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Glioma is a common and life-threatening type of 
brain tumor. The survival rates and responses to 

treatment of patients with glioma are influenced by the 
tumor’s genetic and histologic characteristics. Recent 
studies have identified isocitrate dehydrogenase (IDH)
mutations as a crucial factor in the development and 
progression of glioma. Therefore, the World Health 
Organization updated the brain tumor classification 
in 2016 to include molecular marker diagnostics and 
classic histologic diagnostics (1). The World Health 
Organization also recommends determining the IDH 
status of patients with glioma to guide the selection of 
appropriate treatment therapies.

The detection of IDH mutation status is mainly 
based on genetic profiling of tumor tissue acquired 
through biopsy or surgical resection. However, depend-
ing on the accessibility of the mass, brain tumor resec-
tion may not be safe, and biopsy-based methods may 

cause complications. Therefore, noninvasive alternatives 
are important for obtaining genetic and histologic in-
formation. Radiomics is a novel technique to extract 
multidimensional features of a region of interest (ROI) 
from medical images (2). These features can be used to 
develop diagnostic or predictive models for outcomes 
of interest. Since MRI is currently included in routine 
clinical care for patients with glioma, radiomics features 
extracted from MRI have gained substantial interest as 
a promising method to predict IDH mutation status in 
these patients.

Radiomics features extracted from multicontrast MRI 
have been combined with machine learning techniques 
to develop models for predicting IDH mutation status 
(3–9). Some studies have focused on a specific histologic 
subtype of glioma, such as low-grade glioma (7,10,11) or 
high-grade glioma (8,12–14). Most radiomics-based mod-
els have been tested on relatively limited patient cohorts, 
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Purpose: To develop a radiomics framework for preoperative MRI-based prediction of isocitrate dehydrogenase (IDH) mutation status, a 
crucial glioma prognostic indicator.

Materials and Methods: Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination 
of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original 
data source. Boruta, a wrapper-based feature selection algorithm, identified relevant features. Addressing the imbalance between mutated 
and wild-type cases, multiple prediction models were trained on balanced data subsets using random forest or XGBoost and assembled 
to build the final classifier. The framework was evaluated using retrospective MRI scans from three public datasets (The Cancer Imaging 
Archive [TCIA, 227 patients], the University of California San Francisco Preoperative Diffuse Glioma MRI dataset [UCSF, 495 patients], 
and the Erasmus Glioma Database [EGD, 456 patients]) and internal datasets collected from the University of Texas Southwestern Medical 
Center (UTSW, 356 patients), New York University (NYU, 136 patients), and University of Wisconsin–Madison (UWM, 174 patients). 
TCIA and UTSW served as separate training sets, while the remaining data constituted the test set (1617 or 1488 testing cases, respec-
tively).

Results: The best performing models trained on the TCIA dataset achieved area under the receiver operating characteristic curve (AUC) 
values of 0.89 for UTSW, 0.86 for NYU, 0.93 for UWM, 0.94 for UCSF, and 0.88 for EGD test sets. The best performing models trained 
on the UTSW dataset achieved slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for UWM, 0.93 for UCSF, and 0.90 for EGD.

Conclusion: This MRI radiomics-based framework shows promise for accurate preoperative prediction of IDH mutation status in patients 
with glioma.

Supplemental material is available for this article.
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Materials and Methods

Datasets
This study used retrospective MRI scans from three publicly 
available and three internal datasets. The public datasets in-
cluded data from The Cancer Genome Atlas (16) and the Ivy 
Glioblastoma Atlas (17), which were both downloaded from 
and together referred to as TCIA (18); the University of Cali-
fornia San Francisco Preoperative Diffuse Glioma MRI dataset 
(UCSF) (19); and the Erasmus Glioma Database (EGD) (20). 
The internal datasets were collected from three geographi-
cally distinct institutions, namely the University of Texas 
Southwestern Medical Center (UTSW), New York University 
(NYU), and the University of Wisconsin–Madison (UWM). 
UTSW Institutional Review Board approval was obtained with 
a waiver of consent for the use of retrospective data or public 
datasets. All internal data were anonymized, and the study was 
compliant with the Health Insurance Portability and Account-
ability Act.

Data from the patients that met the following criteria were 
included in this study: (a) newly diagnosed with glioma; (b) 
IDH mutation status was available; (c) preoperative MRI scans 
with T1-weighted, postcontrast T1-weighted, T2-weighted, and 
T2-weighted fluid-attenuated inversion recovery sequences were 
available; and (d) tumor segmentation was available.

