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Radiomics involves the mathematical extraction of 
quantitative features from regions of interest in 

images, providing shape, textural, and voxel interrela-
tionships information (1,2). Radiomics analysis aims 
to obtain clinically meaningful information through 
prediction models. Several studies have demonstrated 
that radiomics signatures can aid in characterizing tu-
mors (1,3,4).

However, feature stability and reproducibility are 
key limitations in the generalization of these types of 
studies. The stability of radiomics analyses is a major 
challenge because of the inherent variations in image 

acquisition and reconstruction parameters, as well as 
modifications in the radiomics pipeline. Radiomics 
analyses involve several preliminary image prepara-
tion steps, such as image denoising, signal normal-
ization, and voxel size resampling, and throughout 
this workflow, multiple factors may influence the 
results (2,5,6). Several attempts to homogenize the 
radiomics extraction process and empower the qual-
ity of radiomics processing and reporting have been 
made, but a compromise on the standardization pro-
cess of radiomics analysis has not been reached (7,8). 
However, numerous studies have been conducted to 
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Purpose: To evaluate the reproducibility of radiomics features extracted from T2-weighted MR images in patients with neuroblastoma.

Materials and Methods: A retrospective study included 419 patients (mean age, 29 months ± 34 [SD]; 220 male, 199 female) with neu-
roblastic tumors diagnosed between 2002 and 2023, within the scope of the PRedictive In-silico Multiscale Analytics to support cancer 
personalized diaGnosis and prognosis, Empowered by imaging biomarkers (ie, PRIMAGE) project, involving 746 T2/T2*-weighted MRI 
sequences at diagnosis and/or after initial chemotherapy. Images underwent processing steps (denoising, inhomogeneity bias field cor-
rection, normalization, and resampling). Tumors were automatically segmented, and 107 shape, first-order, and second-order radiomics 
features were extracted, considered as the reference standard. Subsequently, the previous image processing settings were modified, and volu-
metric masks were applied. New radiomics features were extracted and compared with the reference standard. Reproducibility was assessed 
using the concordance correlation coefficient (CCC); intrasubject repeatability was measured using the coefficient of variation (CoV).

Results: When normalization was omitted, only 5% of the radiomics features demonstrated high reproducibility. Statistical analysis 
revealed significant changes in the normalization and resampling processes (P < .001). Inhomogeneities removal had the least impact on 
radiomics (83% of parameters remained stable). Shape features remained stable after mask modifications, with a CCC greater than 0.90. 
Mask modifications were the most favorable changes for achieving high CCC values, with a radiomics features stability of 70%. Only 7% of 
second-order radiomics features showed an excellent CoV of less than 0.10.

Conclusion: Modifications in the T2-weighted MRI preparation process in patients with neuroblastoma resulted in changes in radiomics 
features, with normalization identified as the most influential factor for reproducibility. Inhomogeneities removal had the least impact on 
radiomics features.

Supplemental material is available for this article. 
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perturbations such as filters [12–14] and the changes in-
duced by different segmentation masks performed by differ-
ent readers [15–17]) of radiomics features. The robustness 
of radiomics extraction is crucial for its successful transla-
tion to the clinical setting.

Neuroblastic tumors are the most common solid extra-
cranial tumors in children. They are heterogeneous in ap-
pearance and location and display diverse behavior, which 
is influenced by various biologic, clinical, and prognostic 
factors. While some tumors undergo spontaneous regres-
sion, others advance and produce fatal outcomes despite 
therapeutic interventions (18). Radiomics has been linked 
to pathologic differentiation of peripheral neuroblastic tu-
mors (9) and MYCN amplification prediction (19), but the 
heterogeneous behavior of these tumors emphasizes the im-
portance of studying the reproducibility of radiomics, as it 
can have a substantial impact on the reproducibility and 
robustness of predictive models, which may impact the cur-
rent state of the art for tumor predictions.

This study aimed to evaluate the reproducibility of radiomics 
features extracted from T2/T2*-weighted MR images from a 
large dataset of patients with neuroblastic tumors in the scope of 
the PRedictive In-silico Multiscale Analytics to support cancer 
personalized diaGnosis and prognosis, Empowered by imaging 
biomarkers (PRIMAGE) project (20). Tumors were automati- 
cally segmented (21,22) after image preparation (denoising, 
inhomogeneity bias field correction, signal normalization, and 
resampling). Radiomics features were extracted as the reference 
standard and compared with those obtained after modifying 
these steps to assess stability.

evaluate the repeatability (ie, scan-rescan approach) (9–11) 
and reproducibility (ie, by studying the impact of imaging 

Abbreviations
ADF = anisotropic diffusion filter, ANOVA = analysis of variance, 
CCC = concordance correlation coefficient, CFF = curvature flow 
filter, CoV = coefficient of variation, GLRLM = gray-level run-
length matrix, GLSZM = gray-level size-zone matrix, PRIMAGE 
= PRedictive In-silico Multiscale Analytics to support cancer 
personalized diaGnosis and prognosis, Empowered by imaging 
biomarkers, SIOPEN = Society of Pediatric Oncology European 
Neuroblastoma Network

Summary
Modifications in the preparation of T2-weighted MR images led to 
changes in radiomics features extracted from neuroblastic tumors.

