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Purpose: To introduce a method that allows the generation of ultra high-resolution (submillimeter)
heterogeneous digital PET brain phantoms and to provide a new publicly available [18F]FDG phan-
tom as an example.
Method: The radiotracer distribution of the phantom is estimated by minimizing the Kullback–Lei-
bler distance between the parameterized unknown phantom distribution and a radiotracer-specific
template used as a reference. The phantom is modelled using the histological and tissue classified
volumes of the BigBrain atlas to provide both high resolution and heterogeneity. The Hammersmith
brain atlas is also included to allow the estimation of different activity values in different anatomical
regions of the brain. Using this method, a realistic [18F]FDG phantom was produced, where a single
real [18F]FDG scan was used as the reference to match. An MRI T1-weighted image, obtained from
the BigBrain atlas, and a pseudo-CT are included to complete the dataset. A full PET-MRI dataset
was simulated and reconstructed with MR-guided methods for the new [18F]FDG phantom.
Results: An ultra high-resolution (400 lm voxel size) and heterogeneous phantom for [18F]FDG
was obtained. The radiotracer activity follows the patterns observed in the scan used as a reference.
The simulated PET-MRI dataset provided a realistic simulation that was able to be reconstructed with
MR-guided methods. By visual inspection, the reconstructed images showed similar patterns to the
real data and the improvements in contrast and noise with respect to the standard MLEM reconstruc-
tion were more modest compared to simulations done with a simpler phantom, which was created
from the same MRI image used to assist the reconstruction.
Conclusions: A method to create high-resolution heterogeneous digital brain phantoms for different
PET radiotracers has been presented and successfully employed to create a new publicly available
[18F]FDG phantom. The generated phantom is of high resolution, is heterogeneous, and simulates
the uptake of the radiotracer in the different regions of the brain. © 2020 The Authors. Medical Phy-
sics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medi-
cine. [https://doi.org/10.1002/mp.14218]
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1. INTRODUCTION

In positron emission tomography (PET), image reconstruc-
tion methods are usually evaluated with simulated datasets
generated from digital phantoms. Using simulated data is
advantageous because it provides a controlled environment
where a ground truth is available and therefore different
quantitative image quality metrics can be computed. For
example, the bias and variance in specific regions of interests
(ROIs) can be used to assess image quality or performance of
different image reconstruction methods.1–4 In order to obtain
more relevant quantitative metrics, the simulated datasets
need to be as realistic as possible.

A realistic PET digital phantom is expected to be high res-
olution and heterogeneous over the body region represented
by the phantom. It needs to be high resolution so as to be able

to be affected by partial volume effects (PVEs)5 in the simu-
lation process. Heterogeneity is required to account for the
nonhomogeneous uptake of the radiotracer that is observed in
molecular imaging.6 Moreover, the activity distribution
depends on the molecular target of the radiotracer, therefore,
a digital phantom needs to be radiotracer dependent. For
example, in brain imaging, a fluorodeoxyglucose ([18F]FDG)
PET phantom should not only account for the differences in
the uptake in the gray and white matter but also for the
heterogeneity observed in different brain regions within these
two tissue classes. Another important aspect that is frequently
overlooked when analysing reconstruction methods is the
evaluation of specific clinical tasks where these methods are
expected to be beneficial. In the particular case of PET brain
imaging, the radiotracer uptake in specific anatomical regions
is of importance in the study of neurodegenerative diseases
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or neuroreceptors.7,8 Accordingly, brain phantoms would ide-
ally need to account for variations in the radiotracer uptake
for each given application.