Image Preprocessing and Multiregional Tumor Segmentation
The MRI data included in this study were collected from mul-
tiple sources and underwent distinct preprocessing tools due to 
the unavailability of raw data for uniform processing. However, 
the preprocessing pipeline of all datasets consisted of standard-
ized steps commonly used for multimodal glioma analysis, in-
cluding registering to a common anatomic space with a voxel 
resolution of 1 × 1 × 1 mm3, correcting for bias field distortion, 
coregistering MRI scans to a template atlas, and removing all 
nonbrain tissue (skull stripping) from the image. The federated 
tumor segmentation (FeTS) (21) tool was used to preprocess 
the TCIA and internal datasets. The UCSF dataset underwent 
preprocessing using multiple publicly available tools, including 
the Advanced Normalization Tools (22) and the brain masking 
tool (23). For the EGD dataset, all scans were registered using 
Elastix, version 5.0.0 (3CX) (24), and the skull was stripped by 
HD-BET (25).

Tumor segmentation masks for the TCIA and three internal 
datasets were obtained using the FeTS tool. FeTS segmented 
the tumor into three subcompartments: the necrotic tumor core 
(NCR, label 1), the NET and peritumoral edematous/invaded 
tissue (NET/ED, label 2), and the enhancing part of the tumor 
(ET, label 4). These automated masks were used directly to ex-
tract radiomics features without manual correction.

For the UCSF dataset, a different automated segmentation 
tool based on the multimodal brain tumor segmentation chal-
lenge algorithm was used to obtain automated tumor segmenta-
tion masks (26). These masks were then corrected manually by 
a group of annotators and approved by a neuroradiologist with 
more than 15 years of experience. However, the segmentation 

either from The Cancer Imaging Archive (TCIA) dataset (3) or 
local data (12–14), primarily using the cross-validation method. 
A few radiomics-based studies extended assessment of the pre-
diction model on an independent test set (7,8,15). Although 
these studies have reported IDH prediction accuracies ranging 
from 72% to 97%, an extensive evaluation of the prediction 
models on a larger patient sample is still needed to establish their 
effectiveness in clinical practice.

This study focused on developing IDH mutation predic-
tion models in patients with glioma using preoperative MRI 
radiomics features and a two-stage training framework. Unlike 
previous studies that focused on specific tumor subcompart-
ments, this study extracted radiomics features from either the 
whole tumor (WT) or the combination of nonenhancing tumor, 
necrosis, and edema regions (NET + NCR + ED). This inclusive 
approach allowed all patients to be included in the study, regard-
less of whether certain tumor subcompartments were absent (eg, 
enhancing tumor). Relevant radiomics features for IDH geno-
typing were identified through a feature selection algorithm and 
used in conjunction with machine learning techniques to build 
prediction models. Multiple models were trained using different 
balanced subsets resampled from the original imbalanced train-
ing dataset and then ensembled to build the final classifier. The 
derived models were tested on a diverse patient sample archived 
from multiple institutions with varying MRI acquisition proto-
cols, preprocessing methods, and tumor mask qualities.

Abbreviations
AUC = area under the ROC curve, ED = edema, EGD = Erasmus 
Glioma Database, FeTS = federated tumor segmentation, IDH = 
isocitrate dehydrogenase, NCR = necrosis, NET = nonenhanc-
ing tumor, NYU = New York University, ROC = receiver operat-
ing characteristic, ROI = region of interest, TCIA = The Cancer 
Imaging Archive, UCSF = University of California San Francisco 
Preoperative Diffuse Glioma MRI dataset, UTSW = University of 
Texas Southwestern Medical Center, UWM = University of Wis-
consin–Madison, WT = whole tumor

Summary
A preoperative MRI radiomics-based model developed using a 
two-stage training framework demonstrated high performance in 
predicting IDH mutation status in patients with glioma.

Key Points
 ■ IDH mutation status prediction models for glioma were developed 

using preoperative MRI radiomics features extracted from either 
the whole tumor or the combination of nonenhancing, necrosis, 
and edema regions, along with a multibalanced subset training 
strategy.

 ■ The best performing models trained on The Cancer Imaging 
Archive dataset achieved area under the receiver operating charac-
teristic curve (AUC) values ranging from 0.86 to 0.94 when tested 
on internal and public datasets.

 ■ The best performing models trained on the University of Texas 
Southwestern Medical Center internal dataset achieved slightly 
higher AUC values, ranging from 0.88 to 0.96, on the internal 
and public test sets.

