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Tuberculosis (TB) remains a significant global health concern,
necessitating effective control strategies. This article presents a
mathematical model to evaluate the comparative effectiveness
of medical mask usage and case detection in TB control.
The model is constructed as a system of ordinary differential
equations and incorporates crucial aspects of TB dynamics,
including slow–fast progression, medical mask use, case
detection, treatment interventions and differentiation between
symptomatic and asymptomatic cases. A key objective of TB
control is to ensure that the reproduction number, ℛc, remains
below unity to achieve TB elimination or persistence if ℛc
exceeds 1. Our mathematical analysis reveals the presence of
a transcritical bifurcation when the ℛc = 1 signifies a critical
juncture in TB control strategies. These results confirm that
the effectiveness of case detection in diminishing the endemic
population of symptomatic individuals within a TB-endemic
equilibrium depends on exceeding a critical threshold value.
Furthermore, our model is calibrated using TB yearly case
incidence data per 100 000 population from Indonesia, India,
Lesotho and Angola. We employed the bootstrap resampling
residual approach to assess the uncertainty inherent in
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our parameter estimates which provides a comprehensive distribution of the parameter values.
Despite a declining trend in new incidence, these four countries exhibit a reproduction number
greater than 1, indicating persistent TB cases in the presence of ongoing TB control programmes.
We employ the partial rank correlation coefficient in conjunction with the Latin hypercube sampling
method to conduct a global sensitivity analysis of the ℛc parameter for each fitted parameter
in every country. We find that the medical mask use is more sensitive to reduce ℛc compared
with the case detection implementation. To further gain insight into the necessary control strategy,
we formulated an optimal control and studied the cost-effectiveness analysis of our model to
investigate the impact of case detection and medical mask use as control measures in TB spread.
Cost-effectiveness analysis demonstrates that combining these interventions emerges as the most
cost-effective strategy for TB control. Our findings highlight the critical importance of medical
masks and their efficacy coupled with case detection in shaping TB control dynamics, elucidating
the primary parameter of concern for managing the control reproduction number. We envisage
our findings to have implications and be vital for TB control if implemented by policymakers and
healthcare practitioners involved in TB control efforts.

1. Tuberculosis recent facts
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis [1]. It
primarily affects the lungs but can also target other parts of the body, such as the kidneys, spine and
brain. TB is spread through the air when an infected person coughs, sneezes or talks, releasing tiny
droplets containing the bacteria [2]. The infection is usually presen in two forms: latent TB infection
(LTBI) and active TB disease [3]. In LTBI, the bacteria remain dormant within the body, and the infected
individual does not experience symptoms or feel sick. However, they are at risk of developing active
TB if their immune system weakens. Active TB, on the other hand, leads to noticeable symptoms like
persistent cough, chest pain, fatigue, fever, night sweats and weight loss. It is essential to diagnose and
treat active TB promptly, as it can be life-threatening if left untreated.

Preventive measures, such as vaccination (with the Bacillus Calmette–Guérin vaccine) for children
and early identification and treatment of infected individuals, are crucial in controlling the spread
of TB and reducing its impact on public health [4]. Effective treatment of TB involves a combination
of antibiotics taken over a specific period, usually 6–9 months, to ensure complete eradication of the
bacteria and reduce the risk of drug resistance [5]. In some cases of drug-resistant TB, treatment may
require a more extended and challenging regimen. Medical masks, such as surgical masks or N95
respirators, can provide some level of protection against the transmission of TB, but they are not
specifically designed as a primary preventive measure for TB [6]. While medical masks can help reduce
the risk of inhaling large respiratory droplets that contain the TB bacteria, they are not entirely effective
in preventing transmission.

The use of mathematical models by scientists in understanding the mechanisms of disease spread
on a population scale has a long history. Many of these models have been inspired by the famous
epidemic model developed by Kermack & McKendrick [7]. Subsequently, numerous mathematical
models have been introduced to enhance our understanding of the spread of various well-known
diseases, such as dengue [8,9], malaria [10,11], human immunodeficiency virus/acquired immune
deficiency syndrome [12], pneumonia [13], coronavirus disease 2019 (COVID-19); [14,15]), TB [16,17]
and many more. Recently, several mathematical models have been developed to gain a more specific
understanding of the mechanisms underlying TB transmission on a population scale. Bhadauria et
al. [18] studied the impact of isolation for TB cases in India using their Susceptible-Infected-Quaran-
tine-Recovered (SIQR) model, in which they predicted that isolating half of the multidrug-resistant
TB (MDR-TB) cases could lead to a substantial reduction in TB incidence by 2025, with a concurrent
decline in estimated MDR-TB incidence. A mathematical model considering treatment was introduced
by Ullah et al. [19]. Their parameter values were estimated using incidence data from Pakistan. They
emphasized the significance of reducing the basic reproduction number to less than 1 as a pivotal
strategy for eradicating TB epidemics and underscored the need to decrease treatment failure cases
to reduce TB infectivity. The study also highlighted the effectiveness of isolating infective individuals
through the reduction of the transmission coefficient. Okuonghae [20] performed a thorough mathe-
matical analysis on a simplified stochastic TB disease model with case detection. The author found
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that the only disease persistence depends on the case detection parameter. Disease eradication showed
an independent relationship with the case detection parameter. With the existence of pharmaceutical
intervention in controlling the spread of TB, Liu et al. [21] proposed a stochastic TB model by incor-
porating the effect of antibiotic resistance. They found sufficient conditions (dependency between
parameters on the reproduction number) for the extinction of TB from the population. An age-struc-
tured model for TB dynamics was constructed by Das & Kar [22]. It was found that the detection
of LTBI could increase or decrease the reproduction number depending on the model parameter
condition.

There are many options to prevent TB infection, with the most popular method being the use
of vaccines. Vaccination aspects were incorporated into their delay-differential equation model by
Zhang et al. [23]. The authors discovered that there is a minimum number of vaccinations such that
vaccine intervention could effectively suppress the spread of TB. A different approach, as demonstra-
ted by Yusuf & Abidemi [24], involves the use of an optimal control approach to model the impact
of vaccines and treatments on TB dynamics. Besides vaccines, the intervention of treatment is also
important for TB control programmes. Okuonghae [25] considered the impact of treatment with three
different latently infected classes in their model. Furthermore, an innovative fractional-order stochastic
differential equation model was introduced by Chukwu et al. [26] to analyse the impact of treatment on
TB.

Despite these efforts, it is worth noting that not many mathematical models have considered the use
of medical masks and case detection, similar to the strategies used during the COVID-19 pandemic,
as simple and easy-to-implement prevention strategies for TB. Therefore, our proposed model in
this article will incorporate two different interventions for preventing and controlling the spread
of TB, namely the use of medical masks and case detection. The model was developed using a five-
dimensional system of ordinary differential equations (ODE). Mathematical analysis and numerical
experiments were conducted to demonstrate the long-term behaviour of the proposed model.

The layout of our article is organized into several key sections, each addressing distinct aspects
of our research: §1 provides an overview of recent facts about TB and review previous mathematical
models relevant to our study; §2 outlines our model assumptions, construction methodology and
details the parameter estimation process; §3 delves into the dynamical analysis of our model, focussing
on equilibrium points, the reproduction number and bifurcation analysis to understand the underlying
TB dynamics of our model. Moving forward, §4 is dedicated to global sensitivity analysis (GSA), where
we explore the impact of medical masks and case detection on controlling the reproduction number
of TB; §5 presents the results of our optimal control simulations and conducts a cost-effectiveness
analysis to evaluate the efficacy and efficiency of various TB control strategies; and §6 encapsulates our
conclusions, summarizing key findings, implications and avenues for future research. Additionally,
we provide appendices containing proofs and visualizations of theorems presented throughout the
manuscript, offering supplementary information to enhance the understanding and rigour of our
study.

2. Mathematical model construction and parameter estimation
2.1. Model construction
Let the human population be divided into five compartments, namely susceptible (S), exposed/latent
(E), infected asymptomatic, undetected and untreated (I1), infected symptomatic, detected and treated
(I2) and recovered (R). Therefore, the total human population is given by:N = S + E + I1 + I2 + R .

