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Glioma is a life-threatening brain tumor influenced by 
its genetic and histologic features, notably isocitrate 

dehydrogenase (IDH) mutations, a key factor in tumor 
development and progression. The reference-standard 
method to identify IDH status involves obtaining tissue 
samples and conducting histologic assays. Given the risks 
associated with invasive biopsy, combining noninvasive 
techniques, including imaging, radiomics, and machine 
learning (ML) algorithms, to predict IDH mutation status 
can be highly beneficial.

Numerous studies have used ML algorithms to analyze 
extracted radiomics features to classify glioma tumors as 
either IDH mutated or wild type, with mixed success rates 
(1–3). A recently published meta-analysis of 26 studies 
involving 3280 patients revealed that radiomics features 
achieved a pooled sensitivity of 79% and specificity of 80% 
in detecting IDH mutations (4). This evidence underscores 
the potential of radiomics, combined with ML, to predict 
IDH mutation status from MRI scans, which could sig-
nificantly improve patient care by reducing the need for 
invasive diagnostic procedures.

In this issue of Radiology: Artificial Intelligence, Truong 
and colleagues introduced an ML-based tool that classi-
fies gliomas into IDH mutated and wild-type categories 
using MRI radiomics features (5). They used retrospective 

MRI scans from six datasets, including three public sources 
and three private datasets from distinct institutions. The 
data included patients newly diagnosed with glioma with 
known IDH mutation status and available preoperative 
MRI scans. The MRI data for this study, sourced from 
various providers, were subjected to different preprocess-
ing tools due to the unavailability of raw data in all cases. 
The substantial size of the testing set, combined with the 
rigorous validation across diverse datasets, significantly en-
hances the reliability and ensures the generalizability of the 
predictions, contributing to the high quality and trustwor-
thiness of the study’s findings.

To address the challenge of dataset imbalance, where 
the prevalence of IDH-mutated tumors was approximately 
27%, Truong et al implemented a two-stage training 
framework. This strategy achieved an accuracy of 79.9% 
for the mutated class and 93.5% for the wild-type class. 
In contrast, using the synthetic minority oversampling 
technique, which augments the mutated class to equal the 
number of wild-type cases, resulted in accuracies of 73.6% 
and 94.9%, respectively. They conclude that the two-stage 
approach effectively tackled the imbalance, potentially 
leading to more reliable diagnostic predictions.

Radiomics features from brain tumors were extracted 
using the PyRadiomics package, focusing on two regions 
of interest (ROI): the whole tumor and the nonenhancing, 
necrosis, and edema regions. This broad and inclusive ap-
proach diverges from previous studies that targeted specific 
tumor subcompartments like enhancing tumor regions; 
the approach allowed for training and testing across all 
cases in the datasets, which boosts model generalizability.

A notable aspect of this study involved enhancing the 
extraction of radiomics features by generating 12 derived 
images for each MRI sequence in addition to the original 
images. These derived images were created using a variety of 
filters, including wavelet filtering at four levels, Laplacian of 
Gaussian filtering with varying blurring levels, and math-
ematical transformations such as squaring, square root, 
logarithm, and exponential functions. By emphasizing dif-
ferent characteristics of the original images, these derived 
images significantly enriched the diversity and depth of the 
radiomics features extracted. The Boruta feature selection 
method was used to identify critical radiomics features for 
predicting IDH mutations by generating random shadow 
features to benchmark the significance of actual features. A 
total of 1197 features were extracted per ROI for each of the 
MRI sequences (T1-weighted, postcontrast T1-weighted, 
T2-weighted, and T2-weighted fluid-attenuated inversion 
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recovery), using both original and derived images enhanced by 
filters. The original, squared, and Laplacian of Gaussian images 
were the main contributors and informative among the image 
types. Similarly, from the PyRadiomics feature extractions, first-
order statistics, 22 gray-level co-occurrence matrix, and 16 gray-
level size zone matrix features were the most frequently selected 
feature classes for better prediction. 

In this comprehensive study, Truong et al have developed a 
robust MRI radiomics-based ML model to predict IDH muta-
tion status in gliomas, leveraging a remarkably extensive dataset 
from various institutions. Their best-performing models trained 
on The Cancer Imaging Archive (TCIA) dataset achieved the 
area under the receiver operating characteristic curve (AUC) val-
ues of 0.89 for UT Southwestern Medical Center (UTSW), 0.86 
for New York University (NYU), 0.93 for University of Wis-
consin-Madison (UWM), 0.94 for University of California San 
Francisco Preoperative Diffuse Glioma MRI dataset (UCSF), 
and 0.88 for Erasmus Glioma Database (EGD) test sets. The 
best-performing models trained on the UTSW dataset achieved 
slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for 
UWM, 0.93 for UCSF, and 0.90 for EGD.

The variations in MRI data properties, particularly the use 
of older imaging techniques in the TCIA datasets, including 
images post-1983, might result in the performance discrepan-
cies observed in the models trained on TCIA and UTSW data 
(6). Specifically, the models trained using the UTSW dataset, 
which utilized more recent imaging technologies, demon-
strated superior performance. This observation suggests that 
advancements in MRI technology could enhance the accuracy 
of radiomics-based prediction models. It also underscores the 
need for a detailed analysis of imaging protocols and their im-
pact on model performance.

In this study, lack of access to the original Digital Imaging 
and Communications in Medicine data forced the authors to 
use three different skull stripping and coregistration tools along 
with a mix of automated and manual techniques for tumor re-
gional segmentation. Despite the application of only one type of 
preprocessing in the training set, the study demonstrated strong 
performance on a large test set prepared with different tech-
niques. Variations in MRI scanner types, acquisition techniques, 
preprocessing, and segmentation also introduced variability in 
the test sets. It is reassuring that the model performed consis-
tently well across these diverse conditions, suggesting that it has 
high generalizability.

It is widely accepted that the accuracy of tumor segmenta-
tion is vital to assure the reliability of extracted radiomic features. 
This study demonstrated the feasibility of relying on automated 
segmentation for feature extraction, validated through testing on 
a substantial test set. This success sets the stage for broader adop-
tion and trust in automated segmentation for radiomics features 
in other applications.

It seems that a more thorough evaluation and report of the 
findings, especially the selection and number of features used, 
would have been valuable. For instance, a reduced feature set 
might maintain performance and simplify the models without 
reducing efficacy. It is unclear if the authors did this investiga-
tion or simply used the set of features provided by the Boruta 
method. Additionally, the use of derived images, such as those 
produced through Laplacian of Gaussian filtering, should be 
critically evaluated to assess their necessity, considering the con-
sistent performance metrics observed across different models.

This study applied only traditional radiomics metrics to ex-
tract information. Although the performance of this approach 
was good, it is valuable to explore deep learning techniques to 
more effectively handle the complexities inherent in the data-
set and extracted features, potentially enhancing model perfor-
mance beyond traditional ML methods.

The application of ML methods to routine MRI scans has 
opened the door for radiology to participate in the -omics revo-
lution (5). Studies such as this one demonstrate a great deal of 
information present in images that humans are not able to ap-
preciate. There is also the potential for more information to be 
found: Do the cases that ML gets “wrong” have some unique 
clinical features reflecting how tumor genetics are expressed? 
While molecular markers are clearly important for managing 
patients, is there additional information that radiology can 
provide to improve further the precision of care for patients? 
This study and others reflect that radiology has a great future in 
molecular medicine.
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