Key Points
 ■ Shape, first-order, and second-order radiomics features extracted 

from segmented neuroblastic tumors in T2/T2*-weighted MR im- 
ages were subjected to six different image processing modifications 
and/or segmentation mask modifications and were compared with 
the original series to assess feature stability and reproducibility.

 ■ Image normalization was identified as the most influential factor 
for reproducibility, with a radiomics features stability of only 5%, 
while removal of inhomogeneities was the most stable factor, with 
a parameters stability of 83%.

 ■ Shape-based radiomics features demonstrated stability and repro- 
ducibility despite mask modifications, with a concordance correla- 
tion coefficient greater than 0.90.

Keywords
Pediatrics, MR Imaging, Oncology, Radiomics, Reproducibility, 
Repeatability, Neuroblastic Tumors

Figure 1: Flowchart of selected MR images and series. There were 419 selected patients with 815 T2/T2*-weighted 
MR images. After exclusion, 746 images remained. A total of 107 radiomics parameters were extracted (series 1). Eight 
different modifications were performed and compared with the original series to assess the stability and reproducibility of 
radiomics parameters.
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extracted radiomics features. The study received institutional 
ethics committee approvals from all involved institutions; it 
was approved by the Ethics Committee for Investigation with 
Medicinal Products of the University and Polytechnic La Fe 
Hospital, ethics code 2018/0228. Signed informed consent 
was waived due to the observational and retrospective study 
design. All patients underwent an MRI examination of the 
anatomic region where the tumor was located (328 in the ab-
dominopelvic region, 91 in the cervicothoracic region) either 
at diagnosis (625 sequences) and/or after initial chemother-
apy treatment (121 sequences). Of the original 815 T2/ T2*-
weighted MR images, 69 were excluded due to incomplete 
or degraded images; thus, 746 T2/T2*-weighted MR images 
were included in the final analysis (Fig 1, Table 1). The analy-
sis was performed on T2/T2*-weighted images, as they yield 
the maximum contrast between the tumor and the surround-
ing structures. To avoid losing sample size and to increase 
generalizability by analyzing different T2 sequences, all T2-
weighted spin-echo, T2-weighted spin-echo fat-suppression, 
T2-weighted short inversion time inversion recovery, and 
T2*-weighted gradient-echo fat-saturation images that met 
the inclusion criteria were incorporated. Subsequently, in 92 
patients, only one image was included per patient, while in 
327 patients, two images were included per patient. All se-
quences had been performed separately and independently. 
The PRIMAGE data repository and platform are currently 
being integrated into the European Federation for Cancer 
Images (ie, EUCAIM), which is the largest European cancer 
imaging research infrastructure created to date.

Image Processing
Images were prepared to ensure a common framework before 
tumor segmentation (20). This preparatory phase consisted 
of applying an anisotropic diffusion filter (ADF) for denois-
ing, N4 bias field correction to correct signal inhomogeneity, z 
score signal normalization for standardization, and resampling 
for spatial harmonization. These image modification steps were 
applied and considered as the reference standard for radiomics 
extraction, referred to as series 1 (Table 2). Segmentation was 
performed after the image was improved with these modifica- 
tions, which represents a real-world scenario in which images 
are harmonized.

Tumor Segmentation
An nnU-Net convolutional neural network automatic tool 
(21,22,24) for tumor detection and segmentation was imple- 
mented to delineate the tumor as a region of interest on all 
MR images, which saved time for completing this process. This 
tool was previously trained with 132 T2-weighted manually 
segmented cases (21) and independently validated with 535 
T2-weighted studies, which were automatically segmented and 
visually validated by a radiologist (D.V.C.), who performed 
manual corrections when necessary (22). All 746 tumors were 
successfully identified and segmented automatically in the T2- 
and T2*-weighted MR images of patients with a primary neu-
roblastic tumor at diagnosis or after the first line of treatment 

