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Prostate MRI is integral for prostate cancer detection, 
staging, and disease surveillance because of its excep-

tional resolution, contrast, and ability to extract in vivo 
functional information (1). However, the current diagnos-
tic approach relies on qualitative or semiquantitative assess-
ments (2,3). Fully quantitative diagnostic assessment relies 
on prostate segmentation, which is routinely done for focal 
or radiation therapy planning. Unfortunately, performing 
this task manually is prohibitively time-consuming and 
harbors substantial interreader variability (4). Thus, auto-
mated prostate segmentations may not only unlock novel 
and more accurate prognostic biomarkers but also allow 
for more efficient therapy planning (Fig 1).

Despite these promising benefits, automated prostate 
segmentation remained challenging because of ambiguous 
prostatic boundaries (in particular at the apex), wide glan-
dular morphologic variability, and technical interscanner 
differences. However, in recent years deep learning algo-
rithms have emerged as a potential solution to automate 
this difficult task. Since 2016, an increasing body of scien-
tific literature has been published to improve on this task 
(Fig 2).

Despite their growing popularity, questions remain 
about the robustness and accuracy of deep learning algo-
rithms for prostate gland segmentation. Deep learning al-
gorithms are often trained on small, highly curated datasets. 
In addition, training data are often acquired from a single 
MRI vendor (eg, General Electric, Philips, or Siemens) or a 
specific geographic location or narrow patient population. 
These study limitations inspire multiple questions sur-
rounding deep learning performance for prostate anatomy 
segmentation: Can deep learning algorithms for prostate 
anatomy segmentation be applied to different MRI ven-
dors, training dataset sizes, and different prostate zones? Is 
the testing performed on each algorithm (eg, internal vs 
external testing) adequate to yield accurate results? Is the 
accuracy of prostate anatomy segmentation performed by 
deep learning algorithms sufficient when compared with 
that of board-certified radiologists, or is greater investment 
in algorithm performance necessary to improve them?

Hence, the aim of this systematic review was to sum-
marize the performance of prostate anatomy segmentation 
algorithms in the published biomedical literature. With 
additional subgroup analyses, we also aimed to investigate 
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Purpose: To investigate the accuracy and robustness of prostate segmentation using deep learning across various training data sizes, MRI 
vendors, prostate zones, and testing methods relative to fellowship-trained diagnostic radiologists.

Materials and Methods: In this systematic review, Embase, PubMed, Scopus, and Web of Science databases were queried for English-language 
articles using keywords and related terms for prostate MRI segmentation and deep learning algorithms dated to July 31, 2022. A total of 
691 articles from the search query were collected and subsequently filtered to 48 on the basis of predefined inclusion and exclusion criteria. 
Multiple characteristics were extracted from selected studies, such as deep learning algorithm performance, MRI vendor, and training data-
set features. The primary outcome was comparison of mean Dice similarity coefficient (DSC) for prostate segmentation for deep learning 
algorithms versus diagnostic radiologists.

Results: Forty-eight studies were included. Most published deep learning algorithms for whole prostate gland segmentation (39 of 42 
[93%]) had a DSC at or above expert level (DSC ≥ 0.86). The mean DSC was 0.79 ± 0.06 (SD) for peripheral zone, 0.87 ± 0.05 for transi-
tion zone, and 0.90 ± 0.04 for whole prostate gland segmentation. For selected studies that used one major MRI vendor, the mean DSCs 
of each were as follows: General Electric (three of 48 studies), 0.92 ± 0.03; Philips (four of 48 studies), 0.92 ± 0.02; and Siemens (six of 48 
studies), 0.91 ± 0.03.

Conclusion: Deep learning algorithms for prostate MRI segmentation demonstrated accuracy similar to that of expert radiologists despite 
varying parameters; therefore, future research should shift toward evaluating segmentation robustness and patient outcomes across diverse 
clinical settings.

Systematic review registration link: osf.io/nxaev 
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Bayesian inference, support vector machine), (d) CT or US 
segmentation, (e) conference abstract, or (f ) review article. The 
purpose of this systematic review was aimed at evaluating the 
performance of deep learning on prostate gland segmentation 
by comparing results from original research; therefore, review 
articles, conference abstracts, and applications for lesion detec-
tion and prostate cancer staging were not included. In addi-
tion, deep learning models are generally the highest scoring 
algorithms in web-based competitions for prostate gland seg-
mentation; thus, non–deep learning algorithms were excluded 
from this study.

The study selection, summarized in Figure 3, was performed 
by two reviewers (one postgraduate year 3 interventional and di-
agnostic radiology resident [M.K.F.] and one postgraduate year 
3 urology resident [A.B.]) and was confirmed by one subspecial-
ized genitourinary radiologist (A.B., with 4 years of experience 
since board certification).

