation was done blindly
[14–16, 18, 20, 21, 23, 28–32]. In the outcome domain,
only one study was rated as low ROB [16] while the
others were rated as unclear ROB. Most of the studies
(20/21) did not report how MIBC was determined in
pathological evaluation, how many pathologists were
enrolled, and whether the annotation was done blindly.
In the analysis domain, all models were rated as having a
high overall ROB. Inadequate sample size and poor

Table 3 Reporting quality assessment using the CLAIM

Section Item Adherence

studies

Applicable

studies

Adherence rate Section Item Adherence

studies

Applicable

studies

Adherence rate

Title or

Abstract

item_1 21 21 100% Methods—

Model

item_22 20 21 95.24%

item_2 20 21 95.24% item_23 18 21 85.71%

Introduction item_3 21 21 100% item_24 3 21 14.29%

item_4 20 21 95.24% Methods—

Training

item_25 21 21 100%

Methods—

Study Design

item_5 21 21 100% item_26 21 21 100%

item_6 21 21 100% item_27 0 0 /

Methods—

Data

item_7 21 21 100% Methods—

Evaluation

item_28 21 21 100%

item_8 19 21 90.48% item_29 18 21 85.71%

item_9 9 21 42.86% item_30 0 21 0%

item_10 1 1 100% item_31 5 21 23.81%

item_11 21 21 100% item_32 7 21 33.33%

item_12 0 21 0% Results—Data item_33 13 21 61.9%

item_13 2 21 9.52% item_34 18 21 85.71%

Methods—

Ground Truth

item_14 16 21 76.19% Results—

Model

performance

item_35 21 21 100%

item_15 1 16 6.25% item_36 18 21 85.71%

item_16 1 21 4.76% item_37 3 21 14.29%

item_17 0 21 0% Discussion item_38 21 21 100%

item_18 0 21 0% item_39 15 21 71.43%

Methods—

Data

Partitions

item_19 0 21 0% Other

information

item_40 19 21 90.48%

item_20 21 21 100% item_41 0 21 0%

item_21 21 21 100% item_42 13 21 61.9%

Fig. 5 Diagram showing methodological quality by year and sample size.
The x-axis is the year of publication. The y-axis is the RQS points. The size
of each point is the sample size
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model performance examination both contributed to the
potential high ROB of these AI models in this domain.
The detailed PROBAST evaluation can be found in
Supplementary Material 3.

Clinical value of AI in predicting MIBC
Four studies were excluded for not providing detailed
information about sensitivity and specificity in the meta-
analysis [12, 13, 15, 28]. A total of seventeen studies were
included in the meta-analysis. Seven studies evaluated the
diagnostic performance using CT [18, 19, 21, 23, 26, 27, 29],
nine using MRI [14, 16, 17, 20, 24, 25, 30–32] and one using
ultrasound [22]. The pooled sensitivity, specificity, and AUC
for CT were 0.82 (95% CI 0.72–0.89), 0.79 (95% CI
0.72–0.84), and 0.85 (95% CI 0.81–0.88). For MRI, the
pooled sensitivity, specificity and AUC were 0.84 (95% CI
0.75–0.91), 0.79 (95% CI 0.77–0.92), and 0.92 (95% CI
0.89–0.94). Ten studies assessed MIBC prediction using
radiomics [14, 16–18, 22, 25–27, 31], six using deep learning
[19, 21, 24, 29, 30, 32] and one using both [23]. The pooled
sensitivity, specificity, and AUC for radiomics were 0.84
(95% CI 0.76–0.90), 0.82 (95% CI 0.74–0.87), and 0.89 (95%
CI 0.86–0.92). In terms of deep learning, the pooled sensi-
tivity, specificity and AUC were 0.81 (95% CI 0.68–0.89),
0.87 (95% CI 0.74–0.94), and 0.91 (95% CI 0.88–0.93). The
forest plots and AUC curves are illustrated in Supplemen-
tary Material 2.

