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Abstract

The mammalian cell is a complex entity, with membrane-bound and membrane-less organelles 

playing vital roles in regulating cellular homeostasis. Organellar protein niches drive discrete 

biological processes and cell functions, thus maintaining cell equilibrium. Cellular processes 

such as signaling, growth, proliferation, motility, and programmed cell death require dynamic 

protein movements between cell compartments. Aberrant protein localization is associated 

with a wide range of diseases. Therefore, analyzing the subcellular proteome of the cell can 

provide a comprehensive overview of cellular biology. With recent advancements in mass 

spectrometry, imaging technology, computational tools, and deep machine learning algorithms, 

studies pertaining to subcellular protein localization and their dynamic distributions are gaining 

momentum. These studies reveal changing interaction networks because of “moonlighting 

proteins” and serve as a discovery tool for disease network mechanisms. Consequently, this review 

aims to provide a comprehensive repository for recent advancements in subcellular proteomics 

subcontexting methods, challenges, and future perspectives for method developers. In summary, 

subcellular proteomics is crucial to the understanding of the fundamental cellular mechanisms and 

the associated diseases.
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INTRODUCTION

Cellular compartmentalization and dynamic distribution of cellular macromolecules, such 

as proteins, are essential for maintaining cell function and homeostasis.1 Proteins are 

vital in bridging the gap between genetic information and disease phenotypes.2,3 With 

the advancement in proteomic approaches and machine learning tools, proteomes can be 

studied at the subcellular level with ever-increasing depth. The subcellular organization of 

proteins directly impacts their function, as the compartmentalization of cells changes the 

microenvironment with distinct molecular compositions, chemical properties, and physical 

attributes. Subcellular proteomics is an emerging dimension of proteomics used to study 

proteomes at the organellar level.4 Eukaryotic cellular compartmentalization includes 

many membrane-bound organelles, such as Golgi apparatus, mitochondria, lysosome, 

endoplasmic reticulum, and nucleus, as well as membrane-less structures like cytosol, 

centrosomes, polysomes, and ribonucleoprotein granules.5,6 Proteins often localize to 

distinct subcellular niches according to their functions. Their movement is tightly regulated 

through cellular processes such as signaling mechanisms, cell motility, cell progression, 

macromolecule interactome, and apoptosis.7 Distinct localization of proteins into cellular 

organelles is vital since incorrect protein localization has been reportedly associated with 

cellular dysfunction and diseases such as neurodegenerative diseases,8,9 cancer,10 obesity,11 

laminopathies,12 liver disease,13 and metabolic disorders.14 Therefore, understanding the 

subcellular distribution of proteins and their dynamics (in homeostatic and external 

or internal perturbation conditions) is crucial for comprehending vital cell biochemical 

functions.

Interestingly, most cellular proteins are present in multiple subcellular locations, and 

their distribution varies in a context-specific manner.15 Studies have also shown that 

around 50% of the total cell proteins are multiorganelle localized, reflecting their 

“moonlighting” activities, which could be entirely independent or organelle modulated.16,17 
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Human subcellular proteome studies suggest that there are single-cell variations at protein 

location, expression levels, protein–protein interaction networks, and changes in their 

dynamic translocation, indicating a high level of cellular regulation of protein dynamics.18 

Additionally, with the help of state-of-the-art mass spectrometry advances, it is now possible 

to integrate subcellular proteomics with quantitative “omics” techniques to explore unbiased 

system-level insights into biological processes.19,20 These findings provide us with many 

opportunities to explore and study the complex world of cellular proteins and their dynamic 

behavior more constructively.

Recent technological advancements in high-throughput quantitative mass spectrometry,21,22 

imaging-based microscopy,23 interactome mapping,24 and computational machine-learning 

methods for data analysis25 have revolutionized how we investigate organellar protein 

functions. The synergistic subcellular proteomic approaches and refined experimental 

techniques have enabled significant progress in understanding and quantifying subcellular 

protein domains at single-cell levels,26 intact tissue specimens,27,28 and even at subcellular 

phospho-proteome levels.29,30

Subcellular proteomics methods, such as mass spectrometry-based cell-wide dynamic 

organellar protein mapping and deep fluorescent-based imaging techniques combined 

with artificial intelligence, are powerful tools for quantifying subcellular proteomes. Our 

literature review has a broad perspective and aims to provide a comprehensive overview 

of the methods of subcellular proteomics. We will discuss recent advances and their 

application in different fields. Additionally, we will cover the latest advancements in 

artificial intelligence and machine learning tools for subcellular proteomics.

