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RAPID COMMUNICATION
Loss of homeostatic functions in microglia
from a murine model of Friedreich’s ataxia
Friedreich’s ataxia (FRDA) is a rare genetic disorder char-
acterized by motor discoordination and cerebellar
involvement due to mutations in the frataxin (FXN) gene,
which encodes a mitochondrial protein involved in iron-
sulfur cluster biogenesis and iron handling.1 While progress
has been made in understanding FRDA’s pathophysiology
and cerebellar degeneration caused by frataxin deficiency,
the role of central nervous system (CNS)-resident non-
neuronal cells, as microglia, necessitates further investi-
gation. Microglia play crucial roles in CNS development,
neurogenesis, apoptosis, and synaptic remodeling, acting
as sentinels with homeostatic functions. In neurodegener-
ative diseases, microglia respond rapidly to injury, poten-
tially leading to sustained neuroinflammation and
therefore, contributing to foster neuron damage.2 Simi-
larly, in FRDA, cerebellar neuron degeneration may be
influenced by glial cells in a non-cell-autonomous process.
Indeed, in FRDA, microglia contribute to reactive oxygen
species accumulation in the CNS, particularly in cerebellar
regions, possibly participating in cerebellar susceptibility in
ataxias. Circumstantial evidence supports the involvement
of neuroinflammatory mechanisms in FRDA pathogenesis,3

as indicated by the presence of hypertrophic and reactive
microglia in brain regions of FRDA mouse models and pa-
tients, with increased neuroimmune activity correlating
with earlier symptom onset and shorter disease duration.4

However, the extent to which microglia dysfunction con-
tributes to FRDA remains uncertain.

In this study, we performed a multi-layer characteriza-
tion of microglia derived from the KIKO mouse model of
FRDA and analyzed whether they contribute to neuron
demise in the disease. Primary microglia were isolated
specifically from the cerebellum, the most affected CNS
area in FRDA. Before comparing WT and KIKO microglia
phenotypes, we confirmed that the FXN mRNA was down-
regulated in KIKO cells (Fig. S1A), and we demonstrated
that FXN loss did not affect the overall number of microglia
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cells obtained from the cerebella of KIKO mice (Fig. S1B).
We then analyzed if FXN depletion influences microglia
morphology. We demonstrated that KIKO microglia dis-
played changes in cell shape and complexity (Fig. 1A), with
decreased circularity and increased perimeter and Feret’s
diameter, in comparison to WT cells (Fig. S2A). To investi-
gate if these differences in microglia morphology were
related to abnormal functional states, we compared the
ability of cerebellar microglia from WT and KIKO mice to
migrate and perform phagocytosis. We observed that KIKO
microglia displayed significantly lower spontaneous migra-
tion than WT cells (Fig. 1B; Fig. S2A). In addition, KIKO
microglia showed an increase in the number of phagocytic
cells, as well as in phagocytic activity per cell (Fig. 1C).
Migration (Fig. S3A) and phagocytosis (Fig. S3B) were
partially rescued by the iron chelator deferiprone in KIKO
cells, suggesting that disturbed iron regulation, resulting
from frataxin deficiency, could contribute to the observed
changes in microglial phenotypes. Overall, these results
demonstrate that primary microglia derived from the cer-
ebellum of WT and KIKO mice are morphologically and
functionally different, with the KIKO cells less motile but
more phagocyting than the WT counterpart.

To gain insights into the overall gene expression signature
of KIKO versus WT microglia and identify genes that can be
relevant to the different phenotypes described, we per-
formed transcriptomics profiling to investigate differentially
expressed genes and pathways. A total of 184 genes were
significantly (p < 0.01) differentially expressed between WT
and KIKO microglia, with absolute fold-change of 1.3 or
greater, as indicated on the volcano plot and heatmap, and
among these, 87 genes were down-regulated and 97 up-
regulated (Fig. 1D, E and Table S1). The top 10 differentially
expressed genes by p-value encompass genes involved in
mitochondria oxidative phosphorylation (Ndufb6, ND2, ND4,
and Atp5b), inflammation (Socs, Csf2ra), and proteostasis
(Rps2, Hsp90aa1, and Fbxw7) as shown in the volcano plot
(Fig. 1D). Reactome pathway (Fig. S4A) and Gene Ontology
(GO) (Fig. 1F; Fig. S4B) enrichment analysis indicated that
differentially expressed genes were related to categories as
behalf of KeAi Communications Co., Ltd. This is an open access
by/4.0/).
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“cellular response to cytokine stimulus”, “signaling by in-
terleukins”, “cytokine signaling”, “immune system”, “mito-
chondrial membrane”, “mitochondria respiratory chain
complex I”, “aerobic electron transport chain”, “NADH
oxidoreductase activity”, and “positive regulation of cellular
component organization”, highlighting that KIKO microglia
exhibit altered morphology, proinflammatory features, and
dysfunctional mitochondria.

