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Abstract

Neuropeptides represent a unique class of signaling molecules that have garnered much attention 

but require special consideration when gleaning identifications from mass spectra. With highly 

variable sequence lengths, neuropeptides must be analyzed in their endogenous state. Further, 

neuropeptides share great homology within families, differing by as little as a single amino 

acid residue, complicating even routine analyses and necessitating optimized computational 

strategies for confident and accurate identifications. We present EndoGenius, a database searching 

strategy designed specifically for elucidating neuropeptide identifications from mass spectra by 

leveraging optimized peptide-spectrum matching approaches, an expansive motif database, and a 

novel scoring algorithm to achieve broader representation of the neuropeptidome and minimize 

re-identification. This work describes an algorithm capable of reporting more neuropeptide 

identifications at 1% false discovery rate than alternative software in five Callinectes sapidus 
neuronal tissue types.
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Introduction

Neuropeptides, essential signaling molecules originating from neurons or endocrine cells, 

serve as a resource for obtaining dynamic information of neuronal processes.1 To 

date, neuropeptides have provided valuable insight into biological disorders including 

Alzheimer’s disease2,3 and obesity.4–6 Mass spectrometry (MS) is revered for its high 

accuracy and sensitivity, and has been utilized in many neuropeptide studies to date.7–

10 With regards to processing MS data, and subsequently obtaining peptide-spectrum 

matches (PSMs), database searching is a routine method, which compares the theoretical 

spectrum of a peptide with an experimental spectrum to make identifications. The area 

of database searching has seen tremendous growth in recent decades, with many software 

packages available for use including MSFragger,11 MaxQuant,12 PEAKS,13 Comet,14 and 

MetaMorpheus,15 each of which were designed for application in proteomics investigations.

While in principle these software packages can be used for neuropeptidomic analyses, 

an apparent discrepancy between the number of anticipated neuropeptide identifications, 

supported by the literature,1,16 and the much lower actual number of identified 

neuropeptides by MS is evident. This discrepancy can be explained by the unique nature 

of neuropeptides, which warrant atypical search considerations. In vivo, neuropeptides 

are cleaved from prohormones in a largely uncharacterized manner, producing fragments 
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ranging from three to greater than 70 amino acids in length.1 Thus, typical sample 

preparation involving enzymatic digestion can be detrimental, and neuropeptides are thus 

analyzed in their endogenous form. Though many software packages offer the ability to 

search in a digest-free condition, neuropeptides share high levels of sequence similarity, 

sometimes sharing all but a single amino acid residue in common, further complicating 

search tasks.

Software optimized for neuropeptide identifications are sparse, though recently our group 

presented two packages that complement de novo sequencing analysis methods, which 

demonstrated the benefit of using optimized software packages.7,17 Herein we detail a novel 

platform, EndoGenius, which capitalizes on modifications of existing database searching 

principles to achieve optimized database searching of neuropeptide extracts. EndoGenius is 

the first stand-alone platform designed specifically for the identification of neuropeptides 

from data-dependent acquisition (DDA) mass spectra. Traditional database search strategies 

provided a nice framework to model our system after, however they make assumptions, such 

as identity of termini residues, that are not applicable to our neuropeptide analyses,18–20 

thus providing an area of optimization for our neuropeptide applications, through which we 

optimized a scoring method to relay the confidence of an identification. The premise of 

our DDA searching algorithm lies in generating theoretical spectra for a given neuropeptide 

sequence, including any modifications, and then searching this against experimental spectra 

to identify any matches, scoring the matches to reflect the confidence of the match.21–23 

Typical methods used to represent the quality of a spectral match employ one of the 

following two approaches, either examining a false-discovery rate (FDR), often including 

decoy database entries in the search to calculate the likelihood of identifying a false entry, 

or employing scoring methods, which rely on a number of factors to arrive at a value 

which represents the probability of the match to be true.18,24,25 Representing the accuracy 

of a neuropeptide match through an score alone is not intuitive, while calculation of FDR 

using a decoy database alone can be ineffective at determining the correct sequences, a 

unique challenge due to inherent neuropeptide homology.25 Algorithms where a score is 

calculated based on metrics rely on properties such as the number of missed cleavages 

or the identity of the end residues of a given peptide, features which are not applicable 

to neuropeptide searches.12,26 For the program described herein we developed a scoring 

system that is ideal for neuropeptides, free of any irrelevant terms. We then use these scores 

in-tandem with a target-decoy strategy, to determine a score threshold corresponding to a 

particular FDR value, where peptides with scores greater than the threshold are accepted 

as hits (Figure 1). Altogether, the novel platform described herein, EndoGenius, achieves 

improved identification of a broad selection of neuropeptides with respect to alternative 

software solutions.