To construct the mathematical model for TB transmission in this research, several important assump-
tions need to be declared first:

— case detection: case detection is a crucial component of TB control efforts aimed at identifying and
diagnosing individuals with active TB disease. Effective case detection is essential for initiating
prompt treatment, preventing further spread of the disease and ultimately reducing the burden
of TB [27]. Based on this importance, we include the case detection effort (u1) in our model to
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find symptomatic undetected individuals in the field. Hence, u1I1 represents the newly detected
symptomatic TB-infected individuals;

— effect of medical mask use: with the escalation of respiratory diseases, including TB, the use
of medical masks emerges as one of the most prevalent and pragmatic non-pharmaceutical
interventions aimed at diminishing the risk of infection and disease transmission. While the
effectiveness of wearing medical masks in combating diseases remains a topic of debate [28–30],
numerous pre-COVID-19 pandemic studies highlight the potential efficacy of medical mask
usage among TB-active patients in curtailing the spread of TB. In three human studies conducted
in healthcare settings, a reduction in TB cases was observed among the participants who used
the medical masks [31–33]. The findings were also consistent with an animal study by Dharmad-
hikari et al. [34]. The study reported that 56% decreased risk of TB transmission in a group of
guinea pigs when exposed to air from active TB patients who wore masks. To model the impact
of medical mask use, let us denote β and u2 as the TB successful infection rate and rate of medical
mask use, respectively. Furthermore, it is assumed that individuals in compartment I2 cannot
transmit TB to others because they are presumed to adhere to recommendations to reduce close
contact with others, either by maintaining distance, isolation or quarantine. Hence, we have u2I1

represent the proportion of infected individuals who use medical masks, while (1 − u2)I1 are
those who do not. Hence, the total new infection caused by infected individuals who do not use
medical masks is given by β(1 − u2)I1S. Furthermore, we assume that the use of a medical mask
may reduce the successful infection rate with an efficacy of ξ. The more effective the medical
mask, the larger the value of ξ. Hence, the total number of new infections caused by infected
individuals who use medical masks is given by (1 − ξ)βu2I1S. Therefore, the total number of new
infections, Λ(S, I1) caused by I1 is given by:

Λ(S, I1) = β(1 − u2)I1S + (1 − ξ)βu2I1S = (1 − ξu2)βSI1;

— slow–fast progression: TB infection can exhibit different progression patterns, including slow and
fast progression [35]. In slow progression, the infection advances gradually over an exten-
ded period. Individuals with slow-progressing TB may not show noticeable symptoms for a
significant period after being exposed to the bacteria. Latent TB may later progress to active
TB disease under certain conditions, such as a weakened immune system. On the other hand,
fast progression refers to a more rapid development of active TB disease after exposure to the
bacteria. Individuals with fast-progressing TB may experience symptoms relatively soon after
being infected. Based on this, we assume that the total number of new infections given by Λ(S, I1)
may experience slow progression with a probability of p or fast progression with a probability ofq. Note that p + q = 1. Hence, the proportion of newly infected individuals who experience slow
progression is given by:

pΛ(S, I1) = p(1 − ξu2)βSI1,

while for fast progression is given by qΛ(S, I1) = q(1 − ξu2)βSI1 .

Using the above assumptions, the model construction is given as follows: we assume that the recruit-
ment rate is always constant with a value of δ. Under the impact of medical mask use, the number of
susceptible individuals may decrease owing to a new infection by I1 individual, given by (1 − ξu2)βSI1.
Owing to slow–fast progression, a proportion of newly infected individuals will experience slow
progression (p(1 − ξu2)βSI1) and enter the E compartment, while the rest will experience fast progres-
sion (q(1 − ξu2)βSI1) and move to the I1 compartment. Furthermore, it is assumed that latent individu-
als can undergo an increase in infection status, becoming infectious and exhibiting symptoms, thus
requiring treatment. We use ϵ to represent this phenomenon, which allows the transition from E toI2. Without any early case detection, latent individuals will experience TB progression and become
infected. Hence, there is a transition rate from E to I1 owing to infection progression, denoted by θ.

Owing to case detection for the symptomatic individual I1, we have a transition from I1 to I2 with a
rate of u1. Both I1 and I2 may recover from TB with a rate of recovery given by k1 and k2, respectively.
Since I2 gets an intensive treatment, we have k2 > k1. In addition to natural death occurring at a rate μ
in each compartment, there is a death rate specifically due to TB for compartments I1 and I2 with ratesd1 and d2, respectively.

4
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 231715



Hence, the TB model with interventions such as case detection and medical masks is given by:

(2.1)dS
dt = δ − (1 − u2ξ)βSI1 − (μ)S,

(2.2)dE
dt = p(1 − u2ξ)βSI1 − (θ + ϵ + μ)E,

(2.3)dI1
dt = q(1 − u2ξ)βSI1 + θE − (u1 + k1 + d1 + μ)I1,

(2.4)dI2
dt = ϵE + u1I1 − (μ + d2 + k2)I2,

(2.5)dR
dt = k1I1 + k2I2 − μR,

with non-negative initial conditions. Let

Ω = (S,E, I1, I2,R) ∈ ℝ+
5 |0 ≤ N ≤ max N(0), δμ ,

defined as the invariant region for equations (2.1)–(2.5). As long as the initial conditions are in Ω, the
solution of the above system will always remain in Ω. Interested readers can see appendix A for the
proof.

2.2. Estimating model parameters using data fitting
Before conducting simulations for the optimal control problem in §6, we performed parameter
estimation for our model using yearly new incidence data per 100 000 individuals from four different
countries: Indonesia, India, Angola and Lesotho. The data, starting from 2000 to 2020, were obtained
from the World Bank [36].

We aimed to find the best-fit parameter and best-fit initial conditions of our model such that the
Euclidean distance between the incidence data and model output simulation was minimized. Since the
data is the yearly new incidence data, we fitted the data with the newly detected incidence of TB both
from E and I1 compartments, i.e. ϵE and u1I1. Particularly, the following cost function was minimized:

(2.6)C = ∑i = 0

21
(ϵEi + u1I1i) − datai 2,

where 21 is the number of data points collected from the years 2000 to 2020 for each country. Other
parameters were held constant as follows:

– the recruitment rate (δ) and the natural death rate (μ): from equations (2.1)–(2.5), the dynamic of the
total human population is given by:

dNdt = δ − μ(S + E + I1 + I2 + R) − d1I1 − d2I2 ≤ δ − μN .

Hence, if we assume that d1 and d2 are relatively small, then the total population can be assumed to
be constant. Hence, we have δ = μN. Given that the incidence data used for parameter estimation is
presented as the incidence rate per 100 000 people [36], it follows that our population size, denoted asN, is equivalent to 100 000. Furthermore, since the average human life expectation is between 66.8 years

in 2000 to 73.4 in 2019 [37], then we assume that μ = 1
72 ;

— medical mask efficacy (ξ): the use of surgical face masks on patients with MDR-TB has demon-
strated a significant reduction in transmission, providing an additional measure to mitigate
the spread of TB from infectious individuals [34]. Hence, from the same reference, we chooseξ = 56%;

— the TB latent progression to active TB (θ): reactivation is the transition of a subclinical latent
infection into active TB disease. Consequently, individuals with LTBI serve as a significant
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reservoir for the emergence of new active TB cases. According to [38], it takes approximately 2

years for an individual to progress from latent TB to active TB. Hence, we assume θ = 1
2 ;

— the recovery rate (k1 and k2): most individuals with TB disease typically require a minimum of 6–12
months of TB treatment for a complete cure [39]. Hence, we assume k2 = 1. Since k1 < k2, then we
assume k1 = 0.5; and

— death rate owing to TB (d1 and d2): it is assumed that the death rate due to TB for I1 and I2 is 0.01.

The other parameters, namely, the infection rate β, the proportion of slow–fast progression p andq, case detection rate u1, the proportion of medical mask use u2, and the transition to symptomatic
from latent individual ϵ, were estimated together with the initial conditions. Mathematically, it can be
written as

C(β∗,p∗, q∗, ϵ∗,u1
∗,u2

∗, X∗(0)) = min
Δ

C(β,p, q, ϵ,u1,u2, X(0)),

where X(0) is the set of initial condition of equations (2.1)–(2.5), and Δ is the set of admissible range
of parameter values. In this study, we employ the fmincon toolbox to estimate the parameters of our
model, as described byequations (2.1)–(2.5). fmincon is a powerful optimization tool in MATLAB,
typically used for solving constrained nonlinear optimization problems. In our adaptation of fmincon
for ODEs, we formulate the parameter estimation task as an optimization problem where the objective
function represents the discrepancy between model predictions and observed data, subject to any
pertinent constraints. We iteratively refine the model parameters by optimizing this objective function
until a satisfactory fit to the data is achieved. Additionally, to assess the uncertainty inherent in our
parameter estimates and provide a comprehensive distribution of parameter values, we employ the
bootstrap resampling residual approach [40,41] across all estimation results for four distinct countries.
This approach allows us to generate multiple parameter sets by resampling residuals, providing
insight into the variability and robustness of our model across different datasets and scenarios. The
fitting results for the incidence data of four different countries are given in figure 1, and the best-fit
parameter values are listed in table 1.

In the next section, we provide a complete mathematical analysis of the model, including the
existence and local stability of the equilibrium points of equation (2.1) as well as the control reproduc-
tion number (ℛc) .

3. Dynamical analysis
3.1. Disease-free equilibrium point (ℰ1)
The disease-free equilibrium (DFE) of equations (2.1)–(2.5) was obtained by letting the right-hand side
of equations (2.1)–(2.5) to zero and setting I1 = I2 = 0. Hence, we have:

(3.1)ℰ1 = (S,E, I1, I2,R) = δμ , 0, 0, 0, 0 .

3.2. Control reproduction number (ℛc)
Theorem 1. The control reproduction number of equations (2.1)–(2.5), denoted by ℛc is given by:

(3.2)ℛc =
δβ(1 − u2ξ)(θ + q(ϵ + μ))μ(θ + ϵ + μ)(u1 + k1 + d1 + μ) .

Refer to appendix B for the derivation of the control reproduction number.
It is common in many epidemiological models [42–44] for the reproduction number to determine

whether the disease may die out or persist in the population. In many cases, authors have found that
the disease can go extinct if the reproduction number is less than 1, and it always has a chance to
persist if the basic reproduction number is larger than 1. In the next theorem, we use the results by van
den Driessche & Watmough [45] to show the local stability criteria of the equilibrium ℰ1.