Materials and Methods

Patients
This retrospective international multicenter exploratory study 
included 419 pediatric patients with pathologically proven 
neuroblastic tumors between 2002 and 2023 (23) from the 
PRIMAGE European Union Horizon 408 2020 research and 
innovation act project (topic SC1-DTH-07–2018, grant 
agreement no. 826494). Additionally, most of the patients 
participated in two clinical trials led by the Society of Pediatric 
Oncology European Neuroblastoma Network (SIOPEN): (a) 
High Risk Neuroblastoma Study (HR-126 NBL1/SIOPEN) 
with patients from 12 countries, led by St. Anna Children’s 
Cancer Research Institute (Vienna, Austria) and (b) the SIO- 
PEN European Low and Intermediate Risk Neuroblastoma 
Protocol clinical trial (ie, LINES/SIOPEN), led by La Fe 
University and Polytechnic Hospital (Valencia, Spain). Thus, 
this is a multi-institutional study with a largely heterogeneous 
dataset. Three hundred of the 419 patients have been previ- 
ously reported (22). This prior article dealt with independent 
validation of a previously developed automatic segmentation 
tool, whereas in this article, we report the reproducibility of 

Table 1: Characteristics of Study Dataset

Characteristic Value

Age at diagnosis (mo)* 29 ± 34
Sex
 Male 220
 Female 199
Histology finding
 Neuroblastoma 366
 Ganglioneuroblastoma 34
 Ganglioneuroma 19
Location
 Cervicothoracic 91
 Abdominopelvic 328
No. of sequences by manufacturer
 GE 160
 Siemens 430
 Philips 153
 Canon 3
No. of sequences by magnetic field strength
 1.5 T 602
 3 T 144
No. of sequences by type of MRI sequence
 T2wSE 77
 T2wSE-FS 611
 T2w STIR 47
 T2*wGE FS 11

Note.—Data represent numbers of patients, unless otherwise 
indicated. T2wSE = T2-weighted spin-echo, T2wSE-FS = T2- 
weighted spin-echo fat-suppression, T2w STIR = T2-weighted 
short inversion time inversion recovery, T2*wGE FS = T2*- 
weighted gradient-echo fat-saturation.
* Age presented as mean ± SD.
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ing (2,33). This filter is widely used to standardize data 
across images and has previously shown strong results for 
radiomics analysis (34). This step was employed directly 
in the PyRadiomics environment.

5. Mask editing: Erosion and dilation of the masks were 
performed as if tumors had been segmented by different 
readers. A disc-shaped structuring element with a diam- 
eter of 2 voxels was used for this purpose. A modification 
with a fixed thickness was performed to maintain consis- 
tent variability in the masks. These modifications were 
performed using SimpleITK library (25).

A scheme of the modifications for each series is presented in 
Table 2 and depicted in Figure 2. Series 2–5 underwent nor-
malization and resampling similar to the reference standard 
and were used for evaluation of denoising and inhomogeneity 
filters. Series 2 did not have any denoising or inhomogeneity 
filters. In series 3 and 4, different denoising filters were evalu-
ated (bilateral and CFF). Series 5 evaluated the effect of remov-
ing the inhomogeneity filter, with the ADF denoising filter be-
ing the same as the reference standard. Series 6 and 7 were used 
for evaluation of resampling and normalization: They had the 
same denoising and inhomogeneity filters as the reference stan-
dard, but the modifications related to resampling (series 6) or 
normalization (series 7) were removed. Series 8 and 9 had the 
same parameters as the reference standard, but a mask modifi-
cation was performed either with dilation (series 8) or erosion 
(series 9) to evaluate if minor shape variations affect radiomics.

All the modifications were applied in the PRIMAGE project’s 
environment, where a cloud-based platform has been established 
with an international repository of neuroblastic tumors (20). 
The analysis modules were tested, integrated, and deployed on 
the platform.

Segmentation was performed on the reference standard and 
then extrapolated to the rest of the series (except for 8 and 9, 
mask modifications).

Image Feature Extraction
A total of 107 radiomics features were extracted from the 746 
T2/T2*-weighted MR images and from all of the nine series 
datasets. Extracted features were classified as shape (n = 14), 

with chemotherapy. The segmentation masks were visually 
validated and manually edited, if needed, by a pediatric radi-
ologist with 7 years of experience (D.V.C.). The in-house au-
tomatic segmentation tool is publicly available at https://github.
com/lcerdaal/MRNeuroblastomaSegmentation/tree/main.

Image and Mask Modifications
For comparison, eight additional sets of images were generated 
after modifying the processing and segmentation steps. The 
different filters and modifications, which were open-source 
codes with an affordable computational cost and widely used 
in previous studies, are detailed below.