SUBCELLULAR PROTEOMICS METHODS

Subcellular proteomic data acquisition methods for localization and protein abundance 

detection within intricate subcellular compartments can be divided into three broad 

categories: organelle or cell-wide fractionation and quantitative mass spectrometry-based 

methods,31 imaging-based approaches using tagged/fusion recombinant proteins,32 and 

protein–protein interaction studies to identify the local subcellular distribution of proteins 

through enzyme-linked proximity labeling and affinity purification.33 Appropriate data 

acquisition approaches coupled with rigorous data analysis following data acquisition are 

paramount.

Mass Spectrometry-Based Methods

Mass spectrometry-based acquisition methods provide valuable insights into the proteome 

maps of cells, along with their subcellular abundance profiles. These methods often 

rely on cellular fractionation approaches or proximity labeling techniques as prerequisite 

steps.34 A diverse range of subcellular fractionation techniques, such as detergent-

based fractionation,35 centrifugation-sedimentation-based,36 density centrifugation-based 

methods,37 electrophoresis,33 and affinity purification,38 are available to support MS-based 

workflows. Furthermore, organellar profiling methods have been extensively applied to 

cell-wide and single organelles. These techniques can be highly effective in generating 
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accurate data, and further advancements in this area can help improve our understanding of 

cell biochemical functions (Figure 1).

Single Organelle Protein Profiling.—Single-organelle proteins are a less complex 

subset of the proteome than the proteome of whole cells or tissues.39 This makes organellar 

proteins attractive targets for in-depth biological and functional analysis. By enriching 

subcellular organelles through subcellular fractionation methods and coupling those methods 

with mass spectrometry identification, the abundance distribution profile of each protein 

distinct to that cell compartment can be identified.40 It should be noted that proteins 

associated with a given compartment often have similar abundance profiles to outliers 

or contaminants.41 However, recent advances in mass spectrometry have made single-

organelle protein profiling a feasible approach for identifying proteins in the nucleus,42 

mitochondria,43 Golgi apparatus,44 and plasma membrane.45 This approach generates highly 

specific data sets, which makes it suitable for addressing targeted research questions such 

as drug target discoveries. Overall, using single-organelle protein profiling is a promising 

avenue for deepening our understanding of organelles’ biological and functional properties.

Cell-Wide Organellar Protein Profiling.—Multiorganellar protein profiling 

encompasses all subcellular compartments simultaneously. A prerequisite for multiorganelle 

protein mapping is physical cell disruption to release intact organelles (Table 1) for 

subcellular compartment enrichment. Further, intact organelles are enriched by density 

centrifugation37 or differential centrifugation21 methods. Different organelles are enriched 

in density-dependent methods, but their distribution is not absolute and can significantly 

overlap. Each fraction protein is identified through quantitative MS, producing an abundance 

distribution profile for each protein. Machine learning methods, such as cluster analysis, 

group similar profile proteins together based on organelle marker proteins. Multiorganelle 

profiling provides genuine systems-level analysis tools that achieve remarkable resolution 

and coverage of major subcellular compartments in a single experiment.46

Subcellular Fractionation and Enrichment Methods

Centrifugation-based Methods.—Biochemical centrifugation fractionation methods 

enrich specific organelles based on their physical parameters, such as size, mass, 

and density. These methods provide high sensitivity and coverage, as revealed in MS 

data analysis. Differential and density centrifugation techniques can isolate organelles 

from a crude preparation. The differential centrifugation fractionation method exploits 

the sedimentation property of organelles varying in their densities.47 Density gradient 

centrifugation separates cell compartments based on their buoyancy density or sedimentation 

rate.21 The selection of gradient media relies on the sample type (Table 2).

These techniques use sucrose48 Percoll,49 and Iodixanol50 as density mediums to separate 

organelles based on density. Equilibrium density centrifugation (gradient centrifugation) is 

another method to separate cellular organelles with closely related densities. A nonionic 

medium of low density, low osmolarity, and viscosity is ideal for separation. Synthetic 

medium such as Nycodenz51 is used with great success and better-resolving ability. Natural 

media (such as sucrose) are limited by changes in osmolarity at higher concentrations.52 To 
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ensure that only target organelle components are enriched, subtractive proteomics53 filters 

out contaminants during data analysis. Multiple subcellular fractions collected during target 

organelle enrichment can be analyzed using the protein correlation profiling technique, 