Theorem 2. The disease-free equilibrium ℰ1 of equations (2.1)–(2.5)of equations (2.1)-(2.5) is locally
asymptotically stable if ℛc < 1, and unstable if ℛc > 1.
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See appendix C for the complete proof of Theorem 2.

3.3. Global stability of the disease-free equilibrium
Using the approach in [46], we prove the existence of global asymptotic stability (GAS) for the DFE of
our TB model. First, we rewrite equations (2.1)–(2.5) as follows:

(3.3)

dX
dt = F X , I ,

dI
dt = G X , I ,   G X , 0 = 0,
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Figure 1. Fitted data of new incidence cases for (a) Indonesia, (b) India, (c) Lesotho and (d) Angola. The solid black and blue lines
represent the real data and simulated data, respectively.

Table 1. The best-fit parameters and best-fit initial conditions for the fitted curves in figure 1.

country β
(10−5)

p q ϵ u1 u2 S(0) E(0) I1(0) I2(0) R(0) ℛ0

Indonesia 3.356 0.885 0.115 0.121 0.151 0.5 34 152 1546 1208 2179 57 2.907

India 1.752 0.899 0.101 0.087 0.102 0.5 58 975 2075 1549 5543 523 1.711

Lesotho 2.061 0.883 0.117 0.155 0.198 0.5 80 871 1586 2921 3012 475 1.967

Angola 1.251 0.898 0.102 0.045 0.13 0.5 93 995 1821 1649 3027 621 1.247
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in which X = S,R ∈ ℝ2 and I = E, I1, I2 ∈ ℝ3 . Note that the variables X  and I represent un-infectious
and infectious TB individuals, respectively. For the model to be GAS at ℰ1, it needs to satisfy the
following conditions as stated in [46], that is:

– local stability is guaranteed at ℰ0 whenever ℛ0 < 1;
– at dXdt = F(X0, 0), the DFE is globally asymptotically stable; and

– G(X , I) = AI − Ĝ(X , I), Ĝ(X , I) ≥ 0 for (X , I) ∈ Ω, where X0 = ℰ1,  A = DIG(ℰ0) is a Metzler matrix,
and Ω is our TB-model biologically feasible region.

Theorem 3. Let t > 0, then the disease-free equilibrium ℰ1 is GAS stable if ℛ0.
See appendix D for the complete proof of Theorem 3.

3.4. Endemic equilibrium point
Taking the right-hand side of equations (2.1)–(2.5) equal to 0 and solving it with respect to each
variable, then we have the endemic equilibrium point of equations (2.1)–(2.5) given by:

(3.4)ℰ2 = (S†,E†, I1
†, I2

†,R†),

where

S† = δμ 1ℛc ,E† = pδθ + ϵ + μ 1 − 1ℛc ,

I1
† =

δ(θ + q(ϵ + μ)
(θ + ϵ + μ)(u1 + k1 + d1 + μ) 1 − 1ℛc ,

I2
† =

u1 + p k1 + d1 + μ ϵ + u1 qμ + θ δu1 + k1 + d1 + μ θ + ϵ + μ μ + d2 + k2
1 − 1ℛc ,

R† = k1I1
† + k2I2

†μ .

Based on the expression of ℰ2 above, we have the following theorem.
Theorem 4. There always exists a unique endemic-equilibrium point ℰ2 of system (1) if ℛc > 1.
Proof.  The proof  of  this  theorem can be  directly  seen from the  expressions  of  S†,E†, I1

†, I2
†,R†.

Each of  these  expressions  should be  positive.  For  any positive  parameters,  we will  always  haveS† > 0.  On the  other  hand,  E†, I1
†, I2

†  will  be  positive  only  if  ℛc > 1.  Finally,  R†  is  always  positive

since  the  total  population is  less  than δμ .  Hence,  the  proof  is  completed.

3.5. Non-existence of backward bifurcation
Theorem 5. System equations (2.1)–(2.5) always exhibits a transcritical bifurcation at ℛc = 1.

We use Castillo–Song bifurcation theorem [47] to proof Theorem 5. See appendix E for the complete
proof of Theorem 5.

Based on Theorem 5,  we can observe  that  the  backward bifurcation phenomenon never
occurs  in  our  proposed TB model  as  described in  equations  (2.1)–(2.5).  On the  other  hand,  as
per  Theorem 3,  we know that  the  disease-free  equilibrium is  globally  asymptotically  stable  whenℛc < 1.  Therefore,  it  is  reasonable  to  hypothesize  that  the  endemic  equilibrium point  is  globally
asymptotically  stable  when ℛc > 1.  We leave the  proof  of  this  statement  as  an open problem for
readers  who may be  interested.
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3.6. Impact of medical mask and case detection on the endemic of tuberculosis

3.6.1. Comparison of the control and the basic reproduction number

In a simple case of no control intervention u1 = 0,u2 = 0, then we can reduce the control reproduction ℛc
in the following basic reproduction number:

(3.5)ℛ0 =
δβ(θ + q(ϵ + μ))μ(θ + ϵ + μ)(k1 + d1 + μ) .

Since for all positive parameters, we have

ℛ0 −ℛc =
β ϵ + μ q + θ δμ θ + ϵ + μ k1 + d1 + μ > 0,

we have the following remarks.
Remark 1. Any positive intervention of medical mask use or case detection will always be successful

in reducing the basic reproduction number ℛ0.

3.6.2. Impact of medical mask and case detection to ℛc
The expression of ℛc can be expressed as a function of ℛ0 as follows:

(3.6)ℛc = ℛ0 × ℱ ,

where ℱ = k1 + d1 + μu1 + k1 + d1 + μ × (1 − u2ξ) < 1 is the reduction factor of ℛ0 owing to case detection u1 and

medical mask use u2. Based on this, we have the following remark.
Remark 2. The following remark is the direct interpretation of expression in equation (3.6).

– For a special case where the case detection rate tends to ∞, then we have:

limu1 → ∞
ℛc = 0,

which implies a massive intervention in case detection can reduce the reproduction number signifi-
cantly.

– For a special case when all individuals use a medical mask (u2 = 1), then we have:

limu2 → 1
ℛc = ℛ0 × k1 + d1 + μu1 + k1 + d1 + μ × (1 − ξ),

which implies that using higher quality medical masks (ξ→ 1) can lead to a more efficient reduction of
the control reproduction number.

3.6.3. Impact of case detection to I1
† and I2

†

To analyse the impact of case detection and medical mask use on the size of I1 and I2 at the endemic
equilibrium, we differentiate I1

† and I2
† with respect to u1 and u2. Derivation of I1

† respect to u1 and u2

gives:

∂I1
†

∂u1
= −

δ(θ + q(μ + ϵ))
(θ + μ + ϵ)(k1 + d1 + u1 + μ)2 < 0,

∂I1
†

∂u2
= −

μ(1 − ξ)
(1 − ξu2)2β < 0.

For any value of u1 > 0 and u2 ∈ [0, 1], the signs of ∂I1
†

∂u1
 and ∂I1

†

∂u2
 are always negative. This indicates

that the size of I1
† will always reduce whenever case detection or medical mask use is implemented for
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TB control. Furthermore, since u1 only appears in the denominator, both u1 and u2 have a significant

impact on the change in the size of I1
† for an early implementation, as limu1 → ∞

∂I1
†

∂u1
= 0 and limu2 → 1

∂I1
†

∂u2
= 0.

With these results, we have the following remark.
Remark 3. Implementation of case detection is always successful in reducing the number of

asymptomatic infected individuals at the TB-endemic equilibrium.
On the other hand, we have

∂I2
†

∂u1
=

μδ q ϵ + μ + θ 2 1 − ξu2 k1 + d1 + μ β − μ2 u1 + k1 + d1 + μ 2 θ + ϵ + μ qμ + ϵ + θμ θ + ϵ + μ u1 + k1 + d1 + μ 2β 1 − ξu2 q ϵ + μ + pθ μ + d2 + k2
,

∂I2
†

∂u2
= −

k1 + d1 + μ p + u1 ϵ + θ + μ u1 1 − ξ μ
1 − ξu2

2β ϵq + μ + θ μ + d2 + k2
< 0.

We can see that ∂I2
†

∂u2
 is always negative. Therefore, increasing medical mask use in the population will

reduce the size of I2
†. However, ∂I2

†

∂u1
 is not always negative. Solving ∂I2

†

∂u1
= 0 with respect to u1 gives us

u1
∗ as a critical value at which the sign of ∂I2

†

∂u1
 changes from positive to negative. With these results, we

have the following remark.
Remark 4. The implementation of medical masks consistently reduces the number of symptomatic

infected individuals. Additionally, there exists a critical value for case detection, beyond which the
implementation of case detection successfully reduces the number of symptomatic infected individuals
in the context of TB-endemic equilibrium.

The illustration of the aforementioned remarks can be seen in figure 2 using estimation results for
Lesotho (panel a) and for Indonesia’s data (panel b). In both panels, it is observed that there exists a
minimum value u1 = u1

∗ such that only when u1 > u1
∗ an increase in the case detection rate can reduce

the number of individuals symptomatic with TB (I2) at the endemic equilibrium. Conversely, if u1 < u1
∗,

an increase in the case detection rate raises the value of I2 at the endemic equilibrium. Furthermore, P2

represents the value of u1 such that ℛ0 = 1. Therefore, for the case using Lesotho’s data, it is evident that
the implementation of case detection can be relied upon to eliminate TB cases in Lesotho, specifically
when u1 > 0.896. On the other hand, for the data from Indonesia, it is observed that there is no point P2

within the range of u2 ∈ [0, 1]. This implies that the case detection intervention cannot eliminate TB in
Indonesia.