Materials and Methods

Reagents and Materials

Crab saline components, as well as methanol (MeOH), acetonitrile (ACN), glacial acetic 

acid (GAA), ammonium bicarbonate, and formic acid (FA) were purchased from Fisher 

Scientific (Pittsburgh, PA). For this study, only HPLC grade or water (H2O) that was doubly 
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distilled on a Millipore filtration system (Burlington, MA) were used. C18 Ziptips were 

purchased from Millipore (Burlington, MA). Optima Grade solvents were used for all LC 

(Fisher Scientific; Pittsburgh, PA).

Animals

Female blue crabs, C. sapidus, were obtained from Midway Asian Foods and subsequently 

stored in artificial seawater at 35 parts per thousand (ppt) salinity, 13–16 °C, and 8–10 

ppm O2. Prior to sacrifice, crabs were anesthetized on ice for 20 minutes. Brain, sinus 

glands (SG), pericardial organs (PO), thoracic ganglia (TG), and commissural ganglia (CoG) 

were collected as previously described.27 Dissections were conducted in chilled (10 °C) 

physiological saline, composed of 440 mM NaCl, 11 mM KCl, 13 mM CaCl2, 26 mM 

MgCl2, and 10 mM Trizma acid. Saline was adjusted to pH 7.4 with NaOH.

Neuropeptide Sample Preparation and Data Acquisition

For each tissue type, three tissue samples were pooled. Neuropeptides were extracted 

from tissue using 90/9/1 (v/v/v) MeOH/H2O/GAA, and subsequently desalted via Millipore 

Ziptips. A solution of 0.1% FA in water was used to reconstitute the neuropeptide extracts 

and was then loaded onto a 15 cm capillary (75 μm internal diameter) which was packed 

with 1.7 μm diameter Ethylene Bridged Hybrid C18 material. The integrated emitter tip was 

confirmed to be in line with the instrument inlet.

Untargeted profiling of neuropeptides was conducted via LC-MS/MS with a Thermo Q-

Exactive HF mass spectrometer coupled to a Dionex Ultimate 3000 LC system. Mobile 

phase A, 0.1% FA in H2O, and mobile phase B, 0.1% FA in ACN, were used to separate 

peptides with a gradient elution of 10 to 20% B over 70 min, and 20 to 95% B over 20 min 

at a flow rate of 300 nL/min. Profile mode was used to acquire full MS scans ranging from 

200 to 2000 m/z at a resolution of 60 K. The automatic gain control (AGC) target was set 

to 1 × 106 with a maximum injection time of 250 ms. Tandem mass spectra were acquired 

in centroid mode. The top 10 most abundant precursor ions were selected for higher-energy 

collisional dissociation (HCD) fragmentation with a dynamic exclusion window of 30 s. A 

resolution power of 15 K, isolation window of 2.0 Th, normalized collision energy (NCE) 

of 30, maximum injection time of 120 ms, AGC target of 2×105, and fixed first mass of m/z 
100 were set as parameters for data-dependent acquisition (DDA). Each sample was injected 

in technical triplicate.

Software Notes

The EndoGenius algorithm and graphical user-interface (GUI) were written in Python. 

The program is compatible with Python 3 and was validated with Python v.3.10 in 

an Anaconda environment. The program is open-source and freely available at https://

github.com/lingjunli-research/EndoGenius, with a user manual and tutorial included. A 

schematic of the program workflow is shown in Figure 1. The GUI was built in Figma 

and converted to Python using Tkinter Designer program.

All data files were processed on a Dell Inc. Precision Tower 5810 computer using Windows 

10 with a 64-Bit processor and 4 cores operating at 3.10 GHz and 128 GB installed RAM.
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Target Decoy Database

A target-decoy database was built using a decoy-shuffle strategy, with a previously reported 

crustacean neuropeptide database (891 unique neuropeptides).7 A Biopython package was 

used to parse the neuropeptide database from .FASTA format.28 Using the Python Itertools 

package, decoy-shuffle sequences were generated and concatenated to the original database. 

The sequence order of all entries within the concatenated database were scrambled to 

minimize biasing.

Motif Database

The motif database was built upon the previously reported crustacean neuropeptide motif 

database, using the same methodology.17 In brief, the neuropeptide database, described 

previously,7 was divided into families, derived from their structural homology.29 All 

peptides within a family were aligned through the UniProt Align platform.30 The alignment 

produced a series of peptides adjusted to the same length, which were input to the WebLogo 

platform.31 A full motif was defined as a series of unambiguous, continuous amino acids 

within all familial sequences. A partial motif was designed as an extension to a full motif, 

where one variable or ambiguous amino acid position was allowed, provided it was flanked 

by two unambiguous amino acid residues. A complete depiction of the motif database 

generation workflow is shown in Figure 2a.