based on bona fide organellar marker protein strategy, to distinguish the target niche from 

the control. Enriching the target organelle adequately is essential, as density centrifugation 

fractions do not ensure absolute enrichment.54

Electrophoresis and Affinity Purification-Based Methods.—Electrophoresis and 

affinity purification-based methods recently gained momentum for organelle enrichment 

and proteomic mapping studies coupled with MS data analysis. For example, ER in 

Arabidopsis was enriched using the free-flow electrophoresis (FFE) technique to study the 

translocation of ER vesicles.33 The working principle for zone electrophoresis (ZE-FFE) is 

that the organelles are separated according to their specific surface charge. This technique 

of narrowing down the organelles through respective surface charges can be used for 

applications such as target identification during drug discovery. Similarly, flow field-flow 

fractionation (Fl-FFF) is a size-based separation technique that is highly versatile and 

capable of separating macromolecules such as DNA, whole cells, subcellular organelles, 

extracellular species, and protein/protein aggregates. Studies reviewing Fl-FFF application 

in organelle enrichment studies are available, citing their far reach in proteomic and 

lipidomic analysis coupled with mass spectrometry.55 Affinity purification strategies for 

biochemical enrichment are highly efficient and reliable for isolating/enriching intracellular 

organelles, such as lysosomes, mitochondria, and peroxisomes from mammalian cells using 

twin tag and streptavidin variants.38 The study workflow enriches organelles in just 3 min. 

This method can help study transient and fast cellular activities like organelle content of 

small molecular metabolites. The reproducibility of these methods is the major limiting 

factor in cell subcellular enrichment and purification.

Protein Correlation Profiling

Protein correlation profiling (PCP) allows the profiling of multiprotein complexes enriched 

by fractionation but not purified to homogeneity.39 PCP employs distribution profiles of 

unique marker proteins in cell compartments to determine the subcellular location of 

uncharacterized proteins.56 Recent studies using PCP to study organellar protein fraction 

to identify Golgi membrane remodeling pathway during nutrient stress57 and subcellular 

interrogation of the centrosome proteome in hiPSCs coupled with mass spectrometry58 

provide deeper insights into organellar proteomics. PCP has a distinct advantage over 

other methods as it combines low-resolution differential centrifugation with high-throughput 

mass spectrometry to generate accurate quantitative protein maps.59 PCP methods such as 

localization of organelle proteins using isotope tagging (LOPIT)60 rely on the comparison 

of the abundance distribution of each protein with known organelle markers to identify 

organelle protein distribution patterns61 and protein dynamics information in the cell.62 

LOPIT and HyperLOPIT are widely used and are the most reproducible methods used in 

subcellular proteomics. LOPIT is a method used to generate cell-wide protein subcellular 

map structures from complex biological mixtures in a single experiment.2 Unlike traditional 

methods, it does not require absolute organelle purification. Instead, it measures protein 

distribution across multiple density gradient fractions.63 Subcellular localization is assigned 
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by comparing protein profiles to those of well-curated organelle markers using multivariate 

statistical analysis and machine-learning approaches.64 An improved version of this method, 

called hyperLOPIT, was developed recently. This upgraded approach integrates novel 

methods for sample preparation, MS data acquisition, and protein localization classification, 

and it was used to create a high-resolution map of protein subcellular localization in 

E14TG2a mouse embryonic stem cells.16 Other methods for profiling subcellular global 

proteins, such as Prolocate,36 COLA,65 and SubCellBarCode,66 rely on separating cell 

organelles using centrifugation gradients and analyzing them with MS. These methods use 

multivariate statistics along with machine learning algorithms to obtain results. We have 

compiled a list of recent global subcellular protein profiling methods (Table 3). PCP can 

even identify changes in protein distribution caused by structural alterations, which are 

often missed by traditional fractionation methods focused on enriching specific subcellular 

niches.67

Dynamic Organellar Maps

Dynamic organellar maps (DOMs) are a powerful global subcellular protein profiling 

tool. This method combines cell fractionation and shotgun proteomics to generate protein 

abundance profiles. The approach is comparative and highly robust due to its fractionation 

protocol. To generate the profiles, cultured cells are mechanically lysed and separated by 

differential centrifugation, and the resulting fractions are analyzed by mass spectrometry. 