Data Extraction
The following characteristics were extracted from each article 
that met the inclusion criteria: (a) deep learning parameters: 
neural network architecture (eg, U-Net, ResNet), number of 
neural network layers, epochs, initial learning rate, image input 
dimension, and batch size; (b) MRI: sequence, field strength, 
vendor (ie, General Electric, Philips), endorectal coil; (c) data-
sets: segmentation software, data source, sample size, test size, 
validation test size, external testing, and internal testing; (d) 
hardware and software: central processing unit (CPU) type, 
CPU number, graphic processing unit (GPU) type, GPU 
number, and public availability of source code; and (e) deep 
learning algorithm performance as measured by the Dice simi-
larity coefficient (DSC).

Data were extracted by one reviewer (M.K.F.) and indepen-
dently verified by a second reviewer (A.B.).

Outcomes
The primary outcome from this systematic review was compar-
ison of the mean DSC between two or more radiologists and 
comparison of DSC between a deep learning algorithm and 
one or more genitourinary radiologists. The DSC is defined 
as the agreement or overlap of a segmented prostate by two or 
more different interpreters (eg, one radiologist and one deep 
learning algorithm). A DSC of 1 signifies that the segmenta-
tion between the two interpreters is exactly the same. Con-
versely, a DSC of 0 signifies that there is no overlap between 
the two segmented prostate volumes.

Statistical Analysis
Changes of algorithm performance (DSC) over time (quali-
tative absolute differences, no statistical testing), variations of 
DSC between anatomic prostate zones, and the mean DSC 
estimates were compared between studies using internal ver-
sus external testing sets using the Student t test, and Spearman 
correlation was estimated to determine whether there was an 
association between algorithm performance, as measured by 
DSC, and sample size. A P value of .05 was used to indicate 

any association between performance and algorithm architec-
ture, experimental design, sample size, and variability of MRI 
scanner data with regard to different vendors.

Materials and Methods
The study was designed to conform with the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses guidelines 
(5). The systematic review was registered with OSF online reg-
istries (https://osf.io/2bz7t?view_only=cc234cfb711d4e078fbea7
496f551750).

Literature Search
Embase, PubMed, Scopus, and Web of Science databases 
were queried for English-language articles dated to July 31, 
2022. The following search query was used for all databases: 
“(magnetic resonance imaging OR MRI) AND (prostate 
segmentation) AND (deep learning OR machine learn-
ing OR artificial intelligence) AND (automated OR auto-
matic)”. The search query was constructed using keywords 
and their related terms for prostate MRI segmentation and 
deep learning algorithms. After the potential articles were 
identified, citations from each article were further evaluated 
to find any related articles that may have been missed by the 
initial search query.

Study Selection
Inclusion criteria for articles were as follows: (a) whole pros-
tate gland segmentation and/or peripheral zone segmentation 
and/or transition zone segmentation, (b) convolutional neu-
ral networks, and (c) multilayer convoluted neural networks 
(deep learning). Exclusion criteria consisted of the following: 
(a) prostate lesion segmentation, (b) prostate cancer staging, 
(c) machine learning algorithms other than deep learning (eg, 

Abbreviations
ANOVA = analysis of variance, CPU = central processing unit, 
DSC = Dice similarity coefficient, GPU = graphics processing unit

Summary
Deep learning algorithms outperformed expert radiologists in pros-
tate anatomy segmentation agreement, but mere accuracy gains may 
lack clinical impact; therefore, future focus should be on robustness 
and real-world patient outcomes.

Key Points
 ■ Ninety-three percent of studies on deep learning for prostate gland 

segmentation had a Dice similarity coefficient (DSC) at or above 
expert level (DSC ≥ 0.86).

 ■ Performance for whole prostate gland segmentation (0.90 ± 0.04 
[SD]) was similar to that for transition zone segmentation (0.87 ± 
0.05) but greater than that for peripheral zone segmentation (0.79 
± 0.06).

 ■ Given the high performance of deep learning on the task of pros-
tate gland segmentation, future research should shift toward evalu-
ating robustness and clinical outcomes.

Keywords
MRI, Genital/Reproductive, Prostate Segmentation, Deep Learning
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lished between 2016 and 2022. Most studies used a combina-
tion of private and public datasets (18 of 48); however, some 
studies used only private datasets (15 of 48) or only public 
datasets (15 of 48). In addition to varying types of datas-
ets, more studies acquired their training data from multiple 
MRI vendors (30 of 48) as opposed to only one MRI vendor 
(18 of 48). For prostate anatomy segmentation, the entire 
prostate gland can be segmented or specific anatomic prostate 
zones, such as the transition zone or peripheral zone, can be 
segmented. In this systematic review, most studies performed 
whole-gland segmentation or a combination of whole-gland 
segmentation with peripheral zone and/or transition zone 
segmentation (43 of 48). The remaining studies investigated 
only peripheral zone and/or transition zone segmentation 
(five of 48). From the selected studies, the following are the 
median values for commonly reported deep learning param-
eters: epochs, 100 (27 of 48 studies reported); initial learning 
rate, 1.0 × 10−4 (38 of 48 studies reported); and batch size, 
eight (31 of 48 studies reported).