In this section, we have discussed the dynamic properties of the model presented in equations
(2.1)–(2.5). These dynamic properties include that the model in equations (2.1)–(2.5) always has a stable
TB-free equilibrium point for ℛc < 1, and it becomes unstable when ℛc > 1. The point ℛc = 1 serves as a
bifurcation point where the stability of the TB-free equilibrium point changes, marking the emergence
of the endemic equilibrium point. A new TB-endemic equilibrium point emerges and is always stable
under conditions where ℛc > 1. For further visualization of these results, such as bifurcation diagrams
and one-parameter sensitivity analysis, readers can refer to appendix F.

In the following section, we will provide a study on parameter sensitivity, including GSA using the
partial rank correlation coefficient (PRCC) and Latin hypercube sampling (LHS), as well as two-param-
eter sensitivity analysis to examine the influence of vaccine efficacy (ξ) and the tendency for fast
infection progression (q) on the intensity of medical mask distribution and case detection in TB control.

4. Sensitivity analysis
4.1. Global sensitivity analysis
This subsection is devoted to carrying out the GSA of our TB model. GSA is a process of investigating
uncertainty analysis in a model output parameter given a model input factor over an entire range
of interest. In addition, some advantages of using GSAs are: (i) it considers all the input factors/param-
eters which are varied simultaneously while evaluating parameter sensitivity over the entire range
of each input factor/time frame under investigation; (ii) it helps to identify model parameters that
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are more sensitive to infection threshold, which may be the infectious disease classes or control
reproduction number as in our TB model; and (iii) it also assesses the variability in model predictions,
usually introduced by uncertainty in the parameter values. Knowing this information is relevant for
policymaking in the management of the spread of both infectious and non-infectious diseases. To
determine the variability in model parameters contained in control reproduction number, ℛc, we use
a combination of LHS and the PRCC technique [48,49]. Parameters with PRCC values above 0.5 or
below −0.5 are the most significant or have strong correlations, which could be positive or negative,
respectively [48,49]. This method looks at the relationship between ℛc and all its parameters. In this
analysis, we use R software with 1000 simulations per run, and the resulting PRCC values indicate
the effect of the parameters on the control reproduction number generated. These numerical results
showing the PRCC for each parameter are shown as a Tornado plot in figure 3 for Indonesia, India,
Lesotho and Angola, respectively.

In figure 3a, which represents the GSA results for Indonesia, the parameters δ, β,u2 and θ are the
most sensitive. The infection rate β is positively correlated to ℛc . This implies that it contributes
to increasing the number of infectious individuals, which leads to more humans infected with TB
in Indonesia. Similar results apply to δ and θ . By contrast, the control parameter u2 has a negative
correlation, which thus implies that effective mask usage reduces ℛc and, in turn, reduces the number
of symptomatic infected TB individuals. A clear look at the results presented in figure 3b–d indicates
that similar results are obtained for the TB transmission path in India, Lesotho and Angola, respec-
tively. Many epidemic models in the literature have applied similar analyses to, for instance, malaria
[50,51], pneumonia [52], COVID-19 [53,54], listeriosis [55] and many others.

4.2. Effect of medical mask efficacy and fast-progression on the intensity of medical mask and
case detection: a two-parameter sensitivity analysis

In this subsection, we conducted a two-parameter sensitivity analysis on ℛc with respect to the control
variables u1 and u2, as well as the quality of medical mask parameter ξ. We considered two different
values of ξ to represent the quality of a medical mask: ξ = 0.56 and ξ = 1. The value of ξ = 0.56 repre-
sents a condition that the medical mask offers 56% protection against the disease. On the other hand, ifξ = 1 represents a perfect quality of medical mask. All other parameter values are based on the best-fit
parameter for Indonesia, which is shown in table 1. The results are shown in figure 4. Based on figure
4a, an increase in the values of u1 and u2 increases the possibility of the value of ℛc becoming smaller
than 1. This is in line with the analysis as depicted in appendix F.
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As mentioned before, the larger the values of u1 and u2, the greater the possibility that the value
of ℛc becomes smaller than 1. The orange-coloured region represents the ℛc region, consistently
exceeding 1, while the blue-coloured region signifies the ℛc region consistently remaining below 1,
despite a medical mask efficacy of only 56%. The grey area represents the range where ℛc could change
from being greater than 1 (when ξ = 0.56) to being less than 1 (when ξ = 1). In other words, efforts
related to the case detection rate (u1) or the proportion of individuals using medical masks (u2) can be
minimized if the quality of the medical mask is improved. These findings also indicate that enhancing
medical mask quality can indirectly contribute to reducing the required case detection rate, thereby
controlling TB in the field.

To illustrate the influence of changes in ξ on the effectiveness of u1 and u2 regarding the variation
of ℛc values, we selected three sample points, namely P1, P2 and P3, as shown in figure 4b–d. PointP1 is located in the blue region, where TB can be eradicated from the population irrespective of the
quality of medical masks, whether it is 56% or 100%. Figure 4b illustrates that the dynamic of solutions
consistently converges towards the TB-free equilibrium. On the contrary, Point P3 is situated in the
orange area, where TB cannot be eliminated from the population regardless of the quality of the
medical mask. Figure 4d demonstrates that the dynamic of S and I1 consistently tends towards the
TB-endemic equilibrium. However, it is evident that a higher quality of medical mask results in a
smaller endemic size of I1. Point P2 is located in the grey area, where TB elimination depends on the
quality of the medical mask. If the medical mask efficacy is only 56%, then TB will persist in the
population, as indicated by the red curve in figure 4b tending towards the TB-endemic equilibrium.
Conversely, with a medical mask efficacy of 100%, TB can be eliminated from the population, as
depicted by the blue curve in figure 4b converging towards the TB-free equilibrium.

Next, we analyse the sensitivity of u1 and u2 with respect to the value of ℛc, using different values of
the proportion of fast progression (q). A larger value of q indicates that more people proceed directly to
active TB after their initial infection. Therefore, it is evident from figure 5a that a higher value of q will
require more intense implementation of case detection and medical mask use to eliminate TB from the
population.

We present an illustration of the dynamics of S and I1 based on various combinations of u1, u2

and q. In the case of the combination in P1 (as shown in figure 5b), both the dynamics of S and I1

tend towards the TB-free equilibrium point. A smaller value of q accelerates the convergence of bothS and I1 towards the TB-free equilibrium point. Similarly, in figure 5d, both dynamics tend towards
the TB-endemic equilibrium point, as ℛc > 1 at P3. However, it is important to note that P2 (shown in
figure 5b) does not always result in ℛc < 1. For instance, when q = 0.115, the combination of u1 and u2 atP2 yields ℛc < 1, leading to dynamics that approach the TB-free equilibrium point (see the red curve).
Conversely, when q = 1, the combination of u1 and u2 at P2 results in ℛc > 1, causing the dynamics of S
and I1 tend towards the TB-endemic equilibrium point (see the blue curve).

5. Optimal control model of case detection and medical mask
5.1. Optimal control characterization
As mentioned in the previous analysis, it is clear that a more substantial intervention in case detection
and medical mask usage will significantly reduce both the size of the control reproduction number and
the size of the infected compartment in the TB-endemic equilibrium. However, the more extensive the
intervention, the higher the cost. Therefore, the implementation of case detection and medical mask
usage should adapt to the condition of the infected compartment over time.

This section treats the control intervention as time-dependent variables, denoted as u1 = u1(t) andu2 = u2(t). Consequently, the model in equations (2.1)–(2.5) now reads as:

(5.1)dS
dt = δ − (1 − u2(t)ξ)βSI1 − μS,

(5.2)dE
dt = p(1 − u2(t)ξ)βSI1 − (θ + ϵ + μ)E,
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(5.3)dI1
dt = q(1 − u2(t)ξ)βSI1 + θE − (u1(t) + k1 + d1 + μ)I1,

(5.4)dI2
dt = ϵE + u1(t)I1 − (μ + d2 + k2)I2,

(5.5)dR
dt = k1I1 + k2I2 − μR .

We aim to minimize the cost function as follows:

(5.6)J =
0

tf ω1I1 + ω2I2 + φ1u1
2 + φ2u2

2 dt,
where ω1 andω2 are the weight parameters for the infected compartment, while φ1 and φ2 are the
weight costs for the control variables. Each component on J can be described as follows:

— the cost owiing to all interventions, except the use of medical masks and case detection, in

controlling the number of infected individuals I1 and I2 is described by 
0

tf ω1I1 + ω2I2 dt;
—

the cost, due to the intensity of the intervention implemented, is given by 
0

tf φ1u1
2 + φ2u2

2 dt .