The abundance profiles are then used to predict protein localization using supervised 

machine learning algorithms.31 DOMs are highly reproducible and allow for the analysis 

of changes in protein localization. A recent study used DIA-DOMs to analyze subcellular 

protein translocation in response to lysosomal stress in HeLa cells. The study identified a 

large number of translocating Golgi proteins with high confidence.68

MS Subcellular Proteomics: Database tools

Mass spectrometry-based protein identification of organellar fractionation uses database 

searching tools such as X! Tandem,69 Sequest,70 and Mascot71 to compare experimental 

peptide spectra and theoretical in-silico spectra to generate peptide spectral match scores. 

High PSM scores correspond to a higher probability of a particular peptide in the 

sample. Common MS data identification software such as Proteome Discoverer, MaxQuant 

works in data-dependent acquisition mode (DDA).72 In contrast, applications such as Open-

SWATH,73 Skyline, and DIA-NN74 are suitable for data-independent acquisition (DIA) 

mode.

Tools and Software for Analyzing Fractionation Experiments.—Proteins are 

present in various subcellular locations due to their dynamic nature. Therefore, it is 

crucial to validate their presence using subcellular markers.75 To ensure the accuracy of 

subtractive proteomics data analysis methods, it is necessary to include a reference set of 

known protein markers of the target organelle and reference lists of protein contaminants 

from other subcellular compartments. One can choose reference protein lists using Gene 

Ontology,76 COMPARTMENTS,77 and UniProt.78 OpenCell79 and Human Protein Atlas18 

tools use cutting-edge technology such as genome engineering, confocal live-cell imaging, 

mass spectrometry, and data protein engineering to systematically map the localization 
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and interaction of human proteins, providing a comprehensive understanding of the 

human cell subcellular proteome. Correlation profiling data do not require a contaminant 

reference and can be visualized using several organelle profile plots. Principal component 

analysis (PCA) is commonly used to simplify complex data by reducing dimensions. 

PCA can assess subcellular resolution as proteins associated with the same subcellular 

niche cluster together.80 Machine learning algorithms, such as supervised, semisupervised, 

or unsupervised, are also used for correlation profiling. Supervised and semisupervised 

algorithms require the spatial profile of known organelle marker proteins to assign unknown 

protein localizations to subcellular niches.81 These algorithms include support vector 

machines, neural networks, and random forest models. BANDLE (Bayesian analysis of 

differential localization experiments) is a semisupervised functional mixture model used to 

obtain the probability of a protein being differentially localized upon cellular perturbation.82 

Unsupervised clustering algorithms like k-means clustering or DBSCAN are helpful when 

training nonmodel organisms with limited marker proteins. These methods are best suited 

for static and single-locale localization of proteins. The aforementioned methods are 

challenging for the dynamic classification of proteins and MLPs (multilocalizing proteins) 

but have been implemented through T-augmented Gaussian mixture model approaches and 

TRANSPIRE (Translocation analysis of subcellular proteomics).81 Dimension reduction 

is another approach to simplifying complex multidimensional data to make it easier to 

interpret. One of the most used linear methods for this is PCA. Still, nonlinear methods 

like t-distributed stochastic neighbor embedding (t-SNE) help detect more complex patterns, 

such as polynomial relationships.83 In addition, unsupervised clustering techniques, such 

as DBSCAN and hierarchical clustering, can be helpful for marker curation in challenging 

or poorly researched systems.84 The choice of machine learning algorithm depends on 

available computation power, processing timeframes, experience, and appropriate data 

assumptions.

Proximity Labeling

Proximity labeling-based methods, in combination with mass spectrometry (MS), offer a 

high-throughput approach for systematically analyzing subcellularly restricted proteomes 

(Figure 2).

A protein–protein interaction network is used to identify the local subcellular distribution of 

proteins through enzyme-linked proximity labeling.85 Proximity labeling involves fusing 

“bait” protein with labeling enzymes to covalently label neighboring “prey” proteins. 

Four standard proximity labeling approaches are used in subcellular proteomics. The first 

approach is BioID and BioID2, which rely on mutated bacterial biotin ligase (E. coli 
proteins BirA,86 TurboID,87 miniTurbo variants, and BASU88) that can covalently attach 

biotinylated lysine amines to proximal proteins. Then, biotinylated proteins are extracted or 

recovered from the complex lysate using streptavidin-agarose or magnetic beads, followed 

by MS data analysis. Recent publications include a BioID-based map of HEK293 cells89 

and mitochondria.90 The second approach is APEX and APEX2,91,92 which biotinylates 

proteins’ tyrosine residues within a 20 nm radius after peroxide stimulation. This approach 

does not require specific antibodies, but simultaneous analysis of multiple organelle proteins 

is the only limiting factor. The third approach is HRP (horseradish peroxidase).
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HRP, a peroxidase, activates upon exposure to H2O2 and converts substrates into highly 

reactive radicals that covalently tag neighboring proteins on electron-rich amino acids.93 