Deep Learning Algorithm Performance Characteristics
The first journal article describing prostate MRI segmentation 
using deep learning was published in 2016 (6). The authors 
of that article demonstrated a mean DSC of 0.87 for whole 
prostate gland segmentation. During the next 6 years, the 
highest-performing algorithm demonstrated a mean DSC of 
0.98, equaling to an improvement of 0.11.

With use of a threshold DSC of 0.86 for expert performance 
(six readers and 80 prostate MRI examinations) of whole pros-
tate gland segmentation from the literature (7), most published 
deep learning algorithms (39 of 42 [93%]) had a DSC at or 
above expert level (Fig 4). Of note, even though slightly higher 
human reference performances have been published in the lit-
erature, with a DSC of approximately 0.94 (8,9) and 40 prostate 
MRI examinations, we chose the study with the most segmenta-
tions as a reference standard (7).

The published studies on deep learning for prostate segmen-
tation had various implementations of algorithm testing. Most 
studies (32 of 48 [67%]) performed external testing, wherein a 

statistical significance. Analysis of variance (ANOVA) was per-
formed on the different combinations of model architectures, 
MRI vendors, and DSC. Data analysis and visualization were 
performed with Python 3.7, using the NumPy, SciPy, and Sea-
born packages.

Results

Study Selection
The systematic search of Embase, PubMed, Scopus, and Web 
of Science databases yielded a total of 691 articles related to 
prostate anatomy segmentation using deep learning algo-
rithms. After the removal of duplicates, title screening, abstract 
screening, and full-text reviews, a total of 48 articles were in-
cluded. The flowchart in Figure 3 depicts the study selection 
process in detail.

Characteristics of Selected Studies
Tables 1–3 summarize the characteristics of the studies se-
lected for systematic review. The selected studies were pub-

Figure 1: Automated prostate segmentation of T2-weighted MR images used to estimate three-dimensional prostate 
size. Prostate volume measurements have multiple applications, including calculation of prostate-specific antigen density, 
prostate biopsy planning, and calculation of radiation therapy doses.

Figure 2: Bar graph shows that the total number of publications for deep 
learning MRI prostate segmentation meeting criteria for this systematic review has 
increased each subsequent year.
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select sample of data were held out from algorithm training, and 
algorithm performance was measured with the held out sample. 
The remaining studies (16 of 48 [33%]) used internal testing or 
did not explicitly describe using external testing methods.

The most common neural network architectures from the se-
lected articles included U-Net (21 of 48), ResNet (four of 48), 
and DenseNet (three of 48). DSC scores did not statistically 
significantly differ between the most common neural network 
architectures based on ANOVA analysis.

Of the studies that conducted external testing, approxi-
mately 88% (28 of 32) performed whole-gland segmentation, 
with a mean DSC of 0.904 ± 0.029 (SD). Of the studies that 
conducted internal testing, 94% (15 of 16) performed whole-
gland segmentation, with a mean DSC of 0.914 ± 0.039. 
There was no evidence of a difference in the reported DSC 
between internally and externally tested studies (P = .35) used 
for whole-gland segmentation.

Aside from various implementations of algorithm testing, pros-
tate MRI segmentation articles had varying sample sizes. From 
the selected articles, sample sizes ranged from 40 to 550 MRI ex-
aminations. From the selected studies that performed whole-gland 
segmentation (39 of 42), Spearman correlation was used to de-
termine whether there was a relationship between algorithm per-
formance (DSC) and sample size. The correlation coefficient was 
0.247, which indicates a weak positive correlation between larger 
sample sizes and improved prostate segmentation performance.

In addition to sample size, other parameters that varied be-
tween studies included MRI sequences and endorectal coil use. 

Figure 3: Flow diagram of study selection. PubMed, Embase, Scopus, and Web of Science databases were used to 
identify articles related to deep learning and prostate MRI segmentation. Articles found in multiple databases were removed, 
leaving only unique journal articles. Unique articles were filtered if they did not contain “deep learning” or “prostate MRI 
segmentation” in the title or abstract. The remaining articles were comprehensively reviewed. If the study, despite mentioning 
MRI and being included initially, was focused on CT or US and not MRI, it was removed. Likewise, if the entry was from a 
conference abstract, or if prostate lesions were segmented, the article was removed from further analysis.