Keywords
Glioma, Isocitrate Dehydrogenase Mutation, IDH Mutation, 
Radiomics, MRI
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of the feature extraction process is presented in Appendix S1. 
PyRadiomics settings, as well as image types, feature classes, and 
feature names used for feature extraction, are summarized in 
Tables S3 and S4.

Data Balancing
The overall prevalence of IDH-mutated tumors in our cohort 
was approximately 27%, which is lower than IDH wild type. 
Hence, to enhance classification performance on the unbal-
anced dataset, a two-stage training framework was imple-
mented (Fig 1). In the first stage, multiple balanced training 
subsets were generated by randomly sampling the majority 
class (ie, IDH wild-type instances were randomly sampled to 
achieve a 1:1 ratio with the mutated cases). Then, a set of pre-
diction models was trained using these subsets. In the second 
stage, we ensembled the prediction models by averaging the 
prediction probabilities of IDH mutation status. This approach 
was designed to produce an efficient classifier with improved 
accuracy and reduced bias toward the majority class.

Feature Selection and IDH Mutation Classification
Boruta feature selection (29) was employed to identify the 
most relevant radiomics features for predicting IDH muta-
tions. The Boruta method operates by generating random 
shadow features, which serve as a reference point for the actual 
features. The most relevant features were identified by assessing 
how frequently they outperform these shadow features. In our 
framework, Boruta was used on multiple balanced subsets of 
the training data. The most frequently selected features across 
these subsets were then considered the relevant feature set to 
train the classifier models. The radiomics features from each 
individual ROI (WT or [NET + NCR + ED]), as well as the 
combined features of both ROIs, were passed through Boruta 
to determine three sets of the most pertinent features.

The IDH mutation prediction models were then trained us-
ing two classifiers, random forest (30) and XGBoost (31). RF 
and XGBoost are both ensemble methods, which enable them to 
capture complex data relationships and handle high-dimensional 

labels for the UCSF dataset were slightly different from those of 
the TCIA and internal datasets. The tumor in the UCSF dataset 
was segmented into three subcompartments: the NET and ne-
crotic tumor core (NET/NCR, label 1), ED (ED, label 2), and 
enhancing tumor (ET, label 4).

Finally, for the EGD dataset, only WT masks were avail-
able. These masks were segmented either manually or auto-
matically using a convolutional neural network–based method 
(27). The automated masks in the EGD dataset were not man-
ually corrected.

Radiomics Feature Extraction
The brain tumor radiomics features were extracted using the 
PyRadiomics Python package (28). To ensure that all patients 
were included in the study, regardless of the presence or ab-
sence of any tumor subcompartment, two ROIs were defined: 
the WT and the nonenhancing and edematous (NET + NCR 
+ ED) region. Radiomics features were extracted from both 
ROIs for each of the four MRI sequences (T1-weighted, post-
contrast T1-weighted, T2-weighted, and T2-weighted fluid-
attenuated inversion recovery).

Different types of radiomics features were extracted from the 
brain tumor, including shape, first-order, and texture features. 
Specifically, we extracted 14 shape features, 18 first-order fea-
tures, 22 gray-level co-occurrence matrix features, 16 gray-level 
run-length matrix features, 16 gray-level size zone matrix fea-
tures, 14 gray-level dependence matrix features, and five neigh-
boring gray-tone difference matrix features.

In addition to the original images, 12 derived images for 
each MRI sequence were also generated to extract additional ra-
diomics features. These derived images were obtained using dif-
ferent filters, including wavelet filtering at four levels, Laplacian 
of Gaussian filtering with four levels of σ (from 2 to 5 mm), 
square, square root, logarithm, and exponential operators. Each 
of these derived images emphasizes different characteristics of 
the original images, thereby enriching the extracted radiomics 
features. In total, we extracted 1197 radiomic features from 
each ROI and each MRI sequence. The detailed description 

Figure 1: Flowchart of proposed MRI radiomics-based framework for predicting isocitrate dehydrogenase (IDH) mutation status in 
gliomas. 
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the standard normal distribution. Statistical metrics were 
calculated using the Scikit-learn package, version 1.2.1, in 
Python, version 3.8. No statistical significance testing was 
conducted in this study.

Results

Patient Characteristics
A total of 1844 patients across all datasets were included in this 
study (TCIA, 227 patients; UCSF, 495 patients; EGD, 456 pa-
tients; UTSW, 356 patients; NYU, 136 patients; and UWM, 
174 patients). Table 1 summarizes the patient characteristics 
and IDH status of all datasets.