HRP is inactive in reducing environments like the cytosol, limiting its use in intracellular 

interactomes94 (thus motivating the development of APEX). However, HRP remains active 

in oxidizing environments like the ER, Golgi, and extracellular region.95 Although HRP 

can catalyze a variety of substrates, for proximity labeling, two have been used extensively: 

(1) EMARS (enzyme-mediated activation of radical source)96 and (2) SPPLAT (selective 

proteomic proximity labeling assay using tyramide), also known as biotin-phenol.97 The 

fourth approach is PUP-IT, which stands for pupylation-based interaction tagging. PUP-IT is 

a novel system for proximity labeling that uses the bacterial enzyme PafA to attach a small 

protein called Pup to lysine residues on target proteins. This process, known as pupylation, 

marks the proteins for degradation. PafA is particularly useful for labeling promiscuous 

proteins since it does not require a consensus binding motif.98

Proximity labeling is a powerful technique that provides detailed information about cell 

subcellular maps. Unlike membrane-less and membrane-bound organelles with a more 

extensive protein labeling range, proximity labeling has a far shorter range (diameter 

ranging from nano- to micrometers). This makes it ideal for obtaining highly localized 

information about proteins and their interactions within cells. With proximity labeling, 

researchers can gain a deeper understanding of complex cellular processes and pave the 

way for discoveries in the field of cell biology. Gaining a deeper understanding of disease 

pathologies requires understanding localized biomolecular networks or microenvironments. 

For instance, flavoprotein fusion is an exceptional technique that accurately labels 

surrounding proteins. With the correct probe, it enables precise determination of labeling 

pathways.99 Similarly, MicroMap (μMap) is a protein–protein interaction identification 

technique that specifically labels antibody binding targets and their microenvironment 

protein neighbors with higher precision. This has been demonstrated in the PD-L1 

microenvironment in live lymphocytes.100

Data Analysis Tools for Proximity Labeling Approaches.—Labeling strategies face 

a significant challenge distinguishing candidate protein from background noise in MS data. 

However, experimental procedures have been developed to generate high-confidence MS 

data through (i) proximity labeling coupled with quantitative MS using metabolic labeling 

such as SILAC (stable isotope labeling by amino acid in cell culture)101 or by chemical 

labeling tags, such as iTRAQ102 (isobaric tags for relative and absolute quantification) and 

TMT103 (tandem mass tags); (ii) use of multiple negative controls to filter out background 

labeled proteins;104 and (iii) reduction of background due to nonspecific labeling by using 

endogenous CRISPR/Cas9 tagging of bait proteins to maintain physiological levels of the 

labeling enzyme.105

Proximity Labeling: In Vivo Systems.—Proximity labeling is often performed in 

cultured cells due to its technical advantages, such as easy delivery of labeling reagents 

and efficient cell lysis of large cell quantities. However, in vivo, protein labeling offers 

specific benefits, such as identifying organelle components or protein interactions from cells 

in a homeostatic physiological environment, including difficult to grow cells like neurons. 
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Protein labeling can also be restricted to specific cell types or developmental stages by 

expressing labeling enzymes from transgenes. These cells can also be transplanted into wild-

type host organisms.106 Proximity labeling approaches have been used in developmental 

systems like Arabidopsis,107 C. elegans,108 Drosophila,109 and mouse110 to discover new 

components of developmental processes. However, penetrating labeling substrate into target 

tissues and cells is a significant technical challenge of using proximity labeling tools in vivo.

Imaging Methods

Imaging techniques give a microscopic view of protein distribution in the cell and across 

the organelles. The two distinct ways to study imaging-based cellular macromolecular 

environments are immunocytochemistry and live cell imaging. Immunocytochemistry works 

by adding a fluorescent tag to the antibodies/aptamers/nanobodies111–113 against the 

targeted protein/s.114 Live-cell imaging is a technique that involves observing living cells 

in real time using time-lapse microscopy. Live-cell imaging reagents comprise targeted 

fluorescent proteins and small, membrane-permeant fluorescent dyes. These reagents are 

specifically designed to facilitate live-cell imaging experiments. Some reagents are intended 

for time-lapse imaging over several hours or days, while others are better suited for end-

point assays, where cells are stained, imaged, and analyzed immediately.115 Whether static 

or dynamic, the method chosen for studying cellular protein maps depends on sample 

availability, handling expertise, and the necessary instruments and processing techniques. 