Table 1: Summary of 48 Included Studies

Variable No. of Studies

Publication date
 2016 1
 2017 3
 2018 5
 2019 12
 2020 11
 2021 12
 2022 4
Vendor
 General Electric 2
 Philips 3
 Siemens 10
 Mixed 33
Dataset availability
 Public 15
 Private 15
 Mixed 18
Zonal segmentation
 Peripheral and transition 5
 Whole gland 33
 Mixed 10

http://radiology-ai.rsna.org
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Table 2: Characteristics of Selected Articles for MRI Prostate Segmentation Using Deep Learning and External Testing

Author  
(Reference) Year

Data 
Source

Total 
Sample  
Size (n)

CNN  
Architecture MRI Vendor

Endorectal 
Coil

MRI  
Sequence

Prostate 
Zones

Mean  
DSC

Published 
Code

Astono et al 
(19)

2020 Mixed 91 U-Net GE, Sie-
mens

Yes T2W WG 0.89 Private

Bardis et al 
(20)

2021 Private 242 U-Net Philips, 
Siemens

No T2W PZ, TZ, 
WG

0.91 (TZ), 
0.77 
(PZ), 
0.94 
(WG)

Private

Clark et al 
(23)

2017 Mixed 141 U-Net GE, Philips, 
Siemens

Yes DWI, T2W WG 0.89 Private

Cuocolo et al 
(25)

2021 Mixed 204 U-Net, ENet, 
ERFNet

Siemens Yes DCE, DWI, 
T1W, 
T2W

PZ, TZ, 
WG

0.71 (PZ), 
0.87 
(TZ), 
0.91 
(WG)

Private

da Silva et al 
(26)

2020 Mixed 91 FCN GE, Sie-
mens

Yes T2W WG 0.89 Private

Geng et al 
(27)

2019 Public 110 ResNet GE, Philips, 
Siemens

Yes T2W WG 0.95 Private

Ghavami et al 
(28)

2019 Private 232 U-Net, VNet, 
ResNet

Siemens No T2W WG 0.89 Private

Guo et al (6) 2016 Private 66 Autoencoder GE, Philips Yes T2W WG 0.87 Private
Hassanzadeh 

et al (29)
2019 Public 50 DenseNet, 

U-Net
GE, Sie-

mens
Yes T2W WG 0.87 Private

Jensen et al 
(30)

2019 Private 40 U-Net GE, Sie-
mens

No T2W PZ, TZ 0.69 (PZ), 
0.81 
(TZ)

Private

Jia et al (32) 2018 Public 304 LeNet, ReLU GE, Sie-
mens

Yes DCE, DWI, 
PDW, 
T2W

WG 0.91 Private

Jia et al (33) 2022 Public 180 ResNet GE, Philips, 
Siemens

Yes T2W WG 0.93 Private

Jin et al (34) 2021 Mixed 206 V-Net GE, Sie-
mens

Yes T2W WG 0.96 Private

Lee et al (37) 2020 Private 330 V-Net Siemens No T2W TZ, WG 0.76 (TZ), 
0.87 
(WG)

Private

Liu et al (42) 2019 Mixed 313 ResNet Siemens No DCE, DWI, 
PDW, 
T2W

PZ, TZ 0.74 (PZ), 
0.79 
(TZ)

Public

Meyer et al 
(43)

2021 Mixed 108 U-Net Philips, 
Siemens

No DCE, DWI, 
PDW, 
T2W

WG 0.93 Public

Nai et al (44) 2020 Public 160 DenseNet Siemens No ADC, DWI, 
T2W

PZ, TZ, 
WG

0.71 (PZ), 
0.86 
(TZ), 
0.89 
(WG)

Private

Rouvière et al 
(45)

2022 Mixed 207 U-Net GE, Philips, 
Siemens

Yes T2W WG 0.96 Private

(Table 2 continues)
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Table 2 (continued): Characteristics of Selected Articles for MRI Prostate Segmentation Using Deep Learning and Exter-
nal Testing

Author  
(Reference) Year

Data 
Source

Total 
Sample  
Size (n)

CNN  
Architecture MRI Vendor

Endorectal 
Coil

MRI  
Sequence

Prostate 
Zones

Mean  
DSC

Published 
Code

Rundo et al 
(46)

2019 Mixed 80 U-Net Philips, 
Siemens

Yes T2W PZ, TZ 0.91 (PZ), 
0.94 
(TZ)

Private

Sanford et al 
(47)

2020 Private 406 U-Net GE, Philips, 
Siemens

Yes T2W WG 0.92 Private

Salvaggio et al 
(48)

2022 Private 103 ENet, U-Net Philips No DWI, T1W, 
T1CE, 
T2W

WG 0.90 Private

Salvi et al 
(49)

2022 Private 60 U-Net GE Yes T2W WG 0.89 Public

Sunoqrot et al 
(50)