Motif Scoring

To assign a score to a motif-sequence match, a ratio score (SA) was first assigned, 

determined by dividing the length of the motif (LM) by the length of the neuropeptide 

(LN; Equation 1). As this first step can be biased against a singular, short motif present in 

a lengthy neuropeptide, we applied a square root normalization procedure (Equation 2).32,33 

The normalized ratio score was then multiplied by the neuropeptide’s sequence coverage 

(CS), or the number of expected fragment ions present, to reward motif-peptide matches with 

strong experimental evidence. The sequence coverage calculation was produced by dividing 

the number of experimental fragment ions present (NE) by the number of theoretical 

fragment ions (NT) expected (Equation 3). The final motif score (SF) is reported as the 

normalized ratio score (SB) multiplied by the sequence coverage (CS; Equation 4).

SA =  LM
LN

Equation 1

SB =  SA  ×   LN

Equation 2

CS =  NE
NT
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Equation 3

SF =  SB × CS

Equation 4

Database Search Methods

In preparation of database searching, Thermo .RAW files were converted to .MS2 files via 

RawConverter.34 Raw files were also converted to .MZML format for compatibility with 

the PyOpenMS.35 Conversion was done using MSconvert under default settings.36 All 

search settings selected are designed to be adjustable by the user for best performance. 

For the purposes of this manuscript, the following parameters were used: precursor error 

cutoff, 20 ppm; fragment error cutoff, 0.02 Da; minimum m/z value, 50; minimum intensity 

value, 1000; maximum number of modifications per peptide, 3. Modifications considered 

in search were C-terminal amidation, oxidation of methionine, N-termini cyclization of 

glutamic acid and glutamine, and sulfation of tyrosine, common modifications documented 

within neuropeptides.37,38 Database searching was completed first at the precursor ion level, 

followed by the fragment ion level. Following this analysis, two metrics were calculated: 

percent sequence coverage (Cseq) and correlation values. The percent sequence coverage 

(Equation 5) reflects the quantity of fragment ions identified (Ni) with respect to the length 

of the peptide (Lp). The correlation value reflects the level of similarity of a peptide’s 

theoretical spectrum to its actual spectrum. Correlation values were calculated using the 

Hyperscore algorithm via the PyOpenMS python package.35

Cseq =  Ni
Lp

  × 100

Equation 5

PSM Assignment

A PSM algorithm was carefully designed to reward the hallmark attributes of neuropeptides 

when determining if a spectrum corresponds to any number of candidate matched peptides. 

As chimeric spectra are frequently associated with neuropeptides, this module also includes 

the ability to assess if a spectrum is indeed chimeric. The principle of chimeric spectra refers 

to when two or more peptides have similar mass and retention time, resulting in coelution 

and co-fragmentation at the MS/MS level, often culminating in fewer identifications 

overall.39 Thus, the highly homologous nature of neuropeptides makes them further pre-

dispositioned to producing chimeric spectra, warranting careful consideration in PSM 

filtering, as outlined in Figure S1. After the filtering of putative PSMs, two of peptides 

remain, and these share adjacent, swapped residues (e.g. PNFLRF and PFNLRF), these 

peptides will be assumed to be chimeric, and both will be subjected to scoring and 

subsequent FDR filtering. While many of the metrics outlined in Figure S1 are rather 

intuitive, such as average fragment ion error, other metrics were specifically generated 

for this task. For example, we first search for if a motif is present in a peptide. If 

multiple peptide candidates have a motif, we then look to identify what percentage of 
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the peptide is comprised of that motif. When some motif sequences are as short as three 

residues, the likelihood of a decoy possessing this motif by pure chance can be quite high. 

Thus, including a metric of this nature helps to parse this out. In addition, a metric of 

confidence of sequence coverage is included as a downstream metric. This is included as 

there is literature stating that it is reasonable to assume a spectrum-peptide match is correct 

above a certain percent sequence coverage threshold,40 thus this was applied throughout 

the PSM assignment decision tree. For the purpose of this manuscript, PSM assignment 

metric filtering values were adjusted to be: confidence sequence coverage threshold, 70%; 

maximum number of adjacent swapped amino acids, 2; minimum motif length, 3; number of 

substituted amino acids, 1.