To observe organellar protein movement, it is crucial to maintain cell viability by 

ensuring optimal temperature and CO2 levels. Time-lapse microscopy is the most effective 

approach.116,117 In contrast, fixed cells labeled with fluorescent antibodies are preferred 

for mapping proteins difficult to tag or express or for analyzing the static localization of 

multiple proteins in the cell.57 However, both methods can be used for comparative studies 

to detect one protein in different cell types under varying test conditions.118–120 Staining 

concentration, incubation time, and imaging interval/frequency should be determined 

empirically to minimize cytotoxicity and maintain cellular function (Figure 3).

Prerequisites for Imaging-Sample Preparation.—Imaging-based subcellular 

localization of proteins can be applied to many samples, such as tissue sections, cultured 

cells, cell lines, and organoids. The general working principle of visual-subcellular 

proteomics depends on the starting material, i.e., (a) live cell imaging and (b) fixed cell 

imaging. Paraformaldehyde (PFA) is the most widely used fixing agent to fix the cell and 

preserve the subcellular organelles.121 Alternatively, organic solvents or alcohols such as 

acetone and methanol can also be used to fix and permeabilize cells in one step, which 

could be helpful when visualizing more rigid structures of the cells, such as cytoskeletal 

components or nuclear structures.122,123 Tween-20, saponin glycosides, Triton X-100, 

and NP-40 are commonly used for cell permeabilization.124,125 Optimizing fixation and 

permeabilization protocols is crucial for specific target protein and affinity reagents.126,127

Mass Spectrometry Imaging (MSI).—Mass spectrometry imaging (MSI) is a highly 

advanced analytical technique that allows visualization of precise spatial distribution of 

biomolecules, including proteins, metabolites, and biomarkers, in samples with great 

accuracy. This is done by analyzing the mass spectrum of different spots on tissue samples, 
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which generates pictures of the spatially resolved distribution of proteins pixel by pixel. 

The signal generated by MSI is proportional to the relative abundance of the analyte. The 

operation principle of MSI depends on the technique used to obtain the spatial information, 

which can be microprobe (ionization beam-based) or microscope-based (discussed further in 

detail). Overall, MSI is a qualitative technique that relies on the spatial distribution of the 

sample to generate useful data. The most common ionization technologies in MSI are DESI 

imaging, MALDI imaging, secondary ion mass spectrometry imaging (SIMS imaging), 

nanoscale SIMS (NanoSIMS), and laser ablation electrospray ionization (LAESI).128–130 

SPUTNIK, an R package, is widely used to analyze MSI data. SPUTNIK offers a wide 

range of filters to remove peaks with an uncorrelated spatial distribution from the data.131 

More detailed information on MSI technique, application, and challenges can be found in 

the review.128

Microscopy Advancements in Subcellular Proteomics.—Fluorescence imaging 

provides detailed spatiotemporal information in living cells and tissue sections. Obtaining 

subcellular data from various organelles and cells through imaging can often lead to 

inaccurate data.132 Therefore, employing highly multiplexed imaging techniques such 

as imaging mass cytometry (IMC)133 and multiplexed ion beam imaging (MIBI)134 

is essential to gather subcellular protein information within the same cell. These 

approaches can detect 36 proteins with low resolution (0.5–1 μm). However, new high-

dimensional fluorescence imaging techniques such as DNA-barcoded codetection by 

indexing (CODEX)135 imaging, multiplexed immunofluorescence microscopy (MxIF),136 

and cyclic and sequential IF137 can map up to 50 proteins. Simultaneous detection of 

signals from multiple proteins is possible with different fluorophores. However, spectral 

overlap can limit simultaneous protein detection with multiple fluorophores. New cyclic 

detection methods allow more proteins to be detected in a single sample without additional 

fluorophores.138,139 The quality of captured images depends on resolution, sample size, 

and speed. High-throughput screening techniques prioritize throughput over resolution 

and are widely used in the pharmaceutical industry. These approaches require many 

replicates to gain statistical power. Advanced super-resolution microscopy techniques, 

such as photoactivated localization microscopy (PALM),140 stimulated emission depletion 

microscopy (STED),141 and stochastic optical reconstruction microscopy (STORM),142 have 

been developed to overcome the confocal microscopy diffraction limit. Similarly, coupling 