2021 Private 244 U-Net Siemens No T2W PZ, TZ, 
WG

0.82 (PZ), 
0.92 
(TZ), 
0.94 
(WG)

Private

Tian et el 
(52)

2020 Mixed 112 ResNet GE, Sie-
mens

Yes T2W WG 0.94 Private

Tian et al 
(53)

2018 Mixed 140 FCN GE, Sie-
mens

Yes T2W WG 0.85 Private

To et al (54) 2018 Mixed 280 DenseNet GE, Philips, 
Siemens

Yes ADC, T2W WG 0.95 Private

Ushinsky et al 
(55)

2021 Private 299 U-Net Philips, 
Siemens

No T2W WG 0.91 Private

Wang et al 
(56)

2021 Mixed 270 U-Net, FCN Siemens Yes T2W WG 0.89 Public

Yan et al (58) 2019 Public 80 DSNet, FCN GE, Sie-
mens

Yes T2W WG 0.91 Private

Zabihollahy 
et al (59)

2019 Private 225 U-Net GE No ADC, T2W PZ, TZ, 
WG

0.87 (PZ), 
0.94 
(TZ), 
0.93 
(WG)

Private

Zhu et al (61) 2020 Mixed 40 U-Net, 
DenseNet

GE, Philips, 
Siemens

Yes T2W WG 0.91 Private

Zhu et al (62) 2019 Private 163 U-Net Philips No DWI, T2W PZ, WG 0.79 (PZ), 
0.93 
(WG)

Private

Note.—“Data Source” is considered public if the training data used in the journal article are publicly available such as the SPIE-AAPM-
NCI PROSTATEx Challenge (PROSTATEx), National Cancer Institute Cancer International Society for Biomedical Imaging 2013 
Prostate Segmentation Challenge (NCI-ISIBI 2013), Prostate MR Image Segmentation Challenge (PROMISE12), The Cancer Imaging 
Archive (TCIA), or Initiative for Collaborative Computer Vision Benchmarking (I2CVB). Datasets labeled “private” were curated by the 
journal authors and were not made publicly available. Articles using private and public datasets are categorized as “mixed.” The architecture 
for each deep learning algorithm is as follows: Dense Convolutional Neural Network (DenseNet), Dense VNet (DVNet), U-Net (Net), 
VNet (VNet), Holisitic Neural Network (HNN), Fully Convolutional Network (FCN), Efficient Neural Network (ENet), Efficient Re-
sidual Factorized Convolutional Network (ERFNet), Residual Networks (ResNet), AutoEncoder, LeNet (LeNet), ReLU (Rectified Linear 
Unit), Domain Adversarial Neural Network (DANN). Authors can publish their deep learning algorithms through various hosting websites 
(eg, GitHub). If an author published the code associated with journal article, it is designated “public” under the “Published Code” column. 
If code for the deep learning algorithm was not published, then it is labeled “private.” ADC = apparent diffusion coefficient, CNN = con-
volutional neural network, DCE = dynamic contrast-enhanced, DSC = Dice similarity coefficient, DWI = diffusion-weighted imaging, GE 
= General Electric, PDW = proton density–weighted, PZ = peripheral zone of the prostate, T1CE = T1-weighted contrast-enhanced, T1W 
= T1-weighted, T2W = T2-weighted, TZ = transition zone of the prostate, WG = whole prostate gland.

http://radiology-ai.rsna.org
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Most studies used T2-weighted imaging to segment the pros-
tate gland (32 of 48).  The remaining studies used a combina-
tion of T2-weighted, proton density–weighted, dynamic con-
trast-enhanced imaging, diffusion-weighted imaging, apparent 
diffusion coefficient, T1-weighted, and T1-weighted contrast-
enhanced (11 of 33) imaging. There was no evidence of a 

difference in DSC between algorithms that were trained strictly 
on T2-weighted images (0.911 ± 0.035) and those trained on 
images with multiple MRI sequences (0.912 ± 0.018) (P = 
.95). Most studies included MRI data with endorectal coils (32 
of 48 studies) and fewer used MRI with surface coils (16 of 48 
studies). There was no evidence for difference in DSC between 

Table 3: Characteristics of Selected Articles for MRI Prostate Segmentation Using Deep Learning and Internal Testing

Author  
(Reference) Year

Data  
Source

Total Sample 
Size (n)

CNN  
Architecture MRI Vendor

Endorectal  
Coil MRI Sequence

Prostate  
Zones Mean DSC

Published  
Code

Agarwal et al 
(18)

2021 Public 50 DVNet GE, Siemens Yes T2W WG 0.87 Private

Cheng et al 
(21)

2019 Public 80 HNN Siemens Yes T2W TZ, WG 0.90 (TZ), 
0.92 
(WG)

Private

Cheng et al 
(22)