This optimal control construction aims to seek an optimal trajectory for u1
∗ and u2

∗ to minimize the cost
function J. Mathematically, it is described by the following equation:

J(u1
∗,u2

∗) = min
Θ

J(u1,u2),
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where Θ = (u1,u2) |ui is Lebesgue measurable function,ui(t) ∈ [uimin,uimax]  is the set of admissible
control. By applying the Pontryagin’s maximum principle, we define the Hamiltonian function as
follows:

(5.7)ℋ = ω1I1 + ω2I2 + φ1u1
2 + φ2u2

2 + λ1
dS
dt + λ2

dE
dt + λ3

dI1
dt + λ4

dI2
dt + λ5

dR
dt .

With this Hamiltonian function, we have the following Theorem 6.
Theorem 6. Let the solution of the optimal control problem are S∗(t),E∗(t), I1

∗(t), I2
∗(t),R∗(t) with it u1

∗(t) andu2
∗(t). Then there exists an adjoint variable λi for i = 1, 2, 3, 4, 5 which satisfy the following system:

(5.8)dλ1
dt = p(1 − u2ξ)βI1(λ1 − λ2) + q(1 − u2ξ)βI1(λ1 − λ3) + μλ1,

(5.9)dλ2
dt = θ(λ2 − λ3) + ϵ(λ2 − λ4) + μλ2,

(5.10)

dλ3
dt = − ω1 + p(1 − u2ξ)βS(λ1 − λ2) + q(1 − u2ξ)βS(λ1 − λ3)…

+ u1(λ3 − λ4) + k1(λ3 − λ5) + (μ + d1)λ3,

(5.11)dλ4
dt = − w2 + k2(λ4 − λ5) + (μ + d2)λ4,

(5.12)dλ5
dt = μλ5,

with their transversality conditions λi(tf) = 0 for i = 1, 2, 3, 4, 5. The optimal trajectory on its admissible
set is given by:

(5.13)u1
∗ = min max u1

min,
I1(λ3 − λ4)

2φ1
,u1

max ,

(5.14)u2
∗ = min max u2

min,
ξβSI1(pλ2 + qλ3 − λ1)

2φ2
,u2

max .

For the derivation of Theorem 6, readers may refer to appendix G for the complete proof.

5.2. Numerical experiments of the optimal control problem
To solve the optimal control problem, we employed the forward–backward sweep method. Equations
(5.1)–(5.5) was solved using forward sweep, a set of initial guesses for the control variables. Then, the
adjoint system in equation (5.8) was solved backwards using the initial guess and the solution obtained
from the previous step. Using the results, we computed the control variables as described in equation
(5.13). All the steps were repeated until the convergence criteria were achieved. Further details and
practical examples of the method can be found in Aldila et al. [8,43].

The numerical experiments in this section encompassed two distinct scenarios. The first scenario
involved forecasting the incidence of cases in Indonesia, India, Lesotho and Angola for 30 years
onwards up to 2050, with the optimal control variables incorporated into the model from 2021 to 2050.
The second experiment focussed on simulating various scenarios for control implementation, including
case detection only, using medical masks only and combining both interventions.

5.2.1. Forecast of tuberculosis case incidence with time-dependent intervention

The numerical experiments conducted in this section used the best-fit parameters in table 1. We
forecasted the case incidence for each country until 2050 by implementing both case detection and the
use of medical masks. The results for Indonesia are presented in figure 6. These forecasting results for
India, Lesotho and Angola can be found in appendix H.

Based on the  results  in  figure  6a,b,  it  is  evident  that  the  number  of  infected individuals
continued to  decrease  even more  significantly  when control  interventions  were  improved from
2021 until  2050,  as  control  dynamics  depicted in  figure  6d.  The control  interventions  from 2000
to  2020 used the  data  shown in  table  1.  This  trend corresponds directly  to  the  prediction of
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case  incidence  per  100 000  population in  figure  6c,  where  it  decreases  significantly  when control
interventions  improve but  begins  to  rise  when control  interventions  are  reduced.  It  is  worth
highlighting that  the  substantial  reduction shown in  figure  6c  starting from the  year  2021 was
owing to  active  case  finding (corresponding to  u1)  within  the  population.  Mathematically,  this
sharp reduction was  because  of  rapid transitions  from the  I1  compartment  to  the  I2  compart-
ment  following the  medical  mask intervention.  Without  this  u1,  the  number  of  detected cases
was mainly  contributed by the  E  compartment  alone.  Case  detection should be  improved from
2021,  and it  should start  to  decrease  from 2035 onwards  to  minimize  the  intervention cost.
Furthermore,  we can see  clearly  that  when the  control  interventions  were  gradually  removed,
then the  number  of  cases  began to  rise  again,  highlighting their  importance  in  controlling the
outbreak.  A similar  pattern  was  observed in  numerical  simulation results  for  India,  Lesotho and
Angola,  where  the  number  of  infected individuals  decreased gradually  with  and without  the
control  interventions,  as  shown in  appendix  H.  Nevertheless,  implementing control  interventions
speeds up the  eradication process  of  the  infected cases,  compared with  the  case  of  no control
intervention.

There are several important notes from numerical experiments for India, Lesotho and Angola.
For simulation results using data from India, it is evident that interventions must be significantly
enhanced in 2021 and start to decline in the year 2040. In an extreme scenario, the proportion of
the population required to use medical masks reaches 100% from 2034 to 2040 and then begins to
decrease significantly to 50%. Regarding data from Lesotho, no significant increase was observed in
case detection interventions; it remained constant. Conversely, the intervention for medical mask usage
needs to be significantly increased starting in 2021, then starting to decline in 2033. There is apparently
no significant decrease in the new incidence rate in Lesotho with such control dynamics. Analysing
data from Angola, it is evident that the number of people using medical masks must have significantly
increased since 2021, even reaching 100% from that year onwards. This intervention starts to decline
in the year 2041. On the other hand, the intervention for case detection must also have been increased
since 2021. However, the difference lies in the fact that the intervention for case detection begins
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to decline in 2033 to offset the high intervention of medical mask usage, which undoubtedly incurs
non-trivial costs.

5.2.2. Assessing the effectiveness of various combinations of control strategies

The model incorporates two different control strategies: case detection and medical mask usage. As
previously explained, case detection and medical mask interventions have different focuses. The case
detection intervention aims to actively identify active TB cases in the field and provide them with
appropriate treatment. On the other hand, the medical mask intervention is more oriented towards
preventing the spread of TB by encouraging infected individuals to protect the population by using
medical masks. In essence, case detection is a mitigation intervention, while medical mask use is a
preventative measure.

The effectiveness of various combinations of these control strategies was investigated in this section.
In particular, the following three scenarios were considered in our numerical simulations:

– implementation of both case detection and medical mask usage, i.e. u1(t) ∈ [0.151, 1] andu2(t)[0.5, 1];
– implementation of case detection only, i.e. u1(t) ∈ [0.151, 1] and u2(t) = 0.5; and
– implementation of medical mask usage only, i.e. u1(t) = 0.151 and u2(t) ∈ [0.5, 1].

The lower  bounds of  each control  parameter  are  derived from the  best-fit  parameters  outlined
in table  1,  whereas  the  upper  bounds are  set  equal  to  1.  All  numerical  results  are  given
in appendix  I.  In  each panel  depicting the  dynamics  of  every compartment  from figures  7–9
(panel  (a)  to  (e)),  we assess  three  distinct  scenarios:  first,  when no controls  were  implemented
(u1 = u2 = 0);  second,  when interventions  regarding case  detection and the  use  of  medical  masks
remained constant  until  the  year  2051;  and third,  when improvements  were  made in  case
detection and/or  medical  mask utilization.

5.2.2.1. Scenario 1: improvement in case detection and medical mask use

The results  of  the  first  scenario  are  presented in  appendix  I,  where  both case  detection and
medical  mask interventions  were  simultaneously  implemented.  Appendix  I  depicts  the  dynam-
ics  of  compartments  S,E, I1, I2  and R,  respectively.  It  is  evident  that  by improving both case
detection and medical  mask use  interventions,  as  shown in  appendix  I,  the  number  of  healthy
individuals  can be  significantly  increased,  and the  number  of  infected individuals  can be
significantly  reduced.  As  a  result,  it  can be  observed that  the  number  of  detected infected
individuals  steadily  decreased in  proportion to  the  decrease  in  the  number  of  infected individu-
als  (see  appendix  I).  However,  as  the  intervention diminishes  from 2036 onwards,  the  incidence
of  new cases  rises,  particularly  evident  from 2046.  Unlike  the  intervention of  medical  masks,
which has  required improvement  since  2021,  the  intervention of  case  detection may remain
constant  at  u1 = 0.151  from 2021 until  2026,  subsequently  increasing until  2036.  Under  this
scenario,  the  total  number  of  averted infections  reaches  1.226 × 105.

5.2.2.2. Scenario 2: improvement in case detection only

In this scenario, we conducted numerical simulations to understand the effects of case detection
as a single intervention that we need to improve in controlling TB transmission in Indonesia. By
contrast, the intervention of medical mask use remains constant at u2 = 0.5. The results are presented
in appendix I. The case detection rate in this scenario is illustrated in appendix I, which is significantly
higher compared with the previous scenario where case detection intervention was accompanied by
medical mask usage in TB mitigation efforts (see appendix I). Despite the intensive implementation of
case detection intervention, the reduction in the number of infected individuals was not as effective
as in the previous scenario (see appendix I). This scenario’s total number of infections averted was
8.9 × 104.
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5.2.2.3. Scenario 3: improvement in medical mask use only

For the last scenario, we examined the impact of the improvement on medical mask use in preventing
the spread of TB while keeping the case detection constant at u1 = 0.151. The results of the numerical
simulation are shown in appendix I. Since the use of medical masks was the sole intervention in
this scenario, the intervention intensity was higher compared with the first scenario, as indicated in
appendix I. We can see that the intervention of medical masks alone reduced the total number of
infected cases better than the intervention of case detection alone. This is supported by the fact that
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Figure 7. Forecasting and optimal control results for Indonesian data from 2021 to 2051 when case detection and medical mask
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this scenario’s total number of infections averted was 1.295 × 104. This was smaller than the first two
scenarios.