1. Denoising: Three commonly used “edge-preserving” 
filters were applied. These filters are integrated into the 
SimpleITK library (25):

(a) ADF, which acts as a high-pass filter, remov-
ing high-frequency noise. In a previous study 
performed in the scope of the PRIMAGE project 
(26), this filter showed the best results regarding 
reproducibility of radiomics features.
(b) Curvature flow filter (CFF), which smooths 
perpendicular to the isointensity contours (27).
(c) Bilateral filter, which replaces the intensity of 
each pixel with a weighted average of intensity val-
ues from nearby pixels (28).

2. Inhomogeneities: N4 bias field correction was used to 
correct low-frequency intensity nonuniformity present 
in MRI data, known as a bias or gain field. This filter has 
been widely used and is a state-of-the-art method for cor-
recting the bias field to optimize MRI-based quantification 
(29,30). This filter was applied using ANTS software (31).

3. Resampling: All MR image series were resampled to 
a voxel size of 1 × 1 × 6 mm for spatial harmonization 
to allow image comparison. This step was employed di-
rectly in the PyRadiomics environment (32).

4. Normalization: z score methods were applied as a har- 
monization process to reduce systematic variations due 
to image acquisition, reconstruction, and postprocess- 

Table 2: Nine Different Series Resulting from Applying Different Image Modifications to Original Reference Standard 
Series

Applied Modifi-
cation

Series 1:  
Reference 
Standard

Series 2:  
Raw, No  
Filter

Series 3: 
Denoising 
Filter

Series 4: 
Denoising 
Filter

Series 5: 
Inhomogene-
ities

Series 6: 
Resampling

Series 7:  
Normaliza-
tion

Series 8: 
Mask  
Dilation

Series 9:  
Mask Erosion

Denoising ADF No Bilateral CFF ADF ADF ADF ADF ADF
Inhomogeneity Yes No Yes Yes No Yes Yes Yes Yes
Normalization Yes Yes Yes Yes Yes No Yes Yes Yes
Resampling Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mask Unedited Unedited Unedited Unedited Unedited Unedited Unedited Dilation Erosion

Note.—A total of 746 sequences were performed in 419 patients. ADF = anisotropic diffusion filter, CFF = curvature flow filter.

http://radiology-ai.rsna.org
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repeatability test is frequently used for reproducibility inves-
tigations based on intrasubject variability, defined as follows:

,

where σX is the SD and μX is the mean of the absolute difference 
of feature values between two MRI scans. A low CoV indicates 
that the data points are closely clustered around the mean, sug- 
gesting less variability and greater consistency. The classifica- 
tion of CoV results was as follows: excellent (CoV ≤ 10%), 
good (11–20%), moderate (21–30%), and poor (>30%) (5).

Additionally, to assess the differences between series, an 
initial exploratory descriptive analysis was performed to assess 
the differences between series, and to confirm the findings, an 
analysis of variance (ANOVA) was conducted. A post hoc mul-
tiple comparisons test was applied, employing the Bonferroni 
method. Only P values less than .001 were considered as statis-
tically significant. Statistical analysis was performed with JASP 
software (version 0.18.1).

Results

Patient Characteristics
Characteristics of the 419 included patients (mean age, 29 months 
± 34 [SD]; 220 male, 199 female) are presented in Table 1.

Interseries Radiomics Reproducibility
The number of radiomics features and the percentage of those 
within each level of agreement (excellent, good, moderate, 
poor) were analyzed per series and are summarized in Table S2. 
As the study aim was to evaluate the radiomics features that 
showed the highest reproducibility, only those variables that 
demonstrated excellent agreement (CCC > 0.90) were selected 
as stable for each series (Tables 3, 4).

Reproducibility after Filter Modification
Upon analysis of the radiomics variables with a CCC greater 
than 0.90 after filter modifications (series 2 to 5: raw, denois-

original intensity-based histogram or first order (n = 18), and 
original texture or second order (n = 75), including gray-level 
co-occurrence matrix (n = 24), gray-level dependence matrix 
(n = 14), gray-level run-length matrix (GLRLM, n = 16), gray-
level size-zone matrix (GLSZM, n = 16), and neighboring 
gray-tone difference matrix (n = 5). Analyses were performed 
using PyRadiomics (32). A complete list of the obtained fea-
tures is included in Table S1.

For the series in which the shape was not altered (series 2 
to 7), shape features were not analyzed, as the tumor shape 
and mask remained consistent across all transformations. In 
these cases, 93 first- and second-order radiomics features were 
considered. Conversely, in the series in which the mask was 
modified, shape, first-order, and second-order radiomics fea-
tures were evaluated.