Definitive Screening Design and Fine-tune Scoring

A definitive screening design (DSD) was generated and interpreted with JMP Pro 15.0.0, 

as outlined previously.41 A series of continuous attributes were selected to represent levels 

of spectrum-peptide match quality. These terms included average fragment error, precursor 

error, number of consecutive b-ions, number of consecutive y-ions, average number of 

annotations per fragment ion, average number of annotations per fragment ion that were not 

associated with a neutral loss of water or ammonia, hyperscore,35 and motif score. Here, 

number of annotations describes the number of fragment ions identified for a theoretical 

fragment ion type, for example, fragment ion y5 could potentially be identified at multiple 

charge states, as well as in water and ammonia neutral loss forms, each representing an 

annotation. For each metric, the corresponding value was extracted, and normalized across 

the whole of peptide identifications to a value of 1, where the maximum value was equal 

to 1, and all other values were scaled accordingly. The DSD was applied to adequately 

determine the necessary magnitude of these factors in building a final calculation to reflect 

the confidence of the PSM. These continuous metrics were assigned a value of 0, 5, or 10, 

representing the integer for the normalized metric value, from above, to be multiplied by. 

Each metric was also assigned a categorial value of “multiply” or “divide” to determine 

whether the factor should be rewarded or penalized in the final score. The design was 

assessed on the basis of 15 responses, reflecting the number of unique IDs found at 1% 

FDR across three technical replicates of five crustacean tissues: brain, commissural ganglia 

(CoG), pericardial organs (PO), sinus glands (SG), thoracic ganglia (TG). A response goal 

of unique ID maximization was indicated within the design. Using the JMP Fit Definitive 

Screening tool, significant factors were revealed. FDR was calculated as the ratio of the 

number of decoy identifications (Ndecoy) to the number of target identifications (Ntarget), 

as reported elsewhere (Eq. 6).7,13 The DSD and accompanying responses across the 50 

prescribed combination of runs is outlined in Supplemental File 1.

Upon determining the significant factors across all tissues, discrepancies in factor 

values were parsed through application of a full-factorial design for just those factors 

(Supplemental File 2). The factors assessed through the full-factorial design were precursor 

error, number of consecutive b-fragment ions, motif score, average number of non-neutral 

fragment ions per amino acid, percent sequence coverage, average number of annotations 

per amino acid, and average number of fragment ions per amino acid. These factors 

were assigned a continuous component from 0 through 10, and a categorial component of 
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multiple and divide, as above. The design was generated in JMP Pro 15.0.0. After obtaining 

responses for each prescribed combination of factor values, given the exhaustive nature 

of this design, the optimized factor values were determined to be those that provided the 

greatest number of identifications at 1% FDR.

The fine-tune scoring was assessed for biasing by searching against an entrapment database 

alone, comprised of sequences from non-crustacean neuropeptides. The database used was 

previously described.7 Search settings were held consistent to those described above.

FDR  % =  Ndecoy
Ltarget

  × 100

Equation 6:

Alternative Software Evaluation

PEAKS analysis of neuropeptides was performed as described previously.7 All analyses 

were conducted in PEAKS Studio version 10.6.13,42 Analysis parameters were set to the 

equivalent of all EndoGenius parameters: parent mass error tolerance, 20 ppm; fragment 

mass error tolerance, 0.02 Da precursor mass search type, monoisotopic; enzyme, none; max 

missed cleavages, 100; digest mode, unspecific; max variable PTM per peptide; 3. Variable 

PTMs included: C-termini amidation; Oxidation of M; Pyro-glu from Q; Pyro-glu from E; 

Sulfation. Results were exported by adjusting the peptide −10lgP value to be greater than or 

equal to the equivalent of 1% FDR. Results were filtered to include only significant peptides. 

The output peptide report was referenced for all results described herein.

MetaMorpheus evaluation was conducted using version 1.0.5.43 Error tolerance and variable 

PTMs were the same as above. The protease selected was “top-down”. Search for truncated 

proteins and proteolysis products was selected as false. The maximum number of missed 

cleavages was set to 2. All other MetaMorpheus parameters were left as default.

MSFragger version 4.0 was operated via FragPipe version 18.0.44 Once more, precursor 

mass tolerance was 20 ppm and fragment mass tolerance was 0.02 Da. The cleavage type 

was set to non-specific with up to 12 missed cleavages. PTMs were set as above, with 

up to three variable PTMs tolerated. All other MSFragger parameters were left as default. 

Validation tools were run, specifically Percolator, with a minimum probability value of 0.5 

(default).