Discussion
AI techniques have been widely studied in MIBC identi-
fication. Our systematic review comprehensively eval-
uated the reporting quality, methodological quality, and
ROB of current AI studies for MIBC prediction. The
results showed that the overall quality of these studies was
poor, with a median CLAIM study adherence rate of
64.1%, a median RQS points percentage of 30.6%, and a
high ROB among all studies. The meta-analysis showed
current MIBC-predictive AI models had good perfor-
mance with an AUC of 0.85 (95% CI 0.81–0.88) for CT,
0.92 (95% CI 0.89–0.94) for MRI, 0.89 (95% CI 0.86–0.92)
for radiomics and 0.91 (95% CI 0.88–0.93) for deep
learning. The current results indicate that AI models have
a high potential for predicting MIBC but are far from
useful tools in clinical practice.
Two systematic reviews have previously evaluated

radiomic studies for MIBC prediction using RQS [33, 34].
Most of the RQS results in our study were similar to
theirs. However, a difference in the “Comparison to Gold
standard” part was observed. In the previous reviews,
most studies were assigned two points for comparing the
models with the current gold standard. In our review, less
than half of the studies were assigned two points. To show
the added value of radiomics, we believe that the “gold
standard” refers to the commonly-used non-invasive
methods in current clinical practice for detecting MIBC
(i.e., manual image interpretation with or without VI-
RADS category) [4], thus we only assigned two points to
nine studies that had compared the models with manual

Fig. 6 Diagram showing the risk of bias by year and sample size. The x-
axis is the year of publication. The y-axis is the number of yes or probably
yes in the PROBAST evaluation. The size of each point is the sample size

Table 4 Methodological quality assessment using the RQS

Criterion Points

range

Median points

(percentage)

Image protocol quality 0–2 1 (50%)

Multiple segmentations 0–1 1 (50%)

Phantom study on all scanners 0–1 0 (0%)

Imaging at multiple time points 0–1 0 (0%)

Feature reduction or adjustment

for multiple testing

−3 to 3 3 (100%)

Multivariable analysis with non-

radiomics features

0–1 0 (0%)

Detect and discuss biological

correlates

0–1 0 (0%)

Cut-off analyses 0–1 0 (0%)

Discrimination statistics 0–2 1 (50%)

Calibration statistics 0–2 0 (0%)

Prospective study registered in a

trial database

0–7 0 (0%)

Validation −5 to 5 2 (40%)

Comparison to ‘gold standard' 0–2 0 (0%)

Potential clinical utility 0–2 0 (0%)

Cost-effectiveness analysis 0–1 0 (0%)

Open science and data 0–4 0 (0%)

Total −8 to 36 11 (30.6%)

Median points percentage was calculated by dividing the scored points by the
ideal points
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interpretations. The results of the nine studies showed the
AI models usually performed better than radiologists in
internal validation, but their generalizability to external
validation data was not as good as experienced radi-
ologists [15–17, 19, 20, 26, 28, 31, 32].
Using CLAIM and PROBAST, our systematic review

identified some unique quality-reducing items in
MIBC-predictive AI studies. Firstly, for the pathology
gold standard, only one study reported how MIBC was
confirmed through histopathological investigation [16].
Most studies only reported the source of the specimen,
and none of the studies reported the details of the
histopathological investigation, including the number
of pathologists, the inter-reader agreement, and the
blindness of assessment. The results of the meta-
analysis showed different pathological gold standards
significantly contributed to the heterogeneity of sensi-
tivity and specificity. About half of the studies used
multiple surgical techniques to obtain the specimen,

however, none of them reported the criteria for
choosing the reference standard for individual patients
or compared the model performance in patients who
underwent TURBT with that in patients who under-
went RC or PC. Secondly, statistical concerns were
poorly considered in current studies. No study calcu-
lated the minimal sample size. When internally vali-
dating the model, only a few studies avoided over-
pessimistic or over-optimistic evaluation of model
performance by using cross-validation or boot-
strapping. Many studies used cross-validation to select
the best hyperparameter or the best model in the
training set. However, nested cross-validation is needed
to evaluate the model performance while selecting
optimal hyperparameters [41]. In addition, only a few
studies evaluated the calibration of AI models. Thirdly,
current studies lacked analyses beyond performance
evaluation. The explainability was poorly discussed,
especially in radiomic studies, and few studies