Performance and Statistical Analysis
According to recommended terminology for the technical per- 
formance of quantitative imaging biomarkers, reproducibility 
is a measure of precision when repeating measurements un- 
der varying conditions (35). For assessing reproducibility, the 
concordance correlation coefficient (CCC) was used. This is a 
commonly used method to evaluate agreement between paired 
data (36), calculated as follows:

,

where μX and μY are the mean values, σ2
X and σ2

Y are the cor- re-
sponding variances, and ρ is the correlation coefficient as as-
sessed for each radiomics feature over all individuals within dif-
ferent acquisitions. CCC values close to 1 are indicative of high 
reproducibility. CCC was classified as excellent (if ≥ 0.90), good 
(0.75–0.89), moderate (0.50 to <0.75), or poor (<0.50) (6).

As this calculation depends on the natural variance of the  
underlying data (2), the coefficient of variation (CoV) was 
also calculated for each radiomics parameter. This precision 

Figure 2: Impact of each processing step on T2-weighted MR images in a 6-year-old female patient with a right adrenal neuroblastic tumor. ADF = anisotropic diffu-
sion filter, CFF = curvature flow filter.
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ing, and inhomogeneities filters), series 5 without the N4 inho-
mogeneity filter displayed the highest number of reproducible 
variables (78 of 93 radiomics features, 84%) (Table 3). This 
indicates that inhomogeneities removal had the least impact 
on radiomics. Of the 93 radiomics features, series 3 (bilateral 
denoising filter) and series 4 (CFF denoising filter) showed a 
CCC greater than 0.90 in 68 (73%) and 64 (69%) features, re-
spectively. Series 2 (without denoising or inhomogeneity filter) 
had a total of 67 reproducible features (72%).

When series 2–5 were combined and the influence of filtering 
was analyzed, 57 of 93 (61%) radiomics features demonstrated 
high reproducibility (CCC > 0.90) (Table S3).

Reproducibility after Removing Resampling and 
Normalization
The impact of normalization and resampling was analyzed as part 
of the curation and harmonization algorithms applied to images 
in real-world data before radiomics feature extraction. Among the 
radiomics features with a CCC greater than 0.90 after resampling 
or normalization removal, 38 of 93 features maintained a high 
level of agreement when resampling was not performed (41%), 
while only five of 93 (5%) exhibited a CCC greater than 0.90 if z 
score normalization was not applied (Table 3). When series 6 and 
7 were put together, there were 41 of 93 (44%) radiomics features 
that had high reproducibility (Table S4).

Reproducibility with Mask Modification
In these analyses, radiomics shape features were also included. 
There were some radiomics variables that showed a CCC 
greater than 0.90 after mask size modification (series 8 and 9). 
In series 8 (mask dilation), 79 of 107 (74%) features showed 
excellent agreement compared with the reference standard. 
In series 9 (mask erosion), a higher number of reproducible 
variables with a CCC greater than 0.90 was observed (n = 84, 
78%) (Table 4). All the shape variables remained stable and 
reproducible in both series 8 and 9 (14 of 14 radiomics fea-

tures, 100% in each series). When the morphology modifica-
tions were combined, 75 of 107 features (70%) remained with 
a CCC greater than 0.90. Table 4 lists the radiomics features 
that had high reproducibility after mask size modification. The 
radiomics features with an excellent level of agreement regard-
ing erosions and dilations are listed in Table S5.

Lower Reproducibility after Image Perturbations
Second-order radiomics features GLRLM and GLSZM were 
the group of parameters that had the lowest mean percentage 
with an excellent level of agreement (Tables 3, 4): After pro-
cessing modification (series 2 to 7), a mean of 39% ([44 + 56 + 
44 + 69 + 19 + 0]/6) of GLRLM features and 41% ([56 + 56 + 
50 + 69 + 12 + 0]/6) of GLSZM features reached an excellent 

Table 4: Number of Shape, First-order, and Second-or-
der Radiomics Features and Percentage with Excellent 
Agreement for Series with Mask Shape Modifications 
Compared with Reference Standard

Modification
Series 8:  
Mask Dilation

Series 9:  
Mask Erosion Total (%)

Shape (n = 14) 14 (100) 14 (100) 100
First order (n = 18) 13 (72) 16 (89) 81
GLCM (n = 24) 18 (75) 21 (87) 81
GLDM (n = 14) 11 (79) 9 (64) 71
GLRLM (n = 16) 11 (69) 11 (69) 69
GLSZM (n = 16) 8 (50) 9 (56) 53
NGTDM (n = 5) 4 (80) 4 (80) 80
 Total (n = 107) 79 (74) 84 (78) 76

Note.—Unless otherwise noted, data are numbers, with percent-
ages in parentheses. Excellent agreement was defined as CCC 
> 0.90. CCC = concordance correlation coefficient, GLCM = 
gray-level co-occurrence matrix, GLDM = gray-level dependence 
matrix, GLRLM = gray-level run-length matrix, GLSZM = 
gray-level size-zone matrix, NGTDM = neighboring gray-tone 
difference matrix.