EndoGenius Validation with Alternative Dataset

Brain, SG, and PO tissue from 3 bioreplicates of blue crab, C. sapidus, were collected and 

processed as with the first dataset. Tissues were analyzed once more on a LC-MS/MS with 

a Thermo Q-Exactive HF mass spectrometer coupled to a Dionex Ultimate 3000 LC system, 

using the same acquisition parameters. These spectra were processed through EndoGenius 

using the same parameters as before. Data were filtered to an EndoGenius score of 1000.
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Results and Discussion

EndoGenius Outperforms Alternative Software Strategies

As most software implemented in neuropeptide workflows are typically designed for 

proteomics-based inquiries, the subsequent search results often lack optimization, illustrated 

by few PSMs and unique identifications. PEAKS Studio is a program routinely used in 

neuropeptide investigations, with notably increased performance compared to alternative 

software, attributed primarily to its hybrid de novo sequencing and database searching 

approach, which helps parse through highly homologous neuropeptides.45 In particular, 

its de novo sequencing algorithm is exhaustive, searching all possible combinations of 

amino acids, enabling a more sensitive algorithm compared with more common spectral 

graph-based algorithms.17 Our group has recently released two software packages designed 

to redirect PEAKS results through pre- and post-processing strategies aimed to increase 

the frequency of neuropeptide identification.7,17 The work described herein presents 

the first fully independent, open-source database searching strategy for neuropeptides. 

Through careful optimization of each step of traditional database searching workflows 

(Figure 1),14,23 including decoy database generation, precursor and fragment ion matching, 

post-translational modification (PTM) identification and localization, spectral correlation 

evaluations, and scoring algorithms, as well as strategic inclusion of a motif database 

(Figure 2a), we have successfully developed a platform capable of effectively and efficiently 

identifying a wide breadth of neuropeptides.

In the current application, results were sought from crustacean neuropeptide extracts. As 

the crustacean neuropeptide database only contains 891 peptide entries,7 specific filtering 

strategies are necessary to enable statistical leverage to achieve a reasonable number of 

identifications. For example, in previous work, the FDR threshold was required to be 

extended from the typical 1% value to 5% to glean a reasonable number of identifications, 

following by manual inspection, given that only a few hundred neuropeptides are expected 

to be identified, and thus a single decoy identification can rapidly decrease the number 

of results.41 Thus, this work leverages statistical power by implementing strategic filtering 

steps to gradually increase precision of identification as the workflow progresses.

Target-Decoy Database Approach

A neuropeptide database for crustacea has been described previously,7 and was employed in 

this work. Use of a target-decoy search strategy is routine in database searching software, 

particularly useful in assigning a false-discovery rate (FDR), or the ratio of the number 

of decoy identifications to the number of target identifications. The key to applying this 

approach is to develop decoy sequences that share similar characteristics so that a decoy 

sequence is reasonably similar to its corresponding target sequence.46 Recently, we reported 

the advantage of using a decoy-shuffle database for neuropeptide application, as opposed to 

other strategies such as decoy-reverse, decoy-random, and decoy-hybrid.7 Thus, the decoy-

shuffle strategy was also employed here, where all target sequences from the neuropeptide 

database file were shuffled and concatenated with the target database, and all sequences 

were shuffled to minimize bias toward a particular database.
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PSM Assignment

Database searching begins by calculating the theoretical m/z values for all target and decoy 

peptides, identifying precursor m/z values that align with these within an indicated error 

threshold. Given that a target peptide and its corresponding decoy peptide have the same 

precursor mass, it is expected that at least two peptides will match to a single precursor 

peak. Thus, we generate a shortlist of candidate peptides for a particular spectrum on the 

basis of precursor m/z alone. Following this, we impart filtering strategies to delineate the 

strongest peptide match within the shortlist for the spectrum. This is conducted through 

use of a decision tree, outlined in Figure S1. Here, we incorporate additional criteria for 

putative PSM filtering, such as the score of spectrum correlation with theoretical spectra 

and percent sequence coverage of fragment ions. As shown previously, neuropeptides 

often share conserved sequence motif with high degree of homology,7 particularly within 

neuropeptide families, with two distinct neuropeptides differing by as little as a single 

amino acid residue.1 This homology can lead to plenty of putative peptide matches for 

a single spectrum, producing the need for a more sophisticated assignment algorithm. In 

our method of PSM assignment, we placed much emphasis on a motif database, which 

describes expected and conserved neuropeptide sequences, to aid in the assignment process. 

The crustacean neuropeptide motif database (Supplemental File 3) utilized in this study is an 

elaborated version of the one previously described by our lab,17 with motifs representing 23 

neuropeptide families (Figure 2b). This elaborated version contained both new, full motifs, 

as well as a newer concept, partial motifs. Partial motifs are generated when two conserved 

motif regions are joined by a singular, variable amino acid. To retain the knowledge of this 

motif, while accommodating the interior, variating amino acid, we incorporated multiple 

entries within the motif database to account for these subtle changes. Further, to address the 

differences between partial- and full-motifs, we generated a novel motif scoring algorithm. 