5.2.2.4. Cost-effectiveness analysis

Based on the numerical simulations conducted for all three scenarios mentioned above, implementing
both interventions (scenario 3) yields the most significant results in the number of infections prevented,
but it is only slightly different from scenario 1, where both interventions improved. However, this may
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come at a higher intervention cost. Therefore, an analysis was needed to assess the effectiveness of
these strategies relative to the costs incurred. To do so, we used the average cost-effectiveness ratio
(ACER) to compare the effectiveness of our three scenarios. The formula to calculate ACER is given by

(5.15)ACER =
total cost for intervention (TC)

total number of infections averted (TIA) .
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The formula for ACER is given by equation (5.15), where TC is the total cost of interventions u1 and u2,
while TIA is the total number of infections averted from compartments E, I1 and I2. A smaller value of
ACER represents a more cost-effective strategy.

Table 2 shows that ACER for scenario 1 was the smallest, followed by scenarios 2 and 3. Our results
demonstrated that combining both interventions provided better cost-effectiveness than the other two
scenarios.

The next cost-effectiveness analysis is the infection averted ratio (IAR) analysis. This analysis
assessed the effectiveness of interventions to prevent the spread of infectious diseases. It quantifies
the impact of an intervention by comparing the number of infections averted owing to the intervention
to the total number of recovered individuals owing to the implementation of control programmes.
Hence, the formula to calculate IAR is given by:

(5.16)IAR =
total number of infections averted (TIA)

total recovered (TR) .

A higher IAR value indicates that the intervention is more efficient in preventing infections relative to
the recovered individual. The IAR analysis helps decision-makers prioritize interventions and allocate
resources effectively to maximize the impact of disease prevention efforts. Using this formula, we
calculate the IAR for each scenario and yield that the IAR for scenario 1 is 0.199, scenario 2 is 0.1228
and scenario 3 is 0.2. Hence, we find that the intervention of medical mask use alone is the best strategy
using the IAR indicator, followed by the combination of medical mask and case detection, and finally,
medical mask use alone.

From the above cost-effectiveness analysis and the GSA, we can see that implementing medical
masks is more successful in reducing the number of infected individuals than case detection. However,
we need to be careful that there are several reasons why medical masks may be considered a better
strategy for TB control compared with case detection in certain situations. First, a medical mask is a
preventive measure by reducing the probability of successful TB transmission. Medical mask use can
help prevent the spread of TB in crowded or poorly ventilated settings, such as healthcare facilities,
prisons and shelters, where close contact between individuals increases the risk of TB transmission.
By contrast, case detection primarily targets identifying and treating individuals already infected with
TB, which may not effectively prevent transmission from undetected cases. Second, medical masks
are relatively more universal in their applications and more efficient in the cost of implementation.
In resource-limited settings where healthcare infrastructure is limited, medical masks may offer a
cost-effective approach to TB control. It is important to note that while medical masks can play a
valuable role in TB control, they are not a standalone solution and should be integrated into com-
prehensive TB control programs alongside other interventions, including case detection, treatment,
infection control measures, and public health education.

6. Discussion and conclusion
A TB model that includes the effects of medical mask use and active case finding is proposed in
this article. This nonlinear system of ODEs consists of five variables representing various classes of
the human population and 14 parameters. The analysis of the mathematical model concerning the
threshold reproduction number, ℛc, demonstrates that implementing medical mask usage and active
case finding can potentially mitigate the spread of TB effectively. From model equilibrium analysis, we
find that our model always exhibits a transcritical bifurcation at ℛc = 1. This finding suggests that the
persistence of TB occurs when the reproductive number, ℛc > 1, while TB will become extinct if ℛc < 1
(see appendix F).

Table 2. The cost-effectiveness analysis (ACER) for all three scenarios.

scenario TC TIA ACER

1 1.281 × 104 1.226 × 105 0.1044

2 1.878 × 104 8.9 × 104 0.211

3 1.295 × 104 1.227 × 105 0.1055
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Our model is parameterized using yearly incidence data on TB cases per 100 000 population
from four different countries: Indonesia, India, Lesotho and Angola (see §2.2). This parameterization
revealed that the reproduction numbers for all four countries consistently exceeded 1, suggesting
the potential for sustained TB endemicity. Nevertheless, our model’s forecasting results indicated a
declining trend in TB cases within these countries in the coming years (refer to figure 6; appendices H).

Numerical experiments have been carried out to provide evidence that medical masks and
proactive case identification can significantly enhance the potential of eliminating TB from the
population. As the parameter ξ indicated within our model, a better quality of medical masks also
contributed to the reduction of ℛc. In addition, as the probability of fast disease progression, q
increased, a more intense use of medical masks and proactive efforts by the government to conduct
active case finding became imperative for the effective eradication of TB. Our sensitivity analysis
showed that undetected and detected active TB dynamics were highly responsive to active case
findings. This sensitivity was most pronounced at the outset of the intervention and gradually
diminished over time.

Using this parameterization, we further developed our model into an optimal control model to
analyse the effectiveness of case detection and usage of medical masks as a function of time in
controlling TB. From the results obtained, it is evident that the combination of both case detection
and the usage of medical masks proved to be a cost-effective and effective strategy for mitigating
the spread of TB, notably in reducing the incidence of infection. These findings can provide valuable
insights into the complexity of TB transmission in these four countries. The differing focus of interven-
tions can be considered in the future and adapted to the on-ground conditions.

Our research shows a  big  potential  for  medical  masks  to  be  used as  a  non-pharmaceutical
intervention for  TB eradication programmes (even with  a  small  efficacy of  only  56% [34]).
Implementing medical  masks  as  a  TB intervention over  a  50  year  eradication programme
presents  several  challenges  and considerations.  While  medical  masks  may offer  some degree
of  protection against  TB transmission,  their  long-term feasibility  and effectiveness  in  such a
programme would depend on various  factors  such as  acceptance  and compliance,  access  and
affordability  and cultural  and social  factors.  Implementing medical  masks  for  such a  long period
may require  significant  efforts  to  promote  awareness,  education and behaviour  change.  Ensur-
ing consistent  compliance  with  mask-wearing guidelines  over  many years  could be  challeng-
ing,  especially  in  regions  with  low TB prevalence  or  where  perceptions  of  risk  fluctuate.
Furthermore,  governments  and health  authorities  would need to  invest  in  infrastructure,  supply
chains  and subsidies  to  make medical  masks  accessible  to  all  socio-economic  groups over  the
long term.  In  summary,  while  implementing medical  masks  as  a  TB intervention over  a  50
year  eradication programme is  theoretically  feasible,  it  would require  comprehensive  planning,
sustained investment,  community  engagement  and integration with  broader  TB control  strategies.
Although it  is  a  challenging effort  to  implement  this  on a  big  scale,  like  on a  country  scale,
the  implementation of  medical  mask usage can begin  at  the  grassroots  level,  starting with  the
smallest  social  circles  such as  households  with  TB-infected individuals,  hospitals  [56]  and similar
environments.

As mentioned earlier, the challenge in TB control globally persists owing to several factors.
One major issue is the emergence of drug-resistant TB strains, such as MDR-TB and extensively
drug-resistant TB, which are harder and costlier to treat. Additionally, TB often affects marginalized
and vulnerable populations, making access to healthcare and proper diagnosis a challenge. Address-
ing these challenges requires a multi-pronged approach, including augmented financial resources,
enhanced diagnostic capabilities and strengthened healthcare systems to ensure equitable access to TB
care. Hence, it is important to continue our efforts to refine the model by integrating the factors above
into our new model for future studies.
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Appendix A. Proof of invariant region Ω
The invariant region of the proposed model can be shown below, following the approach in [59,60].
The solutions with non-negative initial conditions remain in a neighbourhood of the closed positive
hyperspace, Ω ∈ ℝ+

5, for t ≥ 0, that is, (S,E, I1, I2,R) ∈ ℝ̄+
5, forS′ |S = 0 = δ ≥ 0,Ec′ |Ec = 0 = p(1 − u2ξ)βSI1 ≥ 0,I1′ |I1 = 0 = θE ≥ 0,I2′ |I2 = 0 = ϵE + u1I1 ≥ 0,R′ |R = 0 = k1I1 + k2I2 ≥ 0.

It can be seen that the gradient on the boundary of ℝ+
5 is always positive. Hence, the solution will

always be non-negative for all t > 0. Summing all right-hand side of equations (2.1)–(2.5), we have:dNdt = δ − μN − d1I1 − d2I2 ≤ δ − μN .

Hence, using the integrating factor method, the solution of N satisfying:

N(t) ≤ δμ + N(0) − δμ eμt .
It can be seen that if N(0) < δμ , then N(t) will monotonically increasing and tends to δμ . If N(0) > δμ , then

N(t) will be monotonically decreasing and tends to δμ . If N(0) = δμ , then N(t) always stays inside of Ω.