Table 3: Number of First-order and Second-order Radiomics Features and Percentage with Excellent Agreement for Se- 
ries with Modifications in Imaging Processing Compared with Reference Standard

Modification

Series 2:  
Raw, No  
Filter

Series 3:  
Denoising  
Filter, Bilateral

Series 4:  
Denoising  
Filter, CFF

Series 5:  
Inhomogeneities

Series 6:  
Resampling

Series 7:  
Normalization Mean (%)

First order (n = 18) 17 (94) 18 (100) 17 (94) 17 (94) 16 (89) 2 (11) 81
GLCM (n = 24) 21 (87) 19 (79) 19 (79) 22 (92) 13 (54) 3 (12) 67
GLDM (n = 14) 8 (57) 9 (64) 8 (57) 12 (86) 3 (21) 0 (0) 48
GLRLM (n = 16) 7 (44) 9 (56) 7 (44) 11 (69) 3 (19) 0 (0) 39
GLSZM (n = 16) 9 (56) 9 (56) 8 (50) 11 (69) 2 (12) 0 (0) 41
NGTDM (n = 5) 5 (100) 4 (80) 5 (100) 5 (100) 1 (20) 0 (0) 67
 Total (n = 93) 67 (72) 68 (73) 64 (69) 78 (84) 38 (41) 5 (5) 57

Note.—Unless otherwise noted, data are numbers, with percentages in parentheses. Excellent agreement was defined as CCC > 0.90. CCC
= concordance correlation coefficient, CFF = curvature flow filter, GLCM = gray-level co-occurrence matrix, GLDM = gray-level depen- 
dence matrix, GLRLM = gray-level run-length matrix, GLSZM = gray-level size-zone matrix, NGTDM = neighboring gray-tone difference 
matrix.

http://radiology-ai.rsna.org
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Figure 3: Individual value, box and whisker, and raincloud plots of CCC show notable differences 
among series 2–7. Series 6 and 7 exhibited poorer performance, with lower mean and median values and 
a higher proportion of cases falling below the 0.9 threshold for CCC, along with higher dispersion values. 
Series 2–5 displayed comparable results with one another. Box plots represent the median and first and 
third quartiles, and the whiskers represent the lines extending from the box in both directions to the minimum 
and maximum values. Raincloud plots allow for visualization of the distribution of the data. CCC = concor-
dance correlation coefficient.

Figure 4: Individual value, box and whisker, and raincloud plots of CCC of series 8 and 9, which were 
the top-performing series, exhibit higher mean and median CCC values and lower SDs. Box plots represent 
the median and first and third quartiles, and the whiskers represent the lines extending from the box in both 
directions to the minimum and maximum values. Raincloud plots allow for visualization of the distribution of 
the data. CCC = concordance correlation coefficient.

level of agreement. After mask modifications, these values were 
69% for GLRLM ([69 + 69]/2) and 53% ([50 + 56]/2) for 
GLSZM. There were 15 second-order radiomics features that 
showed a poor level of agreement in all the series (Table S6).

Additional Analyses
To assess the differences between series, two exploratory analy-
ses were initially conducted for series 2 to 7 and for series 8 and 
9 separately.

The first analysis, for series 2 to 7, revealed significant differ-
ences among series. Notably, series 6 and 7 exhibited remark-
ably poorer performance compared with the other series, as 

evident in their lower mean and median values 
and the proportion of cases falling below the 
0.9 threshold for CCC (Fig 3). Additionally, 
these series displayed higher dispersion values. 
Conversely, series 2–5 displayed comparable 
results. The most noteworthy results were ob-
served in the analysis of series 8 and 9 (Fig 4), 
which emerged as the top-performing series, 
with higher mean and median CCC values 
and lower SDs.