While previous work scored a motif through the ratio of the motif length to the length of 

the peptide (Equation 1),17 we noted that this could inadvertently impart biasing against 

neuropeptides of longer lengths, given that some peptide prohormone families can extend 

beyond 200 amino acid residues in length. To overcome this, we applied a square-root 

normalization procedure,33 wherein the original motif score was normalized by multiplying 

by the square root of the length of the neuropeptide (Equation 2), reducing this biasing. 

We then reward this score for the presence of corresponding fragment ions, multiplying 

by sequence coverage (Equation 3). These key advances upon previous neuropeptide motif 

analysis strategies were imperative to improved identification of neuropeptides. Indeed, we 

found that inclusion of the motif database in PSM assignment substantially improved the 

number of unique neuropeptide identifications at 1% FDR (Figure S2).

We wanted to assess any biasing of our model toward targets over decoys, ensuring that the 

identifications produced by EndoGenius were real. To do this, we utilized an entrapment 

database described previously.7 We wanted to ensure that, in the presence of no relevant 

peptides, EndoGenius did not provide identifications. Indeed, we found only less than 5 

identifications for each of the 15 raw spectra files searched (Figure S3).

The improvement of this intricate PSM assignment algorithm was evident when comparing 

results from EndoGenius to the results of PEAKS, routinely used for neuropeptide 
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identification. As shown in Figure 3, across 15 samples (encompassing 5 tissues), with 

our algorithm there were 86 times that a neuropeptide backbone was identified just one 

time, whereas in PEAKS this was only present 16 times. More notably, there was a 

single neuropeptide backbone that was identified 757 times in PEAKS across these 15 

samples, underscoring the need for an optimized software program to minimize routine 

re-identification and re-assignment of highly homologous neuropeptides. Alternatively, the 

most frequently a single neuropeptide backbone was identified in EndoGenius 170 times. 

These findings carry through to the final results of the program, where we find a substantial 

increase in the number of unique neuropeptides identified from a single experiment (Figure 

4).

Fine-tune Scoring

Many established programs, particularly PEAKS, have adopted a scoring algorithm to reflect 

the confidence of a score, used to establish score cutoffs to accompany FDR values. In 

PEAKS, this proprietary algorithm is termed the -logP value. While the details of this 

calculation are not publicly available, previous reports have shown that factors contributing 

to the score include precursor mass error, charge state, and maximum length of the 

consecutively matched fragment ion series.13 With this inspiration, we sought to apply 

this same theory to develop our own score calculation algorithm to be used to effectively 

represent and filter PSM matches. To effectively craft a scoring algorithm in an unbiased 

fashion, we employed use of a DSD, a statistical practice routinely used in engineering 

fields, that has recently been adopted as application in neuropeptidomic applications, albeit 

for data acquisition purposes.41,47 DSDs can be used to leverage statistical power to 

optimize conditions whilst minimizing the number of assessment experiments necessary.48 

For example, in the work described herein, we evaluated 20 different factors through 

conducting 50 experimental runs prescribed by the DSD. Alternatively, probing the effects 

of each factor manipulation in a full-factorial manner would require 8,000 experiments. 

In this context, an experiment refers to the evaluation of a given combination of factor 

values. Each combination from the DSD was evaluated and assessed based on the number 

of unique identifications resulting at 1% FDR (Supplemental File 1). We started with 10 

components we hypothesized could contribute to a score that effectively described the 

likelihood of a strong match: average fragment error (in Da), precursor error (in ppm), 

number of consecutive b-fragment ions identified, number of consecutive y-fragment ions 

identified, average number of annotations per fragment ion (including neutral loss fragments 

and multiple charge states), percent sequence coverage (Equation 5), average number of 

fragment ions per amino acid (all corresponding b- and y-ions), average number of fragment 

ions not corresponding to a neutral-loss per amino acid, spectral correlation (Hyperscore),35 

and motif score (Equation 4). Each of these factors were treated as continuous, to determine 

the optimal integer-based weighting of this factor. Each of these components were also 

designated a categorial factor, equal to +1 or −1, which would determine if the component 

should contribute to the final score (multiply) or if detract from the final score (divide). 

Following fitting the DSD with its responses using the JMP Fit Definitive Screening 

function, the statistical response revealed any significant and insignificant metrics that 

resulted in the number of IDs, the response selected for which to maximize desirability. 