Therefore, all feasible solutions of the modelequations (2.1)–(2.5) enter the region Ω implying that the
region is an attracting set. Hence the proof is complete.

Appendix B. Proof of Theorem 1: derivation of the control reproduction
number
Using the next generation matrix (NGM) method [61], here are steps to find ℛc:

– create the Jacobian matrix J of the infected compartment by linearization around the DFE point
as follows.
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J =

−(θ + ϵ + μ)
pβδ(1 − u2ξ)μ 0

0
qβδ(1 − u2ξ)μ − (u1 + k1 + d1 + μ) 0ϵ u1 −(μ + d2 + k2)

;

– decompose the Jacobian matrix as J = T + Σ with T is the transmission matrix and Σ is the
transition matrix as follows.

T =

0
pβδ(1 − u2ξ)μ 0

0
qβδ(1 − u2ξ)μ 0

0 0 0

and Σ =
−(θ + ϵ + μ) 0 0ϕ −(u1 + k1 + d1 + μ) 0ϵ u1 −(μ + d2 + k2)

;

– as we can see, the T matrix consists of one row that is entirely zeros, then we must construct the
E matrix, which columns are unit vectors that correspond with a non-zero row of T.

E =
1 0
0 1
0 0

and ET =
1 0 0
0 1 0

;

– use one of NGM’s formulas that is denoted by the K matrix as follows.

K =

pβδθ(1 − u2ξ)μ(θ + ϵ + μ)(u1 + k1 + d1 + μ)
pβδ(1 − u2ξ)μ(u1 + k1 + d1 + μ)qβδθ(1 − u2ξ)μ(θ + ϵ + μ)(u1 + k1 + d1 + μ)
qβδ(1 − u2ξ)μ(u1 + k1 + d1 + μ)

;

– from the K matrix, we get the determinant of K is zero. Therefore, we use another one of NGM’s
formulas involving a small domain. Hence, ℛc is given by:

ℛc =
δβ(1 − u2ξ)(pθ + qθ + qϵ + qμ)μ(θ + ϵ + μ)(u1 + k1 + d1 + μ) .

Appendix C. Proof of Theorem 2: local stability criteria of ℰ1
We use Van den Driessche and Watmough’s approach [45] to analyse the local stability of DFE. First,
define x = (x1,x2,x3,x4,x5)T with x1,x2,x3,x4 and x5 is the number of individuals in each compartmentE, I1, I2, S and R, respectively. Then, define Xs as the set of DFE populations:

Xs = x1 = 0,x2 = 0,x3 = 0,x4 = δμ ,x5 = 0 .

Define fi(x) for i = 1, 2, …, 5 which represents dEdt , dI1dt , dI2dt , dsdt  and dRdt . Note that the initial condition

for each population must have a non-negative value following this condition:ẋi = fi(x) = ℱ i(x) − Vi(x), i = 1, 2, 3, 4, 5.

Then, we have
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(C 1)

ℱ(x) =

p(1 − u2ξ)βSI1q(1 − u2ξ)βSI1

0
0
0

and

(C 2)

V(x) =

(θ + ϵ + μ)E
(u1 + k1 + d1 + μ)I1 − θE

(μ + d2 + k2)I2 − ϵE − u1I1

(1 − u2ξ)βSI1 + μS − δμR − k1I1 − k2I2

,

where V(x) = V−(x) − V+(x) are given by

(C 3)

V+(x) =

0
0ϵE + u1I1δk1I1 + k2I2

and

(C 4)

V−(x) =

(θ + ϵ + μ)E
(u1 + k1 + d1 + μ)I1

(μ + d2 + k2)I2

(1 − u2ξ)βSI1 + μSμR
.

After that, analyse whether DFE is locally asymptotically stable when ℛc < 1 using five axioms from
Van den Driessche and Watmough:

— if xi ≥ 0, then ℱ i,Vi+,Vi− ≥ 0 for i = 1, 2, …, 5. All parameters and variables have non-negative input.
Based on that, the first axiom is satisfied;

— if xi = 0, then V− = 0 for i = 1, 2, 3. By substituting xi = 0 for i = 1, 2, 3 to equation (3.5), we will getVi− = 0. Hence, the second axiom is satisfied;
— ℱ i = 0 if i > 3. For i = 4, 5, as we can see from equation (3.2) that ℱ4 = ℱ5 = 0, then the third axiom

is satisfied; and
— if xi ∈ Xs, then ℱ i = 0 and Vi+ = 0 for i = 1, 2, 3. Substitute xi = 0 to equations (3.2) and (5.8), then

we will get ℱ i = 0 and Vi+ = 0 for i = 1, 2, 3. Hence, the fourth axiom is satisfied.

If ℱ i = 0, then all eigenvalues of D{f}(x0) have a negative real part. By substituting ℱ i(x) = {0} to fi(x),
we obtain:

f1 := dEdt = − (θ + ϵ + μ)E,

f2 := dI1dt = θE − (u1 + k1 + d1 + μ)I1,

f3 := dI2dt = ϵE + u1I1 − (μ + d2 + k2)I2,

f4 := dSdt = δ − (1 − u2ξ)βSI1 − μS,

f5 := dRdt = k1I1 + k2I2 − μR .

Then, we obtain the Jacobian matrix of fi(x) that is evaluated at DFE as follows:
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Df(x0) =

−(θ + ϵ + μ) 0 0 0 0
0 −(u1 + k1 + d1 + μ) 0 0 0ϵ u1 −(μ + d2 + k2) 0 0

0 −
δβ(1 − u2ξ)μ 0 −μ 0

0 k1 k2 0 −μ
,

with eigenvalues of the matrix above are −(θ + ϵ + μ), − (u1 + k1 + d1 + μ), − (μ + d2 + k2), − μ and −μ . Note
that all parameters have non-negative values, it makes all eigenvalues have a negative real part. Then,
we can conclude that the last axiom is satisfied too.
According to these results, all axioms are satisfied. Furthermore, we can guarantee in the second
theorem that the disease-free equilibrium of system of equation (1) is locally asymptotically stable.

Appendix D. Proof of Theorem 3: global stability of the disease-free
equilibrium
To prove that the DFE is GAS whenever ℛ0 < 1, we have to verify the conditions C1 to C3 . Using the
result by Van den Driessche & Watmough [45], we obtain that the DFE ℰ1 is Locally Asymptotically
Stable (LAS) when ℛ0 < 1, so the condition C1 is verified. Next, we re-write the model (equations (2.1)–
(2.5)) in the form given in equation 3.3 as:

(D 1)
dX
dt = F(X , I) =

δ − (1 − u2ξ)βSI1 − μSk1I1 + k2I2 − μR
and

(D 2)

dI
dt = G(X , I) =

p(1 − u2ξ)βSI1 − (θ + ϵ + μ)Eq(1 − u2ξ)βSI1 + θE − (u1 + k1 + d1 + μ)I1ϵE + u1I1 − (μ + d2 + k2)I2

.

We have that

(D 3)
dX
dt = F(X0, 0) ⇔ S′ = δ − μS,R′ = − μR .

Equation (D3) has a unique equilibrium point δμ , 0, 0, 0, 0  which is globally asymptotically stable.

Hence, the condition C2 is satisfied. Linearizing equations (D1) and (D2) yields the Metzler matrix
(A = DZG(ℰ1)) given as:

A =

−μ 0 −(1 − u2ξ)βS0 0 0

0 −(θ + ϵ + μ) p(1 − u2ξ)βS0 0 0

0 θ q(1 − u2ξ)βS0 − (u1 + k1 + d1 + μ) 0 0
0 ϵ u1 −(μ + d2 + k2) 0
0 0 k1 k2 −μ

.

Computing Ĝ(X ,Z) and after some algebraic manipulation, we have that

Ĝ(X , I) = AI − G(X , I) =

δ + (1 − u2ξ)βI1 S0 − Sp(1 − u2ξ)βI1 S0 − Sq(1 − u2ξ)βI1 S0 − S
0
0
0

.

Thus, S0 − S = S S0S − 1  is positive owing to our assumption, and hence Ĝ(X , I) ≥ 0. The condition C3 is

also satisfied. We can conclude that our model is globally asymptotically stable.
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Appendix E. Proof of Theorem 5: non-existence of backward bifurcation
We use Castillo–Cahvez & Song theorem [47] to analyse the stability of endemic equilibrium from
equations (2.1)–(2.5). First, suppose each compartment is as follows:S = x1,E = x2, I1 = x3, I2 = x4,R = x5 .

Then, redefine the system as:

(E 1)

g1 := dx1
dt = δ − (1 − u2ξ)βx1x3 − μx1,

g2 := dx2
dt = p(1 − u2ξ)βx1x3 − (θ + ϵ + μ)x2,

g3 := dx3
dt = q(1 − u2ξ)βx1x3 + θx2 − (u1 + k1 + d1 + θ)x3,

g4 := dx4
dt = ϵx2 + u1x3 − (μ + d2 + k2)x4,

g5 := dx5
dt = k1x3 + K2x4 − μx5 .

Choose β as the bifurcation parameter, then setting ℛc = 1 and we obtain:

(E 2)β = β∗ =
μ(θ + ϵ + μ)(u1 + k1 + d1 + μ)δ(1 − u2ξ)(pθ + qθ + qϵ + qμ)

.