cryoelectron microscopy or tomography (cryo-EM or cryo-ET) with mass spectrometry 

allows subnanometer visualization of biological samples in near-native and purified 

states.143 Rapid multiplexed immunofluorescence (RapMIF) provides multiple rounds of 

immunostaining and fluorophore inactivation to enable high throughput in situ proteomic 

analysis using conventional microscopes.144

Processing Imaging Data.—Imaging data provides subcellular information about target 

proteins within intact cells. Using reference proteins or dyes to differentiate between 

organelles with near-similar localization is necessary. Proper controls and replicates 

are crucial to distinguish accurate localization from false staining patterns. Negative 

controls include samples without the affinity reagent or protein target expression to 

subtract background and ensure accurate results.145 To ensure reproducibility, fixation, 
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and proper permeabilization, it is vital to use affinity reagents targeting specific cellular 

structures. These reagents can be validated by assessing signal loss following the 

knockdown of the target protein, comparing staining patterns, or examining correlations 

with RNA sequencing data. Manual pattern recognition is currently the primary approach 

for assigning subcellular localization. Popular open-source software for image analysis 

includes ImageJ,146 CellProfiler,147 QuPath,148 ilastik,149 and Orbit150 (Table 4). Proteins 

localized to multiple cellular structures151 and cells with varying protein expression levels 

require quantitative analysis techniques to reveal subtle cell-to-cell variations and partial 

translocations.152 This involves segmenting cells and subcellular structures using structure-

specific markers and fluorescence intensities. Scalable, high-performance machine and deep 

learning techniques are advantageous for image analysis, particularly when analyzing large 

data sets, which makes them appealing for predicting protein localization patterns.153,154 

Uniform Manifold Approximation and Projection (uMAP) is another dimension reduction 

method for complex subcellular imaging data analysis. uMAP is a technique that reduces 

the complexity of a data set by analyzing the subcellular location of human proteins using 

confocal microscopy images. After extracting features from each image using a machine 

learning model, the uMAP method is employed to reduce the dimensionality of the data 

set. The result is displayed in a scatter plot where each data point represents an image, 

enabling researchers to visualize and explore the highly dimensional protein localization 

data. Coloring each data point according to subcellular localization makes identifying 

images of proteins localizing to the same compartment possible. Integrating diverse data 

sets with the uMAP projection can facilitate the identification of unknown staining patterns 

and the recognition of distinct gene clusters in a large and intricate data set.155

Comparative Subcellular Proteomics

Comparative MS Subcellular Profiling.—The Dynamic Organellar Map (DOM) is 

a well-established method for comparing MS profiles. This method requires a reliable 

statistical framework to detect protein translocations accurately. Initially, the DOM method 

was employed to track protein movements after EGF stimulation, revealing various 

translocations such as the movement of EGFR from the plasma membrane to endosomes, the 

recruitment of necessary signaling adaptors, and the transportation of transcription factors to 

and from the nucleus.31 The method also permits protein quantification, providing estimates 

of copy numbers. The DOM method has also been used to understand the mechanism behind 

congenital disorders such as AP-4 deficiency syndrome. The DOM application discovered 

that AP-4 vesicles regulate the cellular localization of autophagy protein ATG9A, revealing 

a new pathway for controlling autophagy.19 To understand the pathological changes that 

occur during hepatic steatosis, a hallmark of nonalcoholic fatty liver disease (NAFLD), 

comparative PCP has been used to detect changes in subcellular protein distribution in 

mouse liver cells after exposure to a high-fat diet.156 The high-fat diet resulted in significant 

organellar rearrangements, with translocation events detected in several hundred of the 

~4,500 mapped protein subcellular localizations. Cellular changes, such as Golgi apparatus 

adsorption onto lipid droplets and secretion, were substantially reduced. Many proteins that 

mediate contact between organelles were redirected to lipid droplets, forming more robust 

connections between the droplets and mitochondria. Similarly, comparative LOPIT has been 

utilized to track cellular changes during HCMV infection.61 The study used five LOPIT 
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maps over 120 h to track 4000 hosts and 100 viral protein rearrangements. This analysis 

revealed organellar remodeling events, such as merging endoplasmic reticulum into Golgi 

body and lysosomal splitting. In addition, candidate translocation events led to the discovery 

of a new factor, MYO18A, required for efficient HCMV replication.

