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a b s t r a c t 

In recent years, there has been significant growth in the 

development of Machine Learning (ML) models across vari- 

ous fields, such as image and sound recognition and natural 

language processing. They need to be trained with a large 

enough data set, ensuring predictions or results are as accu- 

rate as possible. When it comes to models for audio recog- 

nition, specifically the detection of car horns, the datasets 

are generally not built considering the specificities of the dif- 

ferent scenarios that may exist in real traffic, being limited 

to collections of random horns, whose sources are some- 

times collected from audio streaming sites. There are bene- 

fits associated with a ML model trained on data tailored for 

horn detection. One notable advantage is the potential im- 

plementation of horn detection in smartphones and smart- 

watches equipped with embedded models to aid hearing- 

impaired individuals while driving and alert them in poten- 

tially hazardous situations, thus promoting social inclusion. 

Given these considerations, we developed a dataset specifi- 

cally for car horns. This dataset has 1,080 one-second-long 

.wav audio files categorized into two classes: horn and not 

horn. The data collection followed a carefully established 

protocol designed to encompass different scenarios in a real 

traffic environment, considering diverse relative positions be- 

tween the involved vehicles. The protocol defines ten distinct 

scenarios, incorporating variables within the car receiving the 
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horn, including the presence of internal conversations, mu- 

sic, open or closed windows, engine status (on or off), and 

whether the car is stationary or in motion. Additionally, there 

are variations in scenarios associated with the vehicle emit- 

ting the horn, such as its relative position—behind, alongside, 

or in front of the receiving vehicle—and the types of horns 

used, which may include a short honk, a prolonged one, or 

a rhythmic pattern of three quick honks. The data collection 

process started with simultaneous audio recordings on two 

smartphones positioned inside the receiving vehicle, captur- 

ing all scenarios in a single audio file on each device. A 400- 

meter route was defined in a controlled area, so the audio 

recordings could be carried out safely. For each established 

scenario, the route was covered with emissions of different 

types of horns in distinct positions between the vehicles, and 

then the route was restarted in the next scenario. After the 

collection phase, the data preprocessing involved manually 

cutting each horn sound in multiple one-second windowing 

profiles, saving them in PCM stereo .wav files with a 16-bit 

depth and a 44.1 kHz sampling rate. For each horn clipping, 

a corresponding non-horn clipping in close proximity was 

performed, ensuring a balanced model. This dataset was de- 

signed for utilization in various machine learning algorithms, 

whether for detecting horns with the binary labels, or classi- 

fying different patterns of horns by rearranging labels consid- 

ering the file nomenclature. In technical validation, classifica- 

tions were performed using a convolutional neural network 

trained with spectrograms from the dataset’s audio, achiev- 

ing an average accuracy of 89% across 100 trained models. 

© 2024 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC license 

( http://creativecommons.org/licenses/by-nc/4.0/ ) 

S
pecifications Table 

Subject Computer Science/Artificial Intelligence 

Specific subject area The dataset can be used to train binary and multi-class ML classifier models to 

detect the presence or absence of sound from three types of horns. 

Type of data Raw Audio Excerpts (.wav format) 

Data collection The dataset comprises 1,080 audio files, each with a precise one-second time 

window and a nomenclature that identifies whether it is a horn or not, its 

type, the relative position of the vehicles, and the displacement of the clipping 

window. The dataset is balanced. The collection process involved two vehicles, 

one emitting horns and the other receiving them while covering a route for 

each defined scenario. In the receiving vehicle, two Android smartphones were 

placed for audio recordings in .wav format, with a 16-bit depth and a 44.1 kHz 

sampling rate. The data underwent preprocessing through manual cutting of 

audio segments with and without horns using the Audacity 3.3.2 software. 

Data source location Institution: Federal University of Para - Guamá Science and Technology Park 

City: Belem – Para 

Country: Brazil 

Latitude and Longitude: -1.46465, -48.44318 

Data accessibility Repository name: Mendeley Data 

Digital Object Identifier: 10.17632/y5stjsnp8s.2 

Direct URL to data: https://data.mendeley.com/datasets/y5stjsnp8s/2 

http://creativecommons.org/licenses/by-nc/4.0/
http://10.17632/y5stjsnp8s.2
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1. Value of the Data 

• This is a dataset composed of horn and not-horn sounds, maintaining class balance in the set.