Performance of Radiomics Models for IDH Mutation Status 
Prediction
The prediction performance of different models trained by 
TCIA and UTSW datasets is detailed in Tables 2 and 3, respec-
tively. The 95% CIs for the AUC values are reported in Tables 
S7 and S8. Three models were compared: two models built 
from multicontrast features extracted from a single ROI (WT 
or [NET + NCR + ED]) and one model built from the com-
bined features of these two ROIs. Because the EGD dataset 
had only WT masks, the reported results were only for the WT.

For models trained on the TCIA dataset, the highest AUC 
values were 0.89 (95% CI: 0.86, 0.92) for UTSW, 0.86 (95% 
CI: 0.80, 0.93) for NYU, 0.93 (95% CI: 0.89, 0.97) for UWM, 
0.94 (95% CI: 0.92, 0.96) for UCSF, and 0.88 (95% CI: 0.85, 
0.91) for EGD test sets, all obtained using the random forest 
classifier. The ROC curves for the combined test sets, including 
UTSW, NYU, UWM, and UCSF, are visually represented in 

feature spaces effectively. Additionally, they exhibit resilience to 
outliers, making them robust choices for this study. IDH predic-
tion models were trained on multiple balanced subsets derived 
from either TCIA (IDH mutated, n = 94; IDH wild type, n = 
133) or UTSW (IDH mutated, n = 102; IDH wild type, n = 
256) data. These two datasets were selected as the training data 
since they had a sufficient number of mutated cases and were 
preprocessed by FeTS with the same tumor subregion anno-
tations approach. The trained models were tested on all other 
held-out datasets. UTSW data were included in the test set for 
the models derived from the TCIA data used as the training set, 
and vice versa. The parameters for the Boruta feature selection 
method, as well as the random forest and XGBoost classifiers, 
can be found in Table S5.

Statistical Analysis
The performance of the prediction models was assessed us-
ing several metrics, including accuracy, sensitivity, specific-
ity, precision, F1 score, and the area under the receiver oper-
ating characteristic curve (AUC). To compute the AUC, the 
prediction probabilities of the mutated class were used to 
construct the receiver operating characteristic (ROC) curve. 
Various probability thresholds were applied to classify IDH 
status into either the mutated or wild-type class, resulting 
in a series of (1 – specificity, sensitivity) points forming the 
ROC curve. The AUC was calculated as the area under the 
ROC curve. The CI of the AUC was calculated using the 
DeLong method (32). The covariance of sensitivity and 
(1 – specificity) across all possible classification thresholds 
was first computed. This covariance was used to estimate 
the variance of the AUC. The CI was then derived using 

Table 1: Patient Characteristics of Different Datasets

Variable TCIA (n = 227) UCSF (n = 495) EGD (n = 456) UTSW (n = 356) NYU (n = 136) UWM (n = 174) Total (n = 1844)

IDH status
 Mutated 94 (41.4) 103 (20.8) 150 (32.9) 102 (28.7) 23 (16.9) 19 (10.9) 491 (26.6)
 Wild type 133 (58.6) 392 (79.2) 306 (67.1) 254 (71.3) 113 (83.1) 155 (89.1) 1353 (73.4)
Sex
 Female 103 (45.4) 199 (40.2) 171 (37.5) 145 (40.7) 63 (46.3) 0 681 (36.9)
 Male 108 (47.6) 296 (59.8) 284 (62.3) 193 (54.2) 73 (53.7) 0 954 (51.7)
 Unknown 16 (7.0) 0 1 (0.2) 18 (5.1) 0 174 (100) 209 (11.3)
Age (y)
 > 65 45 (19.8) 154 (31.1) 136 (29.8) 101 (28.4) 33 (24.3) 0 469 (25.4)
 ≤ 65 166 (73.1) 341 (68.9) 280 (61.4) 233 (65.4) 53 (39.0) 0 1073 (58.2)
 Unknown 16 (7.0) 0 40 (8.8) 22 (6.2) 50 (36.8) 174 (100) 302 (16.4)
 Median 54 (41–63) 59 (47–68) 56.5 (45–69) 56.5 (44–67) 61 (43–68) … …
Segmentation
 Manual 0 495 (100) 0 0 0 0 495 (26.8)
 FeTS 227 (100) 0 0 356 (100) 136 (100) 174 (100) 893 (48.4)
 Other 0 0 456 (100) 0 0 0 456 (24.7)