However, to the best of our knowledge all the available
digital PET brain phantoms either (a) have a limited spatial
resolution (making them not ideal to evaluate quantification
errors due to PVE),9–11 (b) are not heterogeneous9–10,12 or, (c)
do not take into account task-specific scenarios.9-10,12 In addi-
tion, they are commonly piecewise constant and generated
from segmented magnetic resonance imaging (MRI) images
of the brain,9,11,12 therefore, quantitative errors can be under-
estimated when doing regularized reconstructions, especially
when anatomical information is used as guidance.13 The lat-
ter have attracted new attention since the introduction of clini-
cal simultaneous PET-MRI scanners. Despite showing
promising results,13–16 the evaluation of MR-guided recon-
struction methods are not completely satisfactory due to pos-
sible mismatches between the MRI anatomical image and the
PET radiotracer distribution.17 In the simulation of PET-MRI
datasets, the distribution of the PET tracer is usually gener-
ated from an anatomical image, such as a T1-weighted MRI
image, and as a consequence the PET digital phantom bound-
aries match perfectly the structure of the anatomical images
used to assist the reconstruction (except for the introduction
of small mismatches such as tumours). These limitations in
the design of currently available phantoms and their respec-
tive simulated datasets mean that assessing the level of bene-
fit of MR-guided image reconstruction for real data is not
straightforward. Specifically, the results for simulated data
usually demonstrate impressive partial volume correction
(PVC) and noise reduction, whereas this level of improve-
ment is often reduced for real data.15–16,18

In this work, we present a method to generate high resolu-
tion and heterogeneous digital brain phantoms that can emu-
late different PET radiotracers. The method is based on the
BigBrain atlas dataset,19 a free and publicly available ultra
high-resolution three-dimensional model of a human brain at
nearly cellular resolution of 20 lm. The activity distribution
of the phantom is estimated from a template or scan used as a
reference. Using the proposed method, we created an instance
of an ultra high-resolution heterogeneous PET-MRI PET
[18F]FDG phantom, which is publicly available. Finally, we
evaluated the performance of this phantom by simulating a
PET-MRI dataset and carrying out standard and MR-guided
reconstructions.

2. MATERIALS AND METHODS

We propose a method to create high-resolution hetero-
geneous brain phantoms using the BigBrain atlas,19 where
histological volumes (reconstructed from 7404 histological
sections) normalized into the Montreal Neurological Insti-
tute (MNI) space are available in isotropic voxel sizes that
range from 100 to 400 lm. The histology images provide
information of cell body density in the brain. Additionally,
a classified volume with eight basic tissue classes of the
BigBrain atlas was also used, where each voxel is

classified into one of the following tissue classes: cortical
gray matter, white matter, cerebellum, cortical layer 1, sub-
cortical gray matter, pineal gland, cerebellum/brainstem
gray and white matter. The histology and classified images
are shown in the first row of Fig. 1. An MRI T1-weighted
image of the BigBrain atlas prior to being histologically
processed is also available, but with inverse contrast and
not normalized into MNI space.

In order to produce heterogeneous and radiotracer-specific
phantoms, the uptake in different regions of brain is esti-
mated by using a brain atlas and a template of the radiotracer
of interest, which can be a simple individual scan. In this
work, we used the Hammersmith brain atlas20 and a recon-
structed image of real data from an [18F]FDG study from a
Siemens mMR scanner (used as a [18F]FDG template) to
produce a realistic [18F]FDG phantom. The [18F]FDG scan
corresponds to a female 17-yr-old epilepsy patient.

2.A. Generation of radiotracer-specific phantoms

The radiotracer distribution of the phantom is estimated
by minimizing the Kullback–Leibler distance between the
unknown parameterized phantom distribution and a template
for a given radiotracer, which is equivalent to maximizing the
log likelihood for Poisson data. The latter has been widely
used in the context of PET image reconstruction and it can be
formulated with:

ĥ ¼ argmax
h

fLðhjmÞ � bUðhÞg (1)