Linearization system of equation (E1) at DFE with β = β∗ as follows:

A =

−μ 0 −
1 − u2ξ μ + d1 + k1 + u1 θ + ϵ + μθ + ϵ + μ q + pθ 1 − u2ξ 0 0

0 −(θ + ϵ + μ)
1 − u2ξ p μ + d1 + k1 + u1 θ + ϵ + μθ + ϵ + μ q + pθ 1 − u2ξ 0 0

0 θ 1 − u2ξ q μ + d1 + k1 + u1 θ + ϵ + μθ + ϵ + μ q + pθ 1 − u2ξ 0 0

0 ϵ u1 −(μ + d2 + k2) 0
0 0 k1 k2 −μ

.

From the Jacobian matrix, we get a simple zero eigenvalue (with all other eigenvalues having negative
real parts). Hence, we can continue our step by computing the right eigenvector w of matrix A that
correspondents to λ = 0, which satisfied Aw = λw . After that, we have:

w1 = −
μ + k2 + d2 θ + ϵ + μ μ + d1 + k1 + u1p + q u1 + p μ + d1 + k1 ϵ + pθ + q μ + θ u1 μ < 0,

w2 =
p μ + k2 + d2 μ + d1 + k1 + u1μq + ϵ + θ p + q u1 + pϵ μ + d1 + k1

> 0,

w3 =
μ + k2 + d2 θ + ϵ + μ q + pθu1 θ + ϵ + μ q + μ + d1 + k1 + u1 ϵ + θu1 p > 0,

w4 = 1 > 0,

w5 =
μ + k2 + d2 k1 + k2u1 θ + ϵ + μ q + ϵk2 + θ μ + k2 + d2 k1 + k2 μ + d1 + u1 ϵ + θu1 pu1 θ + ϵ + μ q + ϵk1 + μ + d1 + u1 ϵ + θu1 p μ > 0.

Next, compute the left eigenvector v of matrix A that correspondents to λ = 0, which satisfied vA = vλ,
then we have:

v1 = 0,  v2 = 1 > 0,  v3 = θ + ϵ + μθ > 0,  v4 = 0,  v5 = 0.

The next step is calculating the value of a and b as follows:
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– as we know that v1 = v4 = v5 = 0, then g1, g4 and g5 are not considered in calculation. Therefore, we
just consider g2 and g3 in this calculation. Hence, we have the bifurcation coefficient a given by:

a = ∑k, i, j = 1

5 vkwiwj ∂2gk
∂xi∂xj (ℰ1, β∗),

= ∑i, j = 1

5 v2wiwj ∂2g2
∂xi∂xj (ℰ1, β∗) + ∑i, j = 1

5 vkwiwj ∂2g3
∂xi∂xj (ℰ1, β∗),

= −
2(pθ + qθ + qϵ + qμ) μ + d1 + k1 + u1

2 θ + ϵ + μ 2 μ + k2 + d2
2δ μpϵ + μqu1 + pθu1 + pϵd1 + pϵk1 + pϵu1 + qθu1 + qϵu1

2θ < 0;

– note that v1 = v4 = v5 = 0, then g1, g4 and g5 are not considered in this calculation. Hence, the
bifurcation coefficient b is given by:

b = ∑k, i = 1

5 vkwi ∂2gk
∂xi∂β (ℰ1, β∗),

= ∑i = 1

5 v2wi ∂2g2
∂xi∂β (ℰ1, β∗) + ∑i = 1

5 v3wi ∂2g3
∂xi∂β (ℰ1, β∗),

=
θ + ϵ + μ μ + k2 + d2 (pθ + qθ + qϵ + qμ) 1 − u2ξ qδθ u1 θ + ϵ + μ q + μ + d1 + k1 + u1 ϵ + θu1 p μ

+
μ + k2 + d2 (pθ + qθ + qϵ + qμ) 1 − u2ξ pδu1 θ + ϵ + μ q + μ + d1 + k1 + u1 ϵ + θu1 p μ > 0.

Because a is negative and b is positive, then by Catillo-Chavez & Song theorem equations (2.1)–(2.5)
exhibits the phenomena of forward bifurcation at ℛc = 1.

Appendix F. Numerical experiments on bifurcation diagram and
autonomous simulation
Here in this section, we performed the sensitivity analysis on the bifurcation diagram of equations
(2.1)–(2.5) with respect to control parameters u1 and u2 and the infection rate β. The results are
displayed in figures 10–12. The parameter values employed for numerical simulations in this section
correspond to the optimized values for Indonesia, detailed in table 1, unless explicitly specified
otherwise.
Figure 10a illustrates the monotonic decrease of the endemic equilibrium (red curve) and the control
reproduction number (cyan curve) with increasing of u1. The endemic equilibrium persists until
reaching the branching point (BP) at ℛc = 1 (i.e. u1 = 1.438). Before the BP, the TB-free equilibrium
is unstable (blue dotted line), while the TB-endemic equilibrium is stable (red solid curve). Once u1

surpasses the BP, the endemic equilibrium ceases to exist, and the stability of the TB-free equilibrium
shifts from unstable to stable. To illustrate the impact of u1 on the dynamics of I1, I2 and S, we specifi-
cally selected two sample points, namely P1 (u1 = 0.5, ℛc = 1.916) and P2 (u1 = 1.8, ℛc = 0.844). Figure
10b depicts the solution of equations (2.1)–(2.5) on the S − I1 − I2 plane for various initial conditions at
sample point P1, while figure 10c dprovides the corresponding illustration for sample point P2.
The sensitivity of ℛc and equilibrium point size of I1 with respect to u2 is plotted in figure 11. We
employed identical parameter values as those used for figure 10 , with the exception of setting u1 = 1,
while allowing u2 to remain a free parameter. In figure 11a, we can see that the intervention of u2 can
significantly affect the ℛc. Hence, a stable branch of TB-endemic equilibrium existed for u2 < 0.787,
while an unstable branch was observed for u2 > 0.787. We selected two sample cases at points P1 and P2

with corresponding u2 values 0.2 and 0.9, respectively (seefigure 11a), to illustrate the impacts of u2 on
the dynamics of I1, I2 and S. At the sample point P1, the solution converges to the endemic equilibrium
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point, while at P2, the solution converges towards the TB-free equilibrium point. Trajectories for both
cases are displayed infigure 11b,c, for various initial conditions.
For the last one-parameter sensitivity analysis, we show how ℛc and endemic size of I1 behave asβ changes. It can be seen that larger β will increase ℛc and the endemic size of I1. The bifurcation
diagram is shown in figure 12a. From the figure, we can see that the TB-free equilibrium is locally
stable for β < 0.000011. As β > 0.000011, the stable branch of TB-free equilibrium point is bifurcated into
an unstable TB-free equilibrium and a stable endemic equilibrium. The dynamics of I1 corresponding
to sample points P1 and P2 are plotted in figure 12b,c, respectively. It is important to mention that the
solutions tended to move towards the endemic equilibrium when β was larger than the BP, and the
solutions converged towards the TB-free equilibrium when β was smaller than the BP.

Appendix G. Proof of Theorem 6: characterization of the optimal control
problem
Let

ℋ = ω1I1 + ω2I2 + φ1u1
2 + φ2u2

2 + ⋯
+λ1 δ − (1 − u2(t)ξ)βSI1 − μS …
+λ2 p(1 − u2(t)ξ)βSI1 − (θ + ϵ + μ)E …
+λ3 q(1 − u2(t)ξ)βSI1 + θE − (u1(t) + k1 + d1 + μ)I1 …
+λ4 ϵE + u1(t)I1 − (μ + d2 + k2)I2 …
+λ5 k1I1 + k2I2 − μR .

Differentiate Hamiltonian ℋ with respect to each control variables yields
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Figure 10. (a) Bifurcation diagram of equations (2.1)–(2.5) represented by I1 and Rc with respect to u1. The solid lines represent
the stable branch of the equilibrium point and the dashed line represents the unstable branch of the equilibrium point. Red, blue
and cyan curves represent the endemic equilibrium, TB-free equilibrium and Rc, respectively. Panels (b) and (c) show the trajectories
in S − I1 − I2 phase planes at two different sample points P1(u1 = 0.5) and P2(u1 = 1.8), respectively. All solutions were obtained
numerically using various initial conditions.
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dλ1dt = − ∂ℋ∂S , dλ2dt = − ∂ℋ∂E , dλ3dt = − ∂ℋ∂I1
, dλ4dt = − ∂ℋ∂I2

, dλ5dt = − ∂ℋ∂R ,

with its transversality condition λi(tf) = 0 for i = 1, 2, 3, 4, 5.

The optimal condition of u1 taken by solving ∂ℋ∂u1
= 0 with respect to u1. Combining it with the lower

and upper bound gives us:

u1
∗ = min max u1

min,
I1(λ3 − λ4)

2φ1
,u1

max .

Similarly, we have

u2
∗ = min max u2

min,
ξβSI1(pλ2 + qλ3 − λ1)

2φ2
,u2

max .

Hence the proof is completed.

Appendix H. Forecasting of India, Lesotho and Angola tuberculosis cases
See: figures 13–15.

Appendix I. Numerical results on optimal control simulation for different
strategy
See: figures 7–9.
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