Its creation involved scenario-driven data collection, considering situations encountered in a

real traffic environment. No specific horn datasets were found in the literature available in

academic databases such as IEEE, ACM Digital Library, and ScienceDirect when searching for

“horn’’ and “dataset’’ or “honk’’ and “dataset’’. The available datasets containing horn sounds

are typically compilations of various types of sounds collected from online sound platforms.

Therefore, this is potentially a unique dataset due to its distinctive characteristics. 

• We believe that the dataset might be useful for horn detection research involving Machine

Learning (ML) by providing raw data for feature extraction (mel-frequency cepstral coeffi-

cients, spectrograms, among others) and model design. In this manner, it brings positive im-

pacts to the academic field. 

• From a social point of view, the construction and availability of this database can encour-

age and provide inputs for potential research on social inclusion through the detection of

car horns in traffic environments for the hearing-impaired. This scene would potentially be

achieved through intelligent models embedded in smartphones and smartwatches, for in-

stance. 

• The dataset is structured following a specific nomenclature to differentiate each scenario,

vehicle position, horn type, horn occurrence, and audio clipping window displacement. The

latter is important to ensure that ML models have examples of audio snippets playing only

the beginning of a horn or just the ending, situations that may occur in real-time detection. 

• Given that the vehicles are moving in most collection scenarios, a distinctive aspect of this

dataset is the occurrence of audio with and without the Doppler effect, which can have a sig-

nificant impact on models for horn detection. This is because the sound’s frequency emitted

by a moving source are perceived differently by the receiver [ 1 ], leading to potential changes

in the features extracted from the audio. A model trained with this dataset may possibly

learn differences between sounds emitted by stationary and moving vehicles. 

• As the variation in the distance between the two moving vehicles interferes with the audio

waveform, it is important not to fix it during the data collection. The dataset needs to include

a variety of examples to prevent biasing models towards specific configurations. Therefore,

the proposed database was constructed with random distances in each scenario. 

2. Background 

In previous research [ 2 , 3 ], the requirement for a specialized horn dataset to train machine

learning models that account for diverse scenarios in a real traffic environment was recognized.

The ultimate objective is to incorporate individuals with hearing impairments into traffic con-

siderations. Although there are datasets in the literature that contain horns, such as UrbanSound

[ 4 ], ESC [ 5 ], and FSD50K [ 6 ], they are not specific sets for this task, as their data have been

collected from online platforms. 

Additionally, audio datasets collected by the authors themselves in real environments or situ-

ations were observed. Examples include the Chime-Home [ 7 ], a dataset of gunshot audio [ 8 ], one

focused on motor sounds [ 9 ], and some specific resources for spoken tasks, such as AudioMNIST

[ 10 ] and STOP [ 11 ]. Also, there are audio datasets created through cutting, modifications, and

transformations applied to existing datasets, such as SARdB [ 12 ] for audio scenes and Shrutilipi

[ 13 ] for automatic speech recognition. Although none of them pertain to horns, they provide

guides for the creation of a collection protocol. 
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. Data Description 

This dataset consists of 1,080 audio files in raw .wav format with a 16-bit depth and a 44.1

Hz sampling rate - common recording and editing formats typically found in the literature -

ach with a one-second time interval. It is divided into two classes, comprising 540 horn and

40 not-horn files. These files are located within the Dataset folder, which has been compressed

nto the Dataset.zip file. 

The hornbase.csv file lists all the .wav files with their respective labels (horn or not-horn)

nd corresponding numerical values (1 and 0, respectively). Additionally, there are the horn-

ase_train.csv and hornbase_test.csv files, maintaining the structure of the hornbase.csv file but

ividing the main dataset in a 70/30 ratio for train and test, respectively. 

There is also a file that describes the nomenclature of the audio files, providing information

bout the recording device, whether it is a horn or not, the relative position of the vehicles, the

orn type, and the displacement of the clipping window. This can be useful in situations where

he researcher wants to extend binary labeling to also encompass the type of horn, for instance.

he proposed nomenclature is shown in Fig. 1 . 