To investigate if the differences in proinflammatory fea-
tures obtained by transcriptomic analysis correlate to spe-
cific inflammatory gene signatures, we analyzed in WT and
KIKO microglia the expression of genes involved in pro- and
anti-inflammatory functions. As shown in Figure 1G, pro-in-
flammatory genes such as interleukin-1 beta (IL1B), Cd68,
and NADPH oxidase 2 (Cybb) are significantly up-regulated in
KIKO microglia at the level of mRNA expression. The CD68
protein content is accordingly increased in KIKO cells
(Fig. 1H). Remarkably, the expression of the transmembrane
subunit of NOX2, gp91phox, is significantly up-regulated in
KIKO microglia (Fig. 1H), suggesting that cytosolic reactive
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this aspect. Flow cytometry analysis showed that in KIKO
microglia, the overall mass of mitochondria labeled with
the MitoTracker green fluorescent probe decreased with
respect to WT cells (Fig. 1L). When we examined the oxy-
gen consumption rates of WT and KIKO microglia, we
observed defects in mitochondrial respiration (Fig. 1M).
Indeed, although basal respiration and ATP production were
not significantly affected in KIKO microglia (data not
shown), maximal respiration and spare respiratory capacity
were decreased (Fig. 1M). On the other hand, we demon-
strated that KIKO microglia up-regulated overall glycolytic
function, by increasing glycolysis and glycolytic capacity
(Fig. 1N), suggesting a metabolic altered microglia profile in
this pathological context. Overall, these results suggest
that the lack of FXN impairs mitochondria functionality,
with decreased oxygen consumption, enhanced glycolysis,
and oxidative stress, together with increased phagocytic
activity. These alterations are typical of reactive microglia
and are generally associated with a cytotoxic function.5

To examine the possible functional effects of FRDA
microglia in microgliaeneuron interactions, we cultured
WT mouse cortical neurons in the presence of microglial
conditioned medium from WT and KIKO microglia. Immu-
nofluorescence analysis showed that the microglial
conditioned medium derived from KIKO microglia
decreased neurite length, neurite number per cell, and
overall neuron viability (Fig. 1O). These results provide
evidence that microglia can participate in neuron degen-
eration in FRDA.

It has been demonstrated that KIKO mice show cerebellar
synaptic deficits and dysregulated circuits at asymptomatic
age.6 Since microglia participate in numerous developmental
events in the CNS, with the aim of highlighting possible
microglial dysfunctions in vivo during an early developmental
phase of the disease, we analyzed the cerebellum of WT and
KIKO mice at postnatal day 15. As expected, FXN levels were
significantly reduced in cerebellar homogenates (Fig. S6A)
and sections (Fig. S6B) of KIKO mice compared with age-
matched controls. We demonstrated that the mRNA levels of
P2ry12, aswell as of triggering receptor expressed onmyeloid
cells 2 (Trem2) and chemokine (C-X3-C motif) receptor 1
(Cx3cr1), key microglial molecules mediating the process of
synapse refinement during neurodevelopment, were
decreased in the cerebellum of KIKO mice (Fig. 1P). Impor-
tantly, the P2Y12 protein, which characterizes cells in a ho-
meostatic context, decreased in molecular, Purkinje cell and
granular cerebellar layers of KIKO mice (Fig. 1Q). Finally,
consistently with the in vitro results, we demonstrated
changes in microglia morphology in the cerebellum ofWTand
KIKO mice. We found a significant reduction in the number of
branches per cell, in the branch length, and in the triple
endpoints in KIKO microglia, which became overall less
ramified compared with WT cells (Fig. 1R), indicating that
their ability to generate complex branches is impaired in KIKO
cerebellum.

Although several reports correlated microglia morphology
to cerebellar degeneration in FRDA in vivo, this work is the
first to provide multilayer evidence (phenomics, tran-
scriptomics, and metabolic analysis) that FRDA microglia are
dysfunctional, suggesting a contribution of non-cell autono-
mous mechanisms in FRDA pathogenesis. Considering the
established role of microglia in neurodegeneration, the
comprehension of the mechanisms underlying microglial-
related pathological mechanisms in FRDA could be instru-
mental in designing time- and molecule-targeted therapeu-
tic interventions to halt cerebellar degeneration in the
disease.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
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