Note.—Data are presented as numbers of patients with percentages in parentheses or medians with IQRs in parentheses. EGD = Erasmus 
Glioma Database, FeTS = federated tumor segmentation, IDH = isocitrate dehydrogenase, NYU = New York University, TCIA = The 
Cancer Imaging Archive, UCSF = University of California San Francisco Preoperative Diffuse Glioma MRI dataset, UTSW = University of 
Texas Southwestern Medical Center, UWM = University of Wisconsin–Madison.
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0.96 (95% CI: 0.93, 0.99) for UWM, 0.93 (95% CI: 0.91, 
0.95) for UCSF, and 0.90 (95% CI: 0.87, 0.93) for EGD test 
sets, achieved mainly by XGBoost. Features extracted from the 
(NET + NCR + ED) ROI or the combination of features from 
both the WT and (NET + NCR + ED) ROIs generally led to 
improved AUC in most of the test datasets compared with us-
ing only the WT features. Model prediction performance on 

Figure 2A. The models leveraging features extracted from both 
the WT and (NET + NCR + ED) ROIs appeared to exhibit 
slightly better performance.

Classifiers trained on the UTSW dataset appeared to per-
form slightly better than those trained with the TCIA data-
set. Specifically, the highest AUC values were 0.92 (95% CI: 
0.88, 0.95) for TCIA, 0.88 (95% CI: 0.81, 0.94) for NYU, 

Table 2: Summary of the IDH Mutation Status Prediction Performance of Different Models Trained on the TCIA Dataset

Model/ 
Classifier

WT NET + NCR + ED Combined

ACC SEN SPE PRE F1 AUC ACC SEN SPE PRE F1 AUC ACC SEN SPE PRE F1 AUC

UTSW (MT: 
102, WT: 
254, TT: 
356)

 RF 81.5 76.5 83.5 65.0 70.3 0.88 82.9 83.3 82.7 65.9 73.6 0.89 85.1 76.5 88.6 72.9 74.6 0.89*
 XGB 82.3 84.3 81.5 64.7 73.2 0.89 82.6 76.5 85.0 67.2 71.6 0.88 82.0 76.5 84.3 66.1 70.9 0.86
NYU (MT: 

23, WT: 
113, TT: 
136)

 RF 85.3 56.5 91.2 56.5 56.5 0.83 86.8 65.2 91.2 60.0 62.5 0.83 90.4 60.9 96.5 77.8 68.3 0.86*
 XGB 83.8 56.5 89.4 52.0 54.2 0.81 87.5 43.5 96.5 71.4 54.1 0.86 91.2 56.5 98.2 86.7 68.4 0.82
UWM (MT: 

19, WT: 
155, TT: 
174)

 RF 83.9 78.9 84.5 38.5 51.7 0.90 90.8 73.7 92.9 56.0 63.6 0.93* 88.5 84.2 89.0 48.5 61.5 0.92
 XGB 82.8 84.2 82.6 37.2 51.6 0.91 92.0 73.7 94.2 60.9 66.7 0.92 90.8 68.4 93.5 56.5 61.9 0.90
UCSF (MT: 

103, WT: 
392, TT: 
495)

 RF 84.4 89.3 83.2 58.2 70.5 0.93 89.9 74.8 93.9 76.2 75.5 0.90 91.3 82.5 93.6 77.3 79.8 0.94*
 XGB 83.4 90.3 81.6 56.4 69.4 0.93 89.3 69.9 94.4 76.6 73.1 0.88 88.7 67.0 94.4 75.8 71.1 0.92
Overall ac-

curacy of 
UTSW, 
NYU, 
UWM, and 
UCSF

 RF 83.5 80.2 84.5 58.1 67.3 0.90 87.5 77.3 90.2 68.0 72.3 0.90 88.9 78.1 91.7 71.7 74.8 0.92*
 XGB 83.0 84.2 82.7 56.7 67.8 0.90 87.4 70.4 92.0 70.2 70.3 0.89 87.2 70.0 91.8 69.8 69.9 0.89
EGD (MT: 

150, WT: 
306, TT: 
456)