Fig. 1. HornBase filename structure. 

. Experimental Design, Materials and Methods 

We defined a careful data collection protocol, outlining the possible scenarios and positions

f the vehicles involved, the materials needed to collect the audio, the streets for the collection

oute, and the honking styles. Then, the processing and labeling protocol used to orchestrate the

udio cutting and organize the file structure of the dataset was defined. 
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4.1. Data Collection Protocol 

The first step involved defining different possible scenarios for receiving sounds inside a car.

Consequently, ten situations were identified regarding the receiving vehicle: Car engine on and

off, with or without music, people conversing or in silence, car with open or closed windows,

stationary or moving car. Additionally, variations in the relative position of the cars were defined,

including the emitter behind, alongside, or in front of the receiver. 

Engine-on or engine-off scenarios were established because a horn can be received while the

car is running, or while it is parked about to start. So the engine noise can be captured together

with the horn and harms its recognition. The same principle applies to scenarios of music or

any other sound coming from the car’s speakers. Likewise, internal conversations may reduce

the quality of the received sound. So all these variations must be considered when training the

model. 

The window’s open or closed scenario is also related to the quality of the sound that will

be recorded. An open window can facilitate the capture of an outside sound, but it will also

increase the presence of noises from other vehicles and ambient sounds. The closed window

keeps the car’s environment more isolated and with a different acoustics. Therefore, it is valid

to have examples of these two profiles in the dataset. 

This approach resulted in ten collection scenarios, each one involving a variation of three

relative positions between the vehicles. In each position, three types of horns were sounded:

A short horn, a long horn, and a rhythmic three-honk horn. Table. 1 presents the ten chosen

scenarios. 

Table 1 

Receiver vehicle scenarios. 

Identifier Description 

Scenario 01 Car with windows closed, engine off, sound off, no internal conversations 

Scenario 02 Car with windows closed, engine running, sound off, no internal conversations, no movement 

Scenario 03 Car with windows closed, engine running, sound off, no internal conversations, in motion 

Scenario 04 Car with windows closed, engine running, sound on, no internal conversations, in motion 

Scenario 05 Car with windows open, engine running, sound off, no internal conversations, in motion 

Scenario 06 Car with windows closed, engine running, sound off, with internal conversations, in motion 

Scenario 07 Car with windows closed, engine running, sound on, with internal conversations, in motion 

Scenario 08 Car with windows open, engine running, sound on, no internal conversations, in motion 

Scenario 09 Car with windows open, engine running, sound off, with internal conversations, in motion 

Scenario 10 Car with windows open, engine running, sound on, with internal conversations, in motion 

With the scenarios defined, the location for data collection was decided: For safety reasons,

an isolated street at a university, on a straight route of 450 meters. In each scenario, the cars

traveled along the chosen street, totaling ten round trips. Fig. 2 shows the chosen route. 

The next step was to define the materials necessary for data collection, in audio format in

this case. For the procedure, two cars must be available, one to emit the horns, and the other

will be the horn receiver where the audio recording devices will be located. The devices chosen

for this task were two android smartphones of different models so that there would be audio

from different recording sources in the dataset. The Super Recorder App was chosen to continu-

ously record high-quality, lossless stereo audio in .wav format. 

The data collection process began by starting audio recording on both smartphones, with the

horns being emitted in the appropriate positions of the cars. The distance between vehicles was

not specified when the emitter was either behind or ahead, as maintaining constant precision

would be challenging while the cars were in motion. Anyway, the distance ranged from 30 to

80 meters. When the vehicles were positioned side by side, the distance varied from two to five
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Fig. 2. The chosen route for data collection. 

m  

w

4

 

d  

s  

s

 

w  

w  

c  

h

 

a  

i  

l

 

t  

l  

c

 

eters. At the end of the collection, two .wav audio files, each lasting approximately 18 minutes,

ere obtained, which were cut and processed in the next phase. 