To further confirm these findings, we con- 
ducted two ANOVA analyses (for each group 
of series, 2 to 7 and 8 and 9), treating the series 
as a factor while considering the data’s organi-
zational structure as blocks, due to the calcula-
tion of 93 parameters for the first group of series 
and 107 parameters for the second group. For 
series 2 to 7, the ANOVA results confirmed 
statistically significant differences among the se-
ries (Table S7, Fig S1). The analysis revealed no 
evidence of differences among series 2–5. Nev-
ertheless, series 6 and 7 displayed significant dif-
ferences compared with the rest of the series and 
also compared with one another (Table S8). A 
detailed analysis of the residuals showed no in-
dication of any potential influence on the results 
from factors other than the series.

Series 8 and 9, characterized by lower SDs, 
achieved higher average CCC values. The sole 
distinction between these two high-perform-
ing series was the utilization of either dilation 
or erosion in the mask. The analysis focusing 
on these two series, considering their paired 
data, concluded that there was no evidence of 
differences between them (Table S9).

Intrasubject Variability
When analyzing intrasubject variability 
through the CoV, only eight of 107 second-
order radiomics features showed an excellent 
result of less than 0.10 in at least two series 
(7%) (Table 5).

Clinical Impact
Within the PRIMAGE project, a model for overall survival 
prediction was developed (summary available at: https://cordis. 
europa.eu/project/id/826494/results/es, DOI: 10.3030/826494). 
Among the variables with a significant impact on this overall 
survival model, two main radiomics features stand out: shape 
feature maximum two-dimensional diameter (x-z plane) and 
first-order feature skewness. In our study, the first variable 
demonstrated reproducibility and stability after mask modifi-
cations, achieving a CCC of 0.99 for erosions and dilations. 
Skewness was also among the more stable variables, showing a 
high level of agreement (CCC > 0.9) for all the modifications 
applied, except for dilation.

https://cordis. europa.eu/project/id/826494/results/es
https://cordis. europa.eu/project/id/826494/results/es
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Discussion
To effectively translate radiomics to clinical practice, it is essen- 
tial to evaluate the robustness of radiomics features. Radiomics 
repeatability can be evaluated by testing the consistency of 
performance by scan-rescan approach, but our real-world 
data study does not allow this analysis. Reproducibility can be 
evaluated by applying image perturbations, such as filters or 
normalization, and different segmentation masks, as has been 
demonstrated in this study. To our knowledge, this is the first 
study to analyze the reproducibility of radiomics in pediatric 
tumors, although previous works have analyzed the precision 
of radiomics features in other tumors, such as hepatocellu-
lar carcinoma (5) or glioblastoma (13,14). One of the main 
strengths of our study is the large multicentric cohort of pa-
tients with neuroblastic tumors recruited during a long period 
of time (21-year data collection), which are heterogeneous in 
location and behavior.

In this analysis, different changes were applied to a reference 
standard, including an ADF algorithm for denoising, N4 bias 
field correction for inhomogeneities removal, normalization 
with z score, and resampling. Images were improved with these 
modifications to represent a real-world scenario in which images 
are harmonized.

Among the different imaging modifications, inhomogeneities 
removal (filter N4, series 5) had the lowest impact on radiomics, 
showing more reproducible features compared with other series. 
A previous study analyzing the influence of bias field correction 
and denoising in radiomics for glioblastoma multiforme showed 
that bias field correction followed by noise filtering introduced 

more stable and reproducible features than noise filtering fol-
lowed by bias field correction (13).

Resampling and normalization, crucial steps before compar- 
ison, altered the radiomics results, with statistically significant dif-
ferences between normalization and resampling compared with 
the other modifications. When removing normalization, only 
five of 93 (5%) of the radiomics features remained stable (two 
first-order radiomics features and three second-order gray-level co-
occurrence matrix features). Normalization has a great impact on 
first- and second-order radiomics, mainly due to the fact that the 
value of the intensities is modified by applying a z score, with an 
average intensity value of 0. Normalization should be considered 
carefully to avoid biasing the results and not evaluating the effect 
of the tumor but the effect of modifications in image prepara-
tion. Our results support the conclusions extracted in previous 
works (14). One previous study analyzed the effects of MR image 
normalization in prostate cancer radiomics (12) and revealed that 
normalization had a huge impact on the majority of radiomics 
features, which could have a remarkable impact on the results of 
radiomics models. These results demonstrate that comparing ra-
diomics research may not be reliable if normalization has not been 
done with the same standardized methods.