 RF 73.8 90.6 65.7 56.2 69.4 0.88* … … … … … … … … … … … …
 XGB 73.2 93.3 63.4 55.4 69.5 0.86 … … … … … … … … … … … …

Note.—Sensitivity (SEN) and specificity (SPE) correspond to the accuracy of the mutated and wild-type classes, respectively. ACC = ac-
curacy, AUC = area under the receiver operating characteristic curve, ED = edema, EGD = Erasmus Glioma Database, F1 = F1 score, MT 
= number of mutated cases, NCR = necrosis, NET = nonenhancing tumor, NYU = New York University, PRE = precision, RF = random 
forest, TCIA = The Cancer Imaging Archive, TT = total cases, UCSF = University of California San Francisco Preoperative Diffuse Glioma 
MRI dataset, UTSW = University of Texas Southwestern Medical Center, UWM = University of Wisconsin–Madison, WT = whole tumor 
(number of wild-type cases), XGB = XGBoost.
* Indicates the highest AUC achieved for each dataset.
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Table 3: Summary of the IDH Mutation Status Prediction Performance of Different Models Trained on the UTSW Dataset

Model/Classifier 

WT NET + NCR + ED Combined

ACC SEN SPE PRE F1 AUC ACC SEN SPE PRE F1 AUC ACC SEN SPE PRE F1 AUC

TCIA (MT: 94, 
WT: 133, TT: 
227)

 RF 78.0 77.7 78.2 71.6 74.5 0.83 83.3 85.1 82.0 76.9 80.8 0.92* 83.3 80.9 85.0 79.2 80.0 0.89

 XGB 78.0 75.5 79.7 72.4 74.0 0.83 84.6 87.2 82.7 78.1 82.4 0.91 83.7 83.0 84.2 78.8 80.8 0.90

NYU (MT: 23, WT: 
113, TT: 136)

 RF 86.0 65.2 90.3 57.7 61.2 0.87 90.4 60.9 96.5 77.8 68.3 0.87 90.4 60.9 96.5 77.8 68.3 0.88*

 XGB 88.2 69.6 92.0 64.0 66.7 0.86 90.4 60.9 96.5 77.8 68.3 0.88 91.2 65.2 96.5 78.9 71.4 0.86

UWM (MT: 19, 
WT: 155, TT: 
174)

 RF 92.5 78.9 94.2 62.5 69.8 0.88 92.5 52.6 97.4 71.4 60.6 0.95 94.8 73.7 97.4 77.8 75.7 0.90

 XGB 93.7 78.9 95.5 68.2 73.2 0.87 94.3 63.2 98.1 80.0 70.6 0.96* 96.0 78.9 98.1 83.3 81.1 0.93

UCSF (MT: 103, 
WT: 392, TT: 
495)

 RF 89.1 80.6 91.3 70.9 75.5 0.91 89.5 74.8 93.4 74.8 74.8 0.91 90.7 77.7 94.1 77.7 77.7 0.93

 XGB 88.5 72.8 92.6 72.1 72.5 0.91 89.3 76.7 92.6 73.1 74.9 0.92 91.1 80.6 93.9 77.6 79.0 0.93*

Overall accuracy 
of TCIA, NYU, 
UWM, and 
UCSF

 RF 86.8 77.8 89.5 68.9 73.1 0.89 88.8 75.7 92.7 75.7 75.7 0.92 89.7 77.0 93.5 78.0 77.5 0.91

 XGB 87.1 74.1 91.0 71.1 72.5 0.89 89.3 78.2 92.6 76.0 77.1 0.92 90.4 79.9 93.5 78.6 79.3 0.92*

EGD (MT: 150, 
WT: 306, TT: 
456)

 RF 80.2 91.9 74.5 63.7 75.3 0.89 … … … … … … … … … … … …

 XGB 82.6 89.9 79.1 67.7 77.2 0.90* … … … … … … … … … … … …

Note.—Sensitivity (SEN) and specificity (SPE) correspond to the accuracy of the mutated and wild-type classes, respectively. ACC = ac-
curacy, AUC = area under the receiver operating characteristic curve, ED = edema, EGD = Erasmus Glioma Database, F1 = F1 score, MT 
= number of mutated cases, NCR = necrosis, NET = nonenhancing tumor, NYU = New York University, PRE = precision, RF = random 
forest, TCIA = The Cancer Imaging Archive, TT = total cases, UCSF = University of California San Francisco Preoperative Diffuse Glioma 
MRI dataset, UTSW = University of Texas Southwestern Medical Center, UWM = University of Wisconsin–Madison, WT = whole tumor 
(number of wild-type cases), XGB = XGBoost.
* Indicates the highest AUC achieved for each dataset.

the EGD dataset showed a slight improvement when trained 
using the UTSW dataset compared with the TCIA dataset 
(AUC: 0.88 [95% CI: 0.85, 0.91] for TCIA and 0.90 [95% 
CI: 0.87, 0.93] for UTSW).