.2. Processing and Labeling Protocol 

In order to process the two audio files and extract excerpts, we opted for the software Au-

acity due to its user-friendly interface for manipulating waveforms. Initially, the ten recorded

cenarios were cut from each file and named with the corresponding number, along with a

martphone identifier, resulting in a total of 20 scenario files. 

The audio files were then individually listened to and the respective waveforms examined

ith the aim of identifying segments with and without horn sounds. Once the horn was located,

e selected three sections (or parts): The first part covering the entire horn duration; the second

overing half of the sound, starting 500ms before the first part; and a third covering the other

alf of the sound, ending 500ms after the first part. Each section strictly lasted one second. 

For every horn-containing section, we extracted a corresponding one-second section without

 horn nearby, establishing a balanced binary class scheme. Fig. 3 illustrates part of the Audacity

nterface, highlighting regions with different horn sounds in green (short, long, and varying, from

eft to right), areas without horns in red, and the clipping area. 

The label of an audio, whether of the horn class or the non-horn class, was defined at the

ime of the clipping itself, since it was already known at this point which class the audio be-

onged to. The note was made in the name of the file itself when saving it, through the nomen-

lature X_N_Y_Z for cases in which there is an occurrence of a horn, where: 

• X is the smartphone identifier (C or J); 

• N is the scenario identifier number (ranging from one to ten); 

• Y represents the position of the emitting vehicle in relation to the receiver (B for back, S for side,

A for ahead) and; 
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Fig. 3. The audio cutting process in the Audacity software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Z represents the horn type (S for short, L for long, V for varied). 

Thus, the file C_9_B_L, for example, refers to a clipping obtained from the smartphone labeled

as C, ninth scenario, when the emitting vehicle was behind the receiver and firing a long horn

sound. Additionally, when it comes to a clipping that only encompasses the first half of the horn,

an underline is placed at the beginning of the filename, the same applies when it comes to the

second half, with the underline at the end of the file. 

For the not-horn files class, a similar structure is followed, but without the underlines at the

edges and changing the horn type identifier to the letter N followed by a number from one to

nine. It was done to differentiate the not-horn files, as for each of the three types of horn three

audio files are generated (one covering the entire horn sound, and more two containing only the

first and the second half of the sound, respectively). Thus, the C_9_B_N3 file refers to the third

not-horn audio captured by smartphone C, in the ninth scenario, when the emitting vehicle is

behind. 

In a technical validation of the dataset, spectrograms were extracted as features from each audio

file for subsequent training of a convolutional neural network. 

5. Dataset Evaluation 

Convolutional Neural Networks (CNNs) have established themselves in the literature as a

powerful tool for image classification and are demonstrating increasing success in sound classi-

fication tasks. They outperform traditional algorithms like Support Vector Machines (SVMs) and
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Fig. 4. Dataset evaluation pipeline. 
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aussian Mixture Models (GMMs) [ 14 ]. Because of that, a CNN model was chosen to analyze

he HornBase Dataset. Spectrograms in grayscale format with dimensions of 86 ×256 pixels were

xtracted from the audio files using the MusicG [ 15 ] library in Java. Then, the CNN architecture

as defined and 100 models were trained using TensorFlow [ 16 ] in Python. Fig. 4 provides a

isual overview of the entire process. In the following subsections, each step of the presented

ipeline will be detailed. 

.1. Spectrogram Extraction with MusicG 

The MusicG library written in Java was used to extract spectrograms from the audio files

n the dataset. MusicG can read .wav files and generate grayscale spectrograms, among other

unctionalities. Algorithm 1 shows a code snippet demonstrating how to import the necessary

lasses, read an audio file, and generate the spectrogram plot. 

The provided example demonstrates spectrogram generation for a single audio file. The gen-

rated spectrogram is essentially a heat map where the most prominent frequency regions in the

-second window of the audio are darker, with lower frequencies at the bottom of the image,

nd higher frequencies at the top. 

In order to handle the large dataset efficiently, the Windows PowerShell tool was used to

ename the files to a pattern suitable for iterative processing in loops. For instance, the training

et files were renamed following the pattern ty (1), ty (2) ... ty (m) for positive class, and tn (1),
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Algorithm 1. Code Snippet for extracting a spectrogram with MusicG. 