The stability of shape radiomics features was anticipated in 
the series where the shape was not altered, as the tumor shape 
and mask remained consistent across all transformations. Con-
sequently, shape radiomics features were not included in series 
2–7 analysis, as the segmentation mask remained unchanged. 
Similar results have been previously reported, with high ro-
bustness and reproducibility of shape features in radiomics in 

Table 5: Coefficient of Variation Values for Radiomics Features in Each Series

Radiomics Feature

Modification

Series 1:  
Ground  
Truth

Series 2:  
Raw,  
No Filter

Series 3:  
Denoising  
Filter, Bilateral

Series 4:  
Denoising  
Filter, CFF

Series 5:  
Inhomogeneities

Series 6:  
Resampling

Series 7:  
Normalization

Series 8: 
Mask  
Dilation

Series 9:  
Mask  
Erosion

GLCM: Inverse dif-
ference moment 
normalized

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

GLCM: Inverse dif-
ference normalized

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

GLDM: Dependence 
entropy

0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08

GLRLM: Short run 
emphasis

0.09 0.07 0.08 0.07 0.09 0.08 0.07 0.08 0.10

GLRLM: Run 
entropy

0.10 0.10 0.09 0.09 0.10 0.10 0.17 0.09 0.11

GLRLM: Run per-
centage

0.12 0.10 0.11 0.10 0.12 0.11 0.09 0.11 0.13

GLSZM: Zone 
entropy

0.10 0.09 0.09 0.09 0.10 0.09 0.11 0.08 0.12

GLSZM: Small area 
emphasis

0.12 0.10 0.11 0.11 0.12 0.16 0.13 0.10 0.15

Note.—Coefficient of variation < 0.10 indicates an excellent repeatability. CFF = curvature flow filter, GLCM = gray-level co-occurrence 
matrix, GLDM = gray-level dependence matrix, GLRLM = gray-level run-length matrix, GLSZM = gray-level size-zone matrix, NGTDM
= neighboring gray-tone difference matrix.

http://radiology-ai.rsna.org
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glioblastoma multiforme (13). For series in which the mask’s 
shape was modified (erosion or dilation of the mask), the shape 
variables remained stable and reproducible, with a CCC above 
the cutoff point of 0.9. In these cases, the modifications of the 
shape were relatively small, so these radiomics variables did not 
change significantly. This implies that small modifications in the 
shape of the segmentations that may be due to discrepancies in 
manual segmentation and interobserver variability do not af-
fect the reproducibility of this radiomics feature but do affect 
first- and second-order radiomics. Mask dilation and erosion 
were found to impact the radiomics results. When applying ero-
sion, radiomics features remained more stable. This implies that 
the reduction of the area of the tumor still encases only tumoral 
voxels and that radiomics remains more stable compared with 
dilation, where voxels that do not belong to the tumor are added 
to the radiomics analyses. Segmentation mask–related changes 
have also been reported. A study comparing radiomics results in 
segmentations performed by independent professionals of dif-
ferent disciplines showed that variability in segmentation affects 
radiomics feature stability for CT-based radiomics studies in 
pancreatic cancer (15). Additionally, a study including manual 
segmentations performed by different individuals in three differ-
ent tumor types on CT images showed that interobserver delin-
eation variability had a relevant influence on radiomics analysis 
and was strongly influenced by tumor type (37).

Regarding intrasubject reproducibility, many of the ra-
diomics features did not show high variability over multiple 
measurements. However, some second-order radiomics features 
presented excellent reproducibility in all series, which could be 
considered as stable biomarkers and could have potential clinical 
value. Previous studies addressing the CoV after gray-level resa-
mpling have shown that this modification improves second and 
higher order radiomics features (38).

Our study had several limitations. It was conducted on a 
heterogeneous dataset with varying acquisition parameters, time 
points (at diagnosis or after treatment), and locations, which 
could have influenced the results. However, all these variations 
reflect the real-world nature of the large retrospective datasets 
used for tumor phenotyping by radiomics. Further investigation 
should consider the differences by stratifying the results based on 
variables such as sex, location, previous treatment, or MR manu- 
facturer. Another potential limitation was that this study was 
performed only in neuroblastic tumors, and future opportuni- 
ties would include studying different cancer types. Furthermore, 
the analysis included only T2-weighted images, so future work 
could explore the reproducibility in other MRI sequences. Fu- 
ture work should focus on the construction of prognostic models 
integrating clinical variables to assess the impact of radiomics on 
clinical outcomes of interest.

In summary, it is essential to report each step of image pro-
cessing to ensure reproducible radiomics feature extraction. We 
propose the use of an ADF for denoising, N4 bias field correc-
tion to correct signal inhomogeneity, z score signal normaliza-
tion for standardization, and resampling for spatial harmoniza-
tion. Any modification of these preparation steps can lead to 
changes in radiomics features, with normalization being the 
most influential step.
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