where h is a vector with the parameters for the unknown
phantom activity distribution and m is a template or single
scan to be used as a reference (i.e., a [18F]FDG template). In
our method, the phantom activity is parameterized in a way
that h is a vector with the relative uptake value for every one
of the 95 regions available in the Hammersmith atlas for
every tissue type in the classified image of the BigBrain atlas.
The Hammersmith atlas provides spatial information for the
different anatomical regions in the brain (e.g., right middle
frontal gyrus) while the classified image of the BigBrain atlas
identifies the tissue type (e.g., gray matter), allowing the esti-
mation of different uptake values for a given tissue type in the
different anatomical regions of the brain. bU(h) is a regular-
ization term, which is used to penalize large differences
between adjacent regions in the vector h. The hyperparameter
b controls how much these differences are penalized. Regu-
larization is needed since this is an ill-posed problem where
there are many possible high-resolution phantom distribu-
tions that, when resolution degraded, can accord with the
low-resolution PET scan used as a template. Without regular-
ization [b = 0 in Eq. (1)], the estimated uptake values in very
small regions tend to rise exponentially over iterations in the
maximization of L(h|m), generating a nonrealistic uptake dis-
tribution. The proposed regularization term enables genera-
tion of phantom distributions where there are no extremely
high uptake differences between adjacent regions for the
same tissue type.
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A novel model for the phantom activity is proposed:

x ¼ HDTAh (2)

where x is a vector with the activity values of every voxel in
the phantom obtained from the set of 760 parameters in vec-
tor h (95 regions by 8 tissue classes). A is a matrix that has as
many rows as voxels in the phantom and as many columns as
uptake parameters to be estimated. The elements aij of matrix
A give the probability that a voxel xi belongs to the atlas
region involved in the uptake parameter hj. In this work, we
use the probability maps of the Hammersmith atlas instead of
the maximum probability atlas in order to avoid sharp edges
between atlas regions. When using a probability map for each
region, each column j of matrix A represents an image with
the probability map for the region involved in parameter j.
Because in h each region of the atlas is estimated for every
tissue type, in matrix A the probability map for each region is
repeated in as many columns as tissue types are used.

T is a matrix that models the tissue class for each voxel,
therefore, it has as many columns as voxels in the phantom
and as many rows as parameters to be estimated. In practice,
the matrix TA is computed directly instead of computing each
matrix individually and then multiplying them. D is a diago-
nal matrix with the cell body density for each voxel of the
phantom. It provides heterogeneity at a lower scale, based on
biological information. Finally, the matrix H models the reso-
lution in the template used as a reference.

In order to give an insight on the components of the model
and their implementation, in Fig. 2 the steps performed to
apply the forward model is shown for one of the uptake
parameters in h. In this example, hj is the uptake value for
gray matter in the right middle frontal gyrus. The image
in Fig. 2–5) is one of the basis functions used in the genera-
tion of the phantom, while in Fig. 2–6) the basis function is
smoothed to match the resolution of the template.

The objective function in Eq. (1) is optimized using the
one step late (OSL) MAP-EM algorithm.21

2.B. Regularization

A quadratic regularization was used to penalize large dif-
ferences in the uptake values in neighbor brain regions:

UðhÞ ¼
XN

j

X

k2N j

njk hj � hk
� �2

(3)

where for each parameter hj (which represents the uptake in
the region j of the phantom), the distance between its centroid
and the centroid of all the other regions k that belong to the
same tissue type are calculated. The weight njk is the inverse
of the Euclidean distance between centroids of regions j and
k, normalized by the sum of all the inverse distances. In this
way, only the uptake values hk in the regions closer to region
j have impact on the regularization of parameter hj.

Histology Tissue Classes Hammersmith Atlas [ 18 F]FDG Template

MRI -map [ 18 F]FDG Phantom [ 18 F]FDG Smoothed

)4)3)2)1

5) )8)7)6

FIG. 1. First row: datasets used in the generation of the phantom. From left to right, the histology and classified tissue images of the BigBrain atlas, the Hammer-
smith atlas, and a normalized [18F]FDG scan used as template. Bottom row: full output ½18F]FDG PET-MRI dataset. MRI image, attenuation map (l-map), ½18F]
FDG phantom, and a smoothed version.
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2.C. An [18F ]FDG phantom

An instance of an [18F]FDG PET Phantom was created
using the method described in the previous section. A single
[18F]FDG scan was used as the template to match. The full
phantom dataset was completed with MRI and computed
tomography (CT) images in order to be able to simulate a
PET-MRI dataset. The MRI T1-weighted image available in
the BigBrain atlas was registered to the phantom using the
symmetric normalization method (SyN).22 In addition, a
skull obtained from a template MRI was added to the T1-
weighted image of the brain. Finally, a pseudo-CT and its
respective attenuation map was generated from the MRI
image using the pseudo-CT synthesis tool by Burgos et al.23

Finally, an attenuation map for 511 keV was generated from
the CT image.