Analysis of Radiomics Features Contributions
Figure 3 provides an overview of the contributions of various 
image types, feature classes, and MRI sequences to the relevant 
feature set. Predominantly, the original images, squared im-
ages, and Laplacian of Gaussian images were the main con-
tributors among the image types. Similarly, first-order statis-
tics, gray-level co-occurrence matrix, and gray-level size zone 

matrix were the most selected feature classes. Furthermore, 
Figure 4 presents the most relevant features along with their 
important scores, which are quantified by the average of the 
absolute Shapley additive explanations (33) values, offering a 
clear insight into their impact.

Discussion
We developed a preoperative MRI radiomics-based frame-
work for predicting the IDH mutation status of gliomas. The 
prediction models were trained using the TCIA or UTSW 
datasets and tested on several independent test sets, including 
the NYU, UWM, UCSF, and EGD datasets. For the mod-
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els trained on the TCIA dataset, the best overall AUC values 
were 0.92 (95% CI: 0.90, 0.93) on 1038 patients from the 
UTSW, NYU, UWM, and UCSF datasets, using combined 
features from both ROIs, and 0.88 (95% CI: 0.85, 0.91) on 
456 patients of the EGD dataset, using the WT features. The 
models trained on the UTSW dataset appeared to perform 
slightly better than the TCIA-trained models likely due to the 
larger number of wild-type cases in the UTSW dataset and 
the two-stage training framework. The ROC curves showed 
improvement for the models trained by features from the 
(NET + NCR + ED) ROI or the combined features from 
both ROIs. Random forest and XGBoost algorithms per-
formed comparably for both trained datasets.

Our model’s IDH prediction performance was assessed 
on an independent testing cohort comprising more than 
1500 patients, marking it as one of the most extensive 
radiomics-based investigations. Previous studies have typi-
cally dealt with smaller datasets. For example, Lu et al (15) 
trained their radiomics-based prediction model on 306 pa-
tients from local institutions and tested it on 108 patients 
from The Cancer Genome Atlas, resulting in an AUC of 
0.88. Li et al (3) employed a training cohort of 118 patients 
and a validation cohort of 107 patients, achieving the high-
est AUC of 0.96 when incorporating both radiomics and 
age as features. Some deep learning–based studies have in-
corporated slightly larger testing cohorts. van de Voort et al 
(34) trained their model on 1508 patients and tested on 221 
patients from The Cancer Genome Atlas datasets, achieving 
an AUC of 0.90. Wu et al (35) attained an AUC of 0.87 
when tested on 234 patients from an internal independent 
dataset. Our study, by leveraging a testing cohort exceeding 
1500 patients, surpasses the prior studies in terms of dataset 
size, further bolstering the robustness and generalizability of 
our IDH prediction model.

Previous studies have revealed that training machine learn-
ing models on imbalanced data may result in prediction bias. 
Although various techniques have been used to address this is-
sue, bias has remained a persistent problem. For instance, Li et al 
(13) addressed this problem by oversampling the mutated class, 
which comprised less than 10% of the cases in the training data-
set, achieving an accuracy of 70% for the mutated class and 99% 
for the wild-type class. Another radiomics-based study (36) bal-
anced the proportions of glioblastomas and anaplastic gliomas in 
the training dataset to account for the minority of IDH-mutated 
tumors rather than the proportions of mutated and wild-type 
tumors. This study reported an accuracy of 42% for the mutated 
class and 100% for the wild-type class.

In our study, we proposed a two-stage training framework 
that involves training multiple models on balanced subsets ob-
tained by resampling the original imbalanced dataset. This ap-
proach resulted in 79.9% accuracy for the mutated class and 
93.5% for the wild-type class, compared with the correspond-
ing accuracy of 73.6% and 94.9% when training the models on 
balanced data using the synthetic minority oversampling tech-
nique (37), in which the mutated class was augmented to match 
the number of wild-type cases from the original training data. 
The full results obtained by the synthetic minority oversampling 
technique are presented in Tables S9 and S10. Thus, the two-
stage training approach helped reduce bias and improve the ac-
curacy of the mutated class.