2017 Public 250 FCN, HNN Philips Yes T2W WG 0.90 Private

Comelli et al 
(24)

2021 Private 85 U-Net, 
ENet, 
ERFNet

Philips No T2W WG 0.91 Private

Jia et al (31) 2020 Public 110 ResNet GE, Philips, 
Siemens

Yes T2W WG 0.90 Private

Karimi et al 
(35)

2018 Mixed 75 DenseNet GE, Siemens Yes T2W WG 0.88 Private

Khan et al 
(36)

2020 Mixed 51 FCN, U-
Net

Siemens Yes T2W PZ, TZ 0.79 (PZ), 
0.93 
(TZ)

Private

Liu et al (38) 2021 Private 335 DANN Siemens Yes T2W WG 0.93 Private
Liu et al (39) 2020 Public 50 Autoen-

coder
GE, Siemens Yes T2W WG 0.89 Private

Liu et al (40) 2020 Public 304 ResNet Siemens No DCE, DWI, 
PDW, T2W

PZ, TZ 0.79 (PZ), 
0.89 
(TZ)

Private

Liu et al (41) 2020 Public 79 U-Net Philips,  
Siemens

Yes ADC, DWI, 
T2W

WG 0.92 Private

Tao et al (51) 2021 Public 50 U-Net GE, Siemens Yes T2W WG 0.92 Private
Wang et al 

(57)
2019 Mixed 90 FCN GE, Siemens Yes T2W WG 0.85 Private

Yan et al (12) 2021 Public 270 U-Net, 
FCN

GE, Siemens Yes T2W WG 0.98 Private

Zavala-
Romero et 
al (60)

2020 Mixed 550 U-Net GE, Siemens No DCE, DWI, 
T2W

PZ, WG 0.82 (PZ), 
0.91 
(WG)

Private

Zhu et al (63) 2018 Private 80 U-Net Philips Yes T2W WG 0.94 Private

Note.—“Data Source” is considered public if the training data used in the journal article are publicly available such as the SPIE-AAPM-
NCI PROSTATEx Challenge (PROSTATEx), National Cancer Institute Cancer International Society for Biomedical Imaging 2013 
Prostate Segmentation Challenge (NCI-ISIBI 2013), Prostate MR Image Segmentation Challenge (PROMISE12), The Cancer Imaging 
Archive (TCIA), or Initiative for Collaborative Computer Vision Benchmarking (I2CVB). Datasets labeled “private” were curated by the 
journal authors and were not made publicly available. Articles using private and public datasets are categorized as “mixed.” The architecture 
for each deep learning algorithm is as follows: Dense Convolutional Neural Network (DenseNet), Dense VNet (DVNet), U-Net (Net), 
VNet (VNet), Holisitic Neural Network (HNN), Fully Convolutional Network (FCN), Efficient Neural Network (ENet), Efficient Re-
sidual Factorized Convolutional Network (ERFNet), Residual Networks (ResNet), AutoEncoder, LeNet (LeNet), ReLU (Rectified Linear 
Unit), Domain Adversarial Neural Network (DANN). Authors can publish their deep learning algorithms through various hosting websites 
(eg, GitHub). If an author published the code associated with journal article, it is designated “public” under the “Published Code” column. 
If code for the deep learning algorithm was not published, then it is labeled “private.” ADC = apparent diffusion coefficient, CNN = con-
volutional neural network, DCE = dynamic contrast-enhanced, DSC = Dice similarity coefficient, DWI = diffusion-weighted imaging, GE 
= General Electric, PDW = proton density–weighted, PZ = peripheral zone of the prostate, T1CE = T1-weighted contrast-enhanced, T1W 
= T1-weighted, T2W = T2-weighted, TZ = transition zone of the prostate, WG = whole prostate gland.
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algorithm performance with endorectal coil (0.910 ± 0.035) 
versus without endorectal coil (0.914 ± 0.021) (P = .75).

DSC by Vendor
From the selected studies, prostate MRI scans were acquired 
from one or multiple major MRI vendors (ie, General Electric, 
Philips, Siemens). For selected studies that used only one ma-
jor vendor, the mean DSC of each MRI vendor are as follows: 
General Electric (three of 48 studies), 0.92 ± 0.03; Philips 
(four of 48 studies), 0.92 ± 0.02; and Siemens (six of 48 stud-
ies), 0.91 ± 0.03. The remaining studies used a combination of 
two major MRI vendors or all three vendors (35 of 48 studies), 
which resulted in overall greater variability of reported accu-
racy, as depicted in Figure 5. ANOVA indicated no evidence of 
a difference in DSC between MRI vendors (P = .53).