Table 5 Risk of bias assessment using the PROBAST

Signaling question Yes or probably

yes

No information No or probably no

Domain 1: participants

Were appropriate data sources used? 21 (100%) 0 (0%) 0 (0%)

Were all inclusions and exclusions of participants appropriate? 19 (90.48%) 2 (9.52%) 0 (0%)

Domain 2: predictors

Were predictors defined and assessed in a similar way for all participants? 18 (85.71%) 1 (4.76%) 2 (9.52%)

Were predictor assessments made without knowledge of outcome data? 7 (33.33%) 12 (57.14%) 2 (9.52%)

Are all predictors available at the time the model is intended to be used? 21 (100%) 0 (0%) 0 (0%)

Domain 3: outcome

Was the outcome determined appropriately? 17 (80.95%) 4 (19.05%) 0 (0%)

Was a prespecified or standard outcome definition used? 1 (4.76%) 20 (95.24%) 0 (0%)

Were predictors excluded from the outcome definition? 21 (100%) 0 (0%) 0 (0%)

Was the outcome defined and determined in a similar way for all participants? 1 (4.76%) 20 (95.24%) 0 (0%)

Was the outcome determined without knowledge of predictor information? 1 (4.76%) 20 (95.24%) 0 (0%)

Was the time interval between predictor assessment and outcome determination

appropriate?

17 (80.95%) 4 (19.05%) 0 (0%)

Domain 4: analysis

Were there a reasonable number of participants with the outcome? 1 (4.76%) 1 (4.76%) 19 (90.48%)

Were continuous and categorical predictors handled appropriately? 21 (100%) 0 (0%) 0 (0%)

Were all enrolled participants included in the analysis? 20 (95.24%) 0 (0%) 1 (4.76%)

Were participants with missing data handled appropriately? 2 (9.52%) 19 (90.48%) 0 (0%)

Was selection of predictors based on univariable analysis avoided? 16 (76.19%) 0 (0%) 5 (23.81%)

Were complexities in the data accounted for appropriately? 21 (100%) 0 (0%) 0 (0%)

Were relevant model performance measures evaluated appropriately? 8 (38.1%) 0 (0%) 13 (61.9%)

Were model overfitting, underfitting, and optimism in model performance

accounted for?

7 (33.33%) 0 (0%) 14 (66.67%)

Do predictors and their assigned weights in the final model correspond to the

results from the reported multivariable analysis?

21 (100%) 0 (0%) 0 (0%)

He et al. Insights into Imaging          (2024) 15:185 Page 11 of 13



performed failure analysis or sensitivity analysis. Finally,
no study reported the de-identification method for the
clinical, pathological, and image data. Blind assessment
during the pathological and radiological evaluation was
also poorly reported.
There are some limitations in this study. First, only a

subset of eligible studies met the selection criteria for meta-
analyses, and significant heterogeneity existed among stu-
dies, thus it is important to interpret meta-analysis results
with caution. Second, we only used RQS, PROBAST, and
CLAIM in the evaluations. The quality of radiomics has
always been a hot topic, which affects the repeatability and
reproducibility of radiomics and limits its widespread clin-
ical application. Therefore, various checklists and tools have
been proposed for quality evaluation. Recently, the Check-
List for EvaluAtion of Radiomics research (CLEAR) and
METhodological RadiomICs Score (METRICS) were pro-
posed and were regarded as better alternatives to CLAIM
and RQS for radiomic studies [42, 43]. However, our studies
did not include these newly developed tools. Thirdly,
CLAIM, RQS, and PROBAST contain some elements of
subjective judgment, and borderline results may impact
overall interpretation.
In conclusion, although AI techniques show high diag-

nostic performance in predicting MIBC, the insufficient
quality of studies suggests that these AI models are not
currently available for clinical use. Future studies could focus
on more transparent reporting of pathological evaluation,
larger sample size, and additional analyses, such as predic-
tion explanation, failure analysis, and sensitivity analysis.
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