The proposed method was implemented in MATLAB
(version R2018a) and executed on a workstation with a Dual
Intel Xeon E5-2697 processor and 256 GB of RAM.

2.D. Simulated data of the proposed phantom

A brain scan was simulated using the high-resolution
heterogeneous [18F]FDG brain phantom with a voxel size of
0.4 9 0.4 9 0.4 mm3. The simulations were carried out as
described in Ref. 18, where the resolution, the normalization
factors and the geometry of the Siemens mMR PET-MRI
scanner were modelled. In this simulation framework, attenu-
ation, randoms, and scatters effects are also taken into
account. For the attenuation, the attenuation map of the
proposed phantom was used (Fig. 1–6). To simulate the PET
resolution, a 4.3-mm FWHM kernel was used, which

Atlas Region A *,j Tissue Class T j,* (TA) *,j

Cell-body Density diag(D) (DTA) *,j (HDTA) *,j

)3)2)1

)6)5)4

FIG. 2. Example of one of the basis functions j used in the forward projection of the parameters h. In this case, hj represents the uptake in the gray matter of the
right middle front gyrus. The probability map of the middle front gyrus in the Hammersmith atlas (1) is multiplied by the gray matter mask from the classified
image of the BigBrain atlas (2) to generate the column j of matrix TA (3). The latter is then multiplied by the diagonal matrix D with the cell body density of the
BigBrain atlas (4) to generate the column j of matrix DTA (5). Finally, the image in (5) is smoothed to match the resolution of the template used as a reference to
form column j of matrix HDTA. Images 1, 2, 3, 5, and 6 show one slice of the 3D image (which is stored as a vector in the column j of each matrix), while image
4 shows the same slice for the 3D image stored in the diagonal elements of matrix D.
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corresponds to the spatial resolution of the Siemens mMR
PET-MRI scanner in the centre of the FOV and it is adequate
for brain imaging where the point spread function of the sys-
tem can be well approximated as shift invariant.24

The simulated data were reconstructed with MLEM25 and
MR-guided MAP algorithms. For the latter, we used a
smoothed Lange prior with similarity weights obtained with the
Bowsher method as implemented in Ref. 18, which were com-
puted from the T1-weighted image of the phantom using the 40
most similar neighbours in a 5 9 5 9 5 neighbourhood.

The same process was repeated with a brain phantom
based on the BrainWeb dataset9 in order to draw a compar-
ison with the proposed phantom. The BrainWeb dataset was
selected for this comparison as it has been widely used to
simulate PET and PET-MRI brain scans.13,16 The contrast
between gray matter and white matter was 4:1.

3. RESULTS

The full phantom dataset for the [18F]FDG Phantom can
be seen in the second row of Fig. 1 and the dataset has been

made publicly available at http://doi.org/10.5281/zenodo.
1190598.

In Fig. 3, the [18F]FDG scan used as a template is shown
in the first row after being normalized into MNI space along
with its reconstructed images in its original space for MLEM
and MR-guided reconstructions. The new [18F]FDG Phan-
tom and the reconstructed images from a simulated dataset
are shown in the second row. In the third row, an [18F]FDG
phantom based on the BrainWeb database is shown in order
to draw a comparison between both phantoms. It can be seen
that the proposed phantom accounts for the heterogeneities in
the [18F]FDG uptake. For example, in the real data and the
proposed phantom there is a higher gray matter uptake in the
left frontal lobe (red arrow) and a lower uptake in the right
temporal lobe (blue arrow), while for the standard BigBrain
phantom the gray matter has a uniform uptake. Furthermore,
the MR-guided reconstructions of the proposed phantom
obtain a more modest PVC than for the BrainWeb phantom,
which accords well with the results obtained for the real data.
On the contrary, the PVC performance of guided reconstruc-
tions for the BrainWeb phantom is extremely good, and