This analysis revealed that each of the samples had different factors that were influential 
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in the high number of identifications. Associated response residuals are located in Figure 

S4. It should be noted that some components, seemingly complementary, such as the 

number of consecutive b- and y-fragment ions, revealed differences in significance, where 

the b-fragment ions were significant and y-fragment ions were not. While the underlying 

mechanistic reason for this significance was not probed, it can be speculated that this is 

due to the discrepancy in ionization efficiency, kinetic stability, and subsequent fragment ion 

abundance, between b- and y-type fragment ions. In fact, with non-tryptic, doubly charged 

peptides, a higher abundance of b-type fragment ions has been noted previously,49 and 

is perhaps a reasonable hypothesis given the high propensity for neuropeptide precursors 

to appear at a +2 charge state.50 Interestingly, a handful of significant factors had widely 

diverging optimal values across tissue types (Figure S4). Thus, a second, full-factorial 

design was generated for these remaining, significant factors: precursor error, precursor 

error operation, # consecutive b-ions, motif score, and average number of non-neutral-loss 

fragment ions per amino acid. This second design was necessary to identify the true optimal 

factor combination that was fitting for all tissue types (Supplemental File 2). Significant 

factors, as well as their final, optimal value are illustrated in Table 1. Upon determination 

of the optimal combination of factors, a FDR evaluation script was written to determine the 

fine tune score associated with a selected FDR % threshold. This script simply probed score 

thresholds iteratively, localizing on the lowest score that produced an FDR threshold less 

than or equal to the specified value, based on Equation 6. Herein, the selected FDR was 1%. 

Figure 4 describes the number of IDs and the corresponding fine-tune score at FDR cutoff 

intervals.

Benchmarking of EndoGenius with Other software

As PEAKS software has routinely been used for neuropeptide analyses, it was imperative 

to benchmark the presented results of EndoGenius against the results generated by 

PEAKS. Additionally, as PEAKS is a commercial software, we sought to benchmark 

EndoGenius also against MSFragger44 and MetaMorpheus,43 both popular tools that are 

freely available and open source. It was immediately apparent that there were unique profiles 

of neuropeptides, signified by the differing quantities of unique peptide IDs, reported in each 

method (Figure 5a). When further investigating identifications, it was largely apparent that 

a statistically significant (p-value<0.05) increase in number of peptide backbones, defined 

as a peptide sequence alone, were consistently identified by EndoGenius (Figure 5b). These 

results are in line with the aforementioned finding, in which it was evident that PEAKS has 

a higher frequency of re-identifying the same peptides, likely a result of the high level of 

homology between individual neuropeptides. These results were underscored in the number 

of unique IDs achieved by EndoGenius that were not identified with PEAKS, while still 

largely corroborating the identifications from PEAKS (Figure 5c).

Application of EndoGenius to an Unknown Dataset

While using a 1% FDR threshold for comparison of identifications across platforms 

provided a relatively translatable metric for comparison, we hypothesized that for our 

own method, defining a threshold using our “EndoGenius Score” may be more fruitful 

for generating reproducible identifications. The logic here is simple. The FDR threshold 

was initially generated for proteomics, in which thousands of proteins are expected to be 
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identified. With samples in which the analyte of interest is sparce, such as neuropeptides, 

an FDR can be detrimental to producing accurate results. In these experiments, in which 

sometimes less than 100 neuropeptides are anticipated, just one false positive (decoy) 

identification can quickly raise the FDR. Thus, in many instances the reported number of 

peptides at 1% FDR typically include no decoy identifications, and the results are actually 

more equal to 0% FDR. This well-documented challenge has been addressed in a few 

different ways. Perhaps the simplest method has been to increase the FDR threshold to 5% 

and exercise more caution to manually verify results.41 Alternatively, non-FDR thresholds 

have been suggested, such as in PEAKS, where it is recommended to use a −10logP, 

their proprietary scoring method, of 20.13 We noted in our work that this value routinely 

corresponds to approximately 3–5% FDR. To address this FDR concern within our own 

dataset, to enable the ability to search very neuropeptide-sparse samples, we sought to 

establish a confident scoring value with respect to our own EndoGenius score, that routinely 

reported a low number of false identifications. As we compared the EndoGenius score to 

FDR across 15 samples, we noted consistency in the EndoGenius score, with an increased 

score agreeing with a reduced FDR (Figure S5). From this, we began to speculate if 

an EndoGenius score threshold application, rather than an FDR, could more consistently 

separate true from false peptides, while ensuring adequate representation of neuropeptides, 

not lost to the statistical shortcomings of the FDR value.

We used this knowledge to apply our optimized EndoGenius platform for the identification 

of neuropeptides from an unknown dataset. We analyzed brain, PO, and SG samples 

obtained from blue crabs (C. sapidus). In doing so, we found results comparable to our 

initial work, when examining both unique identifications (Figure 6a) and unique backbones 

(Figure 6b). Here, a unique identification represents a peptide and any PTMs, while the 

unique backbone represents the amino acid sequence alone.