Fig. 5. Sample of the spectrograms for each set and class. 

 

 

 

 

 

 

 

 

 

 

 

tn (2) ... tn (m) for negative class. The same logic was applied to the test set, renaming files to

y (1), y (2) ... y (m) and n (1), n (2) ... n (m) for positive and negative classes, respectively. Note

that positive class indicates the occurrence of a horn, and negative class indicates its absence. A

demonstration of the generated spectrograms, with the files in this nomenclature, is presented

in Fig. 5 . 

After separating the training and testing sets and renaming the files, we proceeded to load

the spectrograms into Python using the OpenCV library [ 17 ] for grayscale reading, as illustrated

in Algorithm 2 . 

5.2. Model Definition and Evaluation 

A basic CNN architecture was designed, consisting of an input layer that accepts the entire

spectrogram image. It was followed by a convolutional layer with a 3 ×3 kernel and a ReLU

(Rectified Linear Unit) activation function. A pooling layer was then applied for dimensionality

reduction. We stacked another convolutional layer with a 3 ×3 kernel, ReLU activation, and an-

other pooling layer to extract more complex features. The resulting feature map was flattened
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Algorithm 2. Loading Spectrograms with OpenCV in Python 
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nto a one-dimensional vector, which was fed into a fully-connected layer with ReLU activation.

inally, the output layer used a Softmax activation function to provide binary class probabilities.

The training was parameterized with variable epochs. For an initial test, we arbitrarily set the

pochs to 100, and the model achieved an accuracy of 95%, as detailed in Table 3 . However, a

loser look at the confusion matrix (vide Table 2 ) reveals that most errors were false negatives.

n other words, the model did not identify some horn samples, prompting further investigation

ith different approaches. 

able 2 

onfusion matrix. 

True Positive True Negative 

Predicted Positive 152 3 

Predicted Negative 10 159 

able 3 

easures from confusion matrix. 

Measure Value 

Accuracy 0.959 

Recall 0.938 

Precision 0.980 

F1 Score 0.959 

In order to verify if the accuracy of the model in this specific training was not merely co-

ncidental, a sequence of 100 models were trained, with epochs ranging from 25 to 124, in-

rementing by one for each subsequent training. Consequently, the models exhibited an overall

verage accuracy of 89%, as illustrated by the evolution curve in Fig. 6 . Notably, there is signifi-
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Fig. 6. Evolution of accuracy over epochs. 

Algorithm 3. Implementation of 100 CNNs in Python. 
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ant fluctuation in accuracy between epochs 25 and 90, followed by a period of minor oscillation

hereafter. 

The Python code developed to architect the CNN, conduct the training in a loop of 100 mod-

ls, and generate the test results for each iteration can be viewed in Algorithm 3 , where the

ighlighted excerpt reveals the CNN architecture itself. 

Our exploration using the HornBase Dataset involved feature extraction (spectrograms), train-

ng a basic CNN model, and evaluation. This process achieved an average accuracy of 89%. These

esults indicate that the proposed protocol for creating the audio dataset is viable, and HornBase

an be a valuable resource for horn detection model pipelines. 

Considering future work, we recommend investigating the extraction of additional features

uitable for different machine learning models. Additionally, the action of exploring more robust

NN architectures can broaden the scope of evaluation and potentially improve accuracy. All

odes presented in this paper are publicly available at https://github.com/cleytondim/HornBase . 

imitations 

Due to concerns about the safety of individuals involved in audio collection and other drivers,

s well as to avoid potential traffic violations by continuously honking, the route taken was

lanned on a low-traffic street. Consequently, it lacks sounds from environments with heavier

raffic. 

Due to resource limitations, we focused on constructing the dataset exclusively with car

orns. This strategic decision emphasizes the significance of capturing and understanding the

uances of car horn sounds in various scenarios. Acknowledging the absence of horns sounds

rom other vehicles, we recommend using the developed database in applications that aim to

eproduce the real world, but keeping in mind the predominance of cars. 

Some other potential scenarios were considered, such as rain, thunder, and sirens in the ex-

ernal environment, but due to their occurrences being challenging to predict at a specific time

n the real world, they were discarded. 
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