DSC by Anatomic Zone
Deep learning algorithms can be applied to segment the en-
tire prostate gland (whole-gland segmentation) or to segment 
different zones (peripheral and/or transition zone). From the 
selected studies, a few authors investigated segmentation of 
the different prostate zones (15 of 48). Most articles that seg-
mented by prostate zone segmented the transitional zone or 
peripheral zone (12 of 15); however, a few segmented the cen-
tral gland and peripheral zone (three of 15). Because the older 
term “central gland” has been superseded by “transitional zone” 
as a result of possible confusion with the “central zone,” central 

gland segmentation is henceforth referred to as “transitional 
zone segmentation.” No studies investigated anterior fibromus-
cular stroma segmentation. The mean DSC for peripheral zone 
segmentation was 0.787 ± 0.059, whereas for transition zone 
segmentation, the mean DSC was slightly higher at 0.874 ± 
0.052. Both peripheral and transition zone segmentation were 
lower than mean DSC for whole-gland segmentation (0.905 ± 
0.039) (Fig 6).

Discussion
In this systematic review, we investigated the performance of deep 
learning algorithms on prostate gland MRI segmentation. We 
found that approximately 93% of the deep learning algorithms 
performed this task at or above the level of expert radiologists 
(threshold DSC, 0.86), despite wide variations in sample size, un-
derlying data source (MRI vendors), and validation methods.

Multiple methods have been used to improve prostate anat-
omy segmentation, including different data preparation pipe-
lines, altering deep learning network architecture, number of 
neural network layers, or optimizing training parameters, all of 
which can influence final performance (10). The first publica-
tion on prostate gland MRI segmentation using deep learning 
implemented an auto-encoder architecture, one of the original 
architectures in the field (11). Since then, approximately 40% 
(19 of 48) of the published algorithms for prostate anatomy seg-
mentation have implemented a novel deep learning architecture 
or added a supplemental feature to a pre-existing neural network 

Figure 4: Scatterplot shows the mean Dice similarity coefficient (DSC) from each published prostate MRI segmentation 
deep learning algorithm plotted over time. The size of each data point corresponds to the number of individuals in the deep 
learning algorithm training set. The color of each data point corresponds to whether a model was externally tested or inter-
nally tested. With external testing, a test dataset is held out from training. For internal testing, a model is tested with a subset 
of data from the original training data. The reported DSC between expert radiologist segmentations is approximately 0.860 
(7) and is plotted as a dashed line on the scatterplot. Segmentation was categorized as whole gland if the deep learning 
algorithm segmented the entire prostate or transitional zone and peripheral zone (TZ+PZ) if only the zones of the prostate 
were segmented. The gray line depicts a linear fit to illustrate improvement over time.
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architecture (eg, generative adversarial networks or active shape 
models) to improve performance. Implementing different deep 
learning network architectures or add-ons to existing deep learn-
ing algorithms increased the DSC from 0.85 up to a maximum 
of 0.98 over the course of 6 years, equaling to an annual increase 
of 0.007 DSC (6,12).

Deep learning is notoriously “data hungry”; however, it is 
not clear exactly how many samples are needed to train an 
algorithm for prostate segmentation. In the present analysis, 
we found multiple deep learning algorithms that segmented 
prostate anatomy at a clinically acceptable level (DSC > 0.85) 
with comparably few training data (<50 MRI examinations). 

Figure 5: Box plots of Dice similarity coefficients (DSCs) for different MRI vendors. Each data point represents the mean DSC from one 
of the included studies. The data are categorized according to the MRI vendor used to collect the training and test data for each respective 
study, overlaid by a combined boxplot (middle line represents the median, box margins represent the IQR, and whiskers represent 10th–90th 
quantile). GE = General Electric.

Figure 6: Box-and-violin plot of mean reported Dice similarity coefficients (DSCs) of included studies performing whole prostate gland 
segmentation, peripheral zone segmentation, or transitional zone segmentation. Accuracy of the whole gland was best overall, highlighting 
that the gland is relatively well delineated. The mean DSC for reference expert radiologist segmentation is 0.859 ± 0.054 for the whole 
gland and 0.738 ± 0.144 for the transition zone (7).
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Of note, there have been specific efforts to produce robust 
segmentations from even smaller sample sizes (13), but such 
methods have yet to find widespread adoption. In addition, 
we observed that larger training data only marginally improved 
deep learning algorithm performance. One reason for this may 
be that the baseline performance at small samples is already 
excellent (ie, at or above human level), and any further perfor-
mance increase follows the law of diminishing returns. Another 
factor may be that there is less variability in small datasets, so 
increasing the dataset size, particularly in single-center studies, 
may slightly degrade performance at the unmeasured benefit of 
increased robustness.