FIG. 3. Reconstructed images for the patient data that was used as a template, and for simulated datasets using the proposed phantom and a BrainWeb phantom.
The data were reconstructed with the MLEM algorithm (second column) and performing MR-guided MAP reconstructions with mild (b ¼ 4 � 102, third col-
umn) and strong (b ¼ 2 � 103, fourth column) regularization. In the first column the patient data are normalized into MNI space as it was used for the estima-
tion of the phantom activity. In the last column, the MRI of each dataset is shown. Red arrows show the higher uptake in the left frontal lobe in the patient data
and phantom. Blue arrows show lower uptake in the right temporal lobe. [Color figure can be viewed at wileyonlinelibrary.com]
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therefore not realistic, due to the unrealistically perfect match
between the MRI and PET boundaries (as the PET phantom
was created from the MRI image).

4. DISCUSSION AND CONCLUSION

A method to create ultra high-resolution heterogeneous
digital phantoms is presented in this work. The method takes
advantage of the publicly available BigBrain dataset to gener-
ate a PET phantom from ultra high-resolution histology
images, and in this way overcomes the problems of piecewise
constant and lower resolution phantoms generated from MRI
images. In this work, we employ the method to generate an
[18F]FDG phantom that includes all the components needed
to perform PET-CT and PET-MRI simulations.

The method allows the generation of a wide number of dif-
ferent phantoms by using either a real scan or a template as a
reference. Here we presented just one of the many possible
instances of the phantoms that can be generated. We used an
[18F]FDG scan of a young patient in order to generate a
radiotracer-specific phantom with heterogeneous uptake val-
ues.

In terms of the attenuation map, we used a pseudo-CT
generated with the Burgos method23 as it has been shown to
be one of the most accurate attenuation correction techniques
for PET-MRI brain imaging26 and it is publicly available.

4.A. Limitations

A potential limitation of the [18F]FDG phantom presented
in this work is that the uptake distribution is estimated from a
low resolution PET scan, although this would always be the
case as PET images have relatively low resolution. The pro-
posed model for the phantom and the method to estimate its
distribution were designed to handle this issue. However, as

there are many phantom distributions that would accord with
the low-resolution reference, the generated distribution could
be suboptimal and this may be the reason why we observed a
relatively low contrast in the [18F]FDG phantom.

A second limitation of the proposed method is that there
are some small mismatches between the histology images of
the BigBrain and the MRI image. This could be a conse-
quence of a suboptimal image registration in the preparation
of this dataset since the MRI is not aligned to the histology
images in the original BigBrain dataset. In Fig. 4, the regis-
tered MRI, the [18F]FDG phantom and an overlay image are
shown, where a very good agreement (with just some small
differences) is observed. However, these small differences
could be due to the PVE as the BigBrain atlas has higher res-
olution than the MRI.

It could be argued that histology images with cell body
density are not appropriate for an [18F]FDG phantom as cell
bodies are not directly related to glucose metabolism.27 This
limitation, only in effect at a very small scale, is compensated
for by using an atlas and a template of the radiotracer of inter-
est to estimate the uptake in different regions of the brain. In
this way, an [18F]FDG phantom with a realistic radiotracer
distribution (out of many possible distributions) is obtained.

4.B. Conclusions

In this work, we propose a novel method to generate digi-
tal brain phantoms, which we employed to create an [18F]
FDG phantom. The complete dataset, including the example
[18F]FDG phantom, the pseudo-CT, the l-map, and the T1-
weighted images, is available online. The generated phantom
fulfils the requirements of being ultra high resolution (i.e.,
voxel sizes down to 100 lm), by being heterogeneous at a
small scale (heterogeneity provided by the cell body concen-
tration in the histology images), not being generated from a

FIG. 4. Registration of the magnetic resonance imaging (MRI) image in histology space to the phantom. In (1) and (4) transverse and sagittal planes of the MRI
image. Same planes of the [18F]FDG phantom in images (2) and (5). Overlay images in (3) and (6). [Color figure can be viewed at wileyonlinelibrary.com]
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segmented MRI image, and also being heterogeneous at a lar-
ger scale to simulate the uptake of a given radiotracer.
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