Conclusion

The work described herein presents an optimized database searching program, ideal for 

analysis of neuropeptides. This program utilizes a strategic PSM assignment algorithm 

in conjuncture with a fine-tune scoring calculation to achieve a substantial increase in 

the number of neuropeptide PSMs, unique peptides, and unique peptide backbones. This 

finding is in-part achieved through the referencing of a motif database, capable of parsing 

highly-homologous neuropeptide sequences, to greatly increase the diversity of neuropeptide 

identifications, where other programs may repeatedly re-identify a single neuropeptide. 

Future work in this area will include integration of an automated motif library-building 

program. Altogether, EndoGenius represents the first standalone, open-source program 

optimized for identification of neuropeptides in their endogenous state from mass spectrum. 

Source code, in addition to usage instructions (Supplemental File 4) can be found online at 

https://github.com/lingjunli-research/EndoGenius).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

MS mass spectrometry

PSM peptide-spectrum match

DDA data-dependent acquisition

FDR false-discovery rate

MeOH methanol

ACN acetonitrile

GAA glacial acetic acid

FA formic acid

H2O water

SG sinus glands

PO pericardial organs

TG thoracic ganglia

CoG commissural ganglia

ACG automatic gain control

HCD higher-energy collisional dissociation

NCE normalized collision energy

GUI graphical user-interface

SA ratio score
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LM motif length

LN neuropeptide length

CS motif sequence coverage

NE experimental fragment ions present

NT theoretical fragment ions present

SF motif score

SB normalized ratio score

Cseq percent sequence coverage

Ni fragment ions identified

LP peptide length

DSD definitive screening design

PTM post-translational modification
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Figure 1: 
Generalized workflow of EndoGenius. From a target neuropeptide database, a shuffled 

decoy sequence is generated for each target. Target and decoy sequence databases are 

concatenated and shuffled to avoid biasing. Each peptide undergoes precursor and, if 

applicable, fragment ion matching, following which sequence coverage and spectral 

correlation calculations are completed. These data are input to the optimized peptide-

spectrum match (PSM) assignment, which conducts a filtering to reward neuropeptide-typic 

attributes. Following a fine-tuning peptide scoring, a score is associated with a 1% false 

discovery rate (FDR) threshold, wherein peptides surpassing the threshold are exported as 

identifications.
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Figure 2: 
(A) A motif database generation workflow was constructed, by which a list of target 

neuropeptides was divided into sublists based on familial association. All peptides within 

a given neuropeptide family were aligned, from which full motifs, or regions of complete 

alignment, or partial motifs, wherein two regions of complete alignment were separated by a 

single variable residue, were assigned. (B) Using the motif algorithm, a selection of 85 motif 

entries were assigned, corresponding to 23 families.
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Figure 3: 
Comparison of the frequency of neuropeptide backbone re-identification in PEAKS 

compared to EndoGenius across 15 samples, corresponding to 3 technical replicates of 5 

crustacean tissue samples.
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Figure 4: 
Representative plots describing peptide score versus the number of PSMs, with FDR 

thresholds of 0–5% indicated. Plots here describe sinus gland (SG) sample results.
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Figure 5: 
Analysis of results from EndoGenius, PEAKS, MSFragger, and MetaMorpheus, of brain, 

commissural ganglion (CoG), pericardial organs (PO), sinus glands (SG) and thoracic 

ganglion (TG) tissue types. (A) Unique peptide IDs identified all software. Unique IDs 

are defined as peptides including PTMs. (B) Unique backbones identified in all software. 

Unique backbones are defined as the peptide sequence only. For A & B, bar graph shows 

the ANOVA test result, error bars, mean ± s.d. (* p-value <0.05, ** p-value <0.001, ***p-

value<0.0001). (C) Overlap of neuropeptide backbone identifications from EndoGenius and 

PEAKS across 5 tissue types.
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Figure 6: 
Results obtained through use of EndoGenius on an unknown dataset (A) average number 

of unique identifications, including modifications (B) average number of unique backbones. 

Error bars represent standard deviation.
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Table 1.

Final DSD factors. Each factor and values were proven significant by definitive screening design (DSD) and 

subsequent analysis. Factor refers to the value that the normalized result is multiplied by, and the operation 

refers to how the value is included in the final calculation, either having a positive role, or multiplication, or a 

negative role, by division. Other factors searched, but deemed insignificant were average fragment error, # 

consecutive y-ions, average number of annotations per fragment, average number of fragment ions per amino 

acid, hyperscore, and motif score.

Factor Value Operation

Precursor error 10 Divide

# Consecutive b-ions 10 Multiply

% Sequence coverage 10 Multiply

# Fragment ions not from neutral-loss per AA 10 Divide
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