Finally, there was no evidence of a statistically significant 
difference in mean DSC between MRI vendors (General Elec-
tric, Philips, or Siemens); however, studies that included a 
combination of MRI vendors had greater variability of DSC 
than did studies that used data from a single MRI vendor. This 
variability in performance can be explained by a multitude of 
known factors because different MRI vendors often have pro-
prietary hardware designs and software algorithms for image 
acquisition and reconstruction. These differences can lead to 
variations in image contrast, spatial resolution, and signal-to-
noise ratio, which can subsequently affect the performance of 
deep learning algorithms. Moreover, variations in the magnetic 
field, often due to differences in hardware design, can lead to 
artifacts or differences in image intensity.

Previous studies have shown intervendor variability for 
MRI signal measurements (14,15), although the magnitude 
of those signal differences may not be clinically relevant (16). 
Several strategies may be used to mitigate these effects, such 
as harmonization techniques during preprocessing or incor-
porating regularization during training to avoid overfitting on 
data from a single vendor. Nevertheless, our results corroborate 
that the additional variability introduced by training on mul-
tivendor data may slightly degrade segmentation performance. 
However, it stands to reason that this comes at the benefit of 
making future segmentations more robust.

Since the advent of deep learning, algorithms have dem-
onstrated remarkable proficiency in segmenting prostate anat-
omy, often surpassing the accuracy of board-certified diagnos-
tic radiologists. Over the years, substantial resources have been 
dedicated to refining prostate anatomy segmentation. This has 
been evident from the numerous online competitions aimed 
at enhancing performance metrics and the continuous evolu-
tion of deep learning network architectures to achieve even 
marginal improvements in the DSC. However, because these 
metrics already surpass human experts, it raises the question of 
the real-world clinical value of pursuing further marginal gains 
in these arbitrary segmentation metrics.

Rather than solely chasing higher performance metrics, our 
findings advocate for a shift in research priorities to include the 
following:

1. Robustness and uncertainty estimation: Future 
research should delve deeper into ensuring the ro-
bustness of segmentation algorithms, especially in 
challenging scenarios. Techniques for uncertainty es-

timation (17) can provide clinicians with a measure 
of confidence in the algorithm’s output, which is cru-
cial for clinical decision-making.

2. Prospective evaluations in diverse settings: It is 
imperative to prospectively evaluate the performance 
of these algorithms in real-world clinical settings. 
This includes assessing their robustness across diverse 
patient populations, variations in MRI vendors and 
protocols, and even in scenarios with suboptimal im-
age quality. Such evaluations can offer insights into 
the algorithm’s generalizability and its potential pit-
falls.

3. Clinical integration and patient outcomes: Em-
phasis should also be placed on the tangible benefits 
of automated prostate anatomy segmentation in the 
clinical workflow. This involves assessing not just the 
algorithm’s accuracy but also its effect on patient out-
comes, workflow efficiency, and overall clinical util-
ity. Ideally, the application of such segmentations (eg, 
in radiation therapy planning or focal therapy appli-
cation) should be evaluated in a randomized prospec-
tive fashion.

Prostate MRI deep learning algorithms hold substantial 
promise in augmenting and improving real-world prostate 
cancer management. Automated methods for prostate gland 
segmentation can increase the efficiency and accuracy of MRI/
US fusion–targeted biopsies. Although targeted prostate biopsy 
introduces the advantage of coregistering MRI and US im-
ages, the approach can still be prone to operator error or bias in 
MRI gland and tumor segmentation (1–3). The use of MRI for 
computer-assisted surgery continues to be established, but there 
may also be an important role for deep learning–based prostate 
anatomy segmentation with regard to intraoperative nerve spar-
ing or functional outcome prediction (4).

To facilitate future research focusing less on narrowly opti-
mizing arbitrary similarity metrics, it may be useful to establish 
an independent service to evaluate algorithms on truly novel and 
unseen test data. Such a service could require preregistering the 
study or algorithm (eg, connecting it with an arXiv ID and/or 
code repository) and would only allow testing of any given algo-
rithm once. This could be tied to a small payment that would 
first cover operating costs and second discourage multiple itera-
tive tests (“training on the test set”).

This systematic review of prostate gland segmentation had 
some limitations. The number of selected studies was relatively 
small for segmentation of individual prostate zones (n = 15). In 
addition, there was inherent heterogeneity of those data, con-
sidering that some studies included private data in their analy-
sis; therefore, segmentation may not be standardized across all 
studies. Moreover, only articles indexed in the databases Embase, 
PubMed, Scopus, and Web of Science were included. There may 
be additional relevant articles published (eg, on arXiv or in more 
technically oriented publications), which these databases may 
not capture.
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In conclusion, we found that most deep learning algorithms 
performed at or above the level of human experts for the task 
of prostate segmentation when measured using DSC. Future 
work should focus on segmentation robustness and investigate 
whether further accuracy gains actually translate to improve-
ments in patient outcomes.
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