The proposed radiomics-based framework extracted fea-
tures from either the WT or a combination of NET, NCR, 
and ED subregions, making it suitable for any glioma grade. 
This approach differs from previous studies that focused on 
specific tumor subcompartments. By adopting this inclusive 
approach, all patients could be included in the study, regardless 
of whether certain tumor subcompartments were absent. Using 
these two tumor ROIs also enables the models to be trained 

Figure 2: Receiver operating characteristic (ROC) curves for the random forest and XGBoost (XGB) models trained using relevant features from the whole tumor; the 
nonenhancing tumor (NET), necrosis (NCR), and edema (ED) region of interest; and the combined features from both regions of interest. (A) ROC curves for the combined 
test sets from the University of Texas Southwestern Medical Center (UTSW), New York University (NYU), University of Wisconsin–Madison, and University of California 
San Francisco Preoperative Diffuse Glioma MRI dataset (UCSF) obtained by models trained on The Cancer Imaging Archive (TCIA) dataset. (B) ROC curves for the com-
bined test sets from TCIA, UTSW, NYU, and UCSF obtained by models trained on the UTSW dataset. AUC = area under the receiver operating characteristic curve, RF = 
random forest.

http://radiology-ai.rsna.org


8 radiology-ai.rsna.org ■ Radiology: Artificial Intelligence Volume 6: Number 4—2024

Training Framework with MRI Radiomics for IDH Mutation Status Prediction in Glioma

Figure 3: Summary of the most frequently selected image types, feature classes, and MRI sequences. (A) The most selected image types. (B) 
The most selected feature classes. (C) The percentage of MRI sequences identified as relevant features. GLCM = gray-level co-occurrence matrix, 
GLDM = gray-level dependence matrix, GLRLM = gray-level run-length matrix, GLSZM = gray-level size zone matrix, LoG = Laplacian of Gaussian, 
NGTDM = neighboring gray-tone difference matrix, WL-HH = wavelet filtering with high-pass filters, WL-HL = wavelet filtering with high-pass and 
low-pass filters, WL-LH = wavelet filtering with low-pass and high-pass filters, WL-LL = wavelet filtering with low-pass filters.

Figure 4: Chart of the top 20 relevant features with their importance scores measured by Shapley additive explanations (SHAP) values. The fea-
ture names are labeled as region of interest 1 (ROI1) and ROI2, representing the whole tumor and the nonenhancing tumor (NET), necrosis (NCR), 
and edema (ED) region of interests, respectively. glcm = gray-level co-occurrence matrix, glszm = gray-level size zone matrix, log = Laplacian of 
Gaussian, ROI = region of interest, wavelet-LH = wavelet filtering with low-pass and high-pass filters, wavelet-LL = wavelet filtering with low-pass 
filters.
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and tested across various datasets with different definitions of 
the tumor subregions.

Figures 3 and 4 succinctly outline the distinctive contribu-
tions of different image types, feature classes, and MRI sequences 
to the relevant feature set. These features, derived from the com-
bined region, offer a more holistic perspective of the tumor, 
potentially uncovering patterns that might be overlooked when 
focusing solely on individual tumor subcompartments. Notably, 
two shape features extracted from the (NET + NCR + ED) re-
gion exhibit high importance scores (Fig 4). The integration of 
these features has the potential to enhance the performance of 
the prediction models.

Our study had limitations. The main limitation of the ra-
diomics-based approach is the need for a tumor mask, and the 
reliability of radiomic features depends on the accuracy of the 
tumor segmentation. However, brain tumor segmentation tech-
niques have recently undergone substantial advancements, and 
many automatic brain tumor segmentation tools are now avail-
able. In our study, both the TCIA and internal data (UTSW, 
NYU, and UWM) were segmented using FeTS without manual 
correction. Although the radiomics features were extracted di-
rectly from the masks generated by FeTS, we achieved high pre-
diction accuracies when testing on a large patient sample.

In conclusion, we present an MRI radiomics-based approach 
for predicting the IDH mutation status in both low-grade and 
high-grade gliomas. IDH prediction models were built based on 
a set of relevant radiomics features extracted from multicontrast 
MR images and two ROIs. The random forest and XGBoost 
methods were used as classifiers. A two-stage training strategy 
was adopted to address the unbalanced training data. The mod-
els were trained on either the TCIA or UTSW dataset and tested 
on the independent data, yielding promising prediction accuracy 
across a large and diverse patient sample. Future research may 
focus on improving performance of the IDH prediction models 
by incorporating patient demographic characteristics, as sug-
gested in Jiang et al (38), and implementing a rigorous quality 
assurance procedure to ensure that the segmentation data meet 
rigorous standards of accuracy and reliability.
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