Comparative Imaging-Based Subcellular Proteomics.—Comparative proteomics 

can benefit from gene tagging methods. These methods enable the analysis of multiple 

perturbations by creating fluorescent-protein-tagged libraries. One of the most widely used 

yeast collections in comparative studies is the S. cerevisiae GFP fusion collection.157 

These studies have independently concluded that cells often relocate proteins in 

response to environmental stress conditions, such as DNA replication inhibitors by 

methylmethanesulfonate, hydroxyurea, DTT, hydrogen peroxide, and rapamycin.158 This 

suggests that protein relocation is a common cellular strategy for environmental stress. Gene 

tagging methods and comparative proteomics are powerful tools for understanding cellular 

responses to cellular stress conditions. A meta-analysis of 24 yeast screens was performed 

to gain more insights into protein translocation under stress conditions.159 The authors used 

a specific approach to identify groups of proteins with similar relocation patterns, implying 

functional connectivity. To study mitosis in human cells, 4D imaging data was integrated 

with 3D concentration data for twenty-eight human proteins tagged with genomic tags. This 

integration created a model for protein reorganizations during mitosis using computational 

image analysis.160 This study offers a powerful approach for analyzing protein redistribution 

in cellular processes. Similarly, the Human Protein Atlas (HPA) mapped 12,003 human 

proteins to 30 cellular organelles. Fifty percent of the proteins were seen to localize to two 

or more cellular compartments.18 HPA also revealed that multilocalizing proteins are more 

likely to show spatial variation between the cell lines; 3546 multilocalizing proteins showed 

cell linedependent localization.

DATA RESOURCES IN SUBCELLULAR PROTEOMICS

Data Analysis: Importance and Methods

A thorough analysis of raw data is just as crucial as acquiring experimental data. 

Computational methods and models are required to gain biological insights from complex 

subcellular proteomic data.161 Protein subcellular localization was initially predicted using 

amino acid sequences.162 However, this method was later found inaccurate in identifying 

protein clusters due to data identification issues.163 With the advancement of MS techniques, 

it is now possible to map proteins to subcellular locations based on organelle enrichment/

fractionation.164 Statistical tools such as Student’s t test165 and chi-squared test166 can 

map single organellar proteins in a nondynamic context. When mapping multiple organelle 

proteins in a dynamic context, statistical tools combined with deep machine-learning 

methods are required to generate high-confidence output. Statistical techniques validate and 

refine machine learning models, helping to quantify their performance and avoid problems 

like overfitting. With increasing advancements in mass spectrometry and image-based 

subcellular protein localization methods, new machine-learning algorithms are constantly 

emerging (Figure 4).
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Computational Tools Based on Protein Features

Sequence-based approaches for localization prediction include (i) using the public database 

Uniprot78 or (ii) Chou’s Pseudo amino acid composition (PseAAC), which considers amino 

acid composition and potential interactions among adjacent residues.167 Homology-based 

methods predict protein function based on conserved homologous sequences of known 

function.168 Homology-based methods, such as BLAST,169 PSI-BLAST,170 and hidden 

Markov models (HMM),171 are commonly used to search for homologous sequences. 

However, these methods may not be effective when no homology is found between query 

and annotated protein sequences. Position-Specific Scoring Matrices (PSSMs) are utilized 

for predicting protein localization. PSSMs represent the frequency of each amino acid in a 

protein multiple sequence alignment. The PSI-BLAST algorithm can generate PSSMs by 

searching for protein sequences similar to a given query sequence. BLOSUM62 is a quick 

and efficient matrix for protein BLAST that can detect weak protein similarities. It can be 

used as an alternative to PSSM when the acquisition process is slow or unsuccessful.172 

Functional motifs-based methods include PROSITE,173 MEME,174 and simple modular 

architecture research tool (SMART).175 K-mer sequence can be used to extract sequence 

patterns with a sliding window. The motif length, k, is generally based on prior knowledge. 

Recently published approaches, such as TetraMito,176 use over-represented tetrapeptides 

as critical features to predict submitochondrial protein localization. Similarly, SubGolgi 

2.0,177 a sub-Golgi protein location predictor, identifies g-gap dipeptide compositions (two 

amino acids with g residues between them). LOCALIZER178 predicts protein localization 

to chloroplasts, mitochondria, and nuclei using k-mer motifs of varying lengths. The 

signal peptide-based method identifies oligos-amino acid sequences at the N-terminal of 

newly synthesized proteins. Signal peptide prediction tools such as SignalP 6.0,179 TargetP 

2.0,180 SigUNet,181 and DeepSig182 are extensively used. Not only sequence-based protein 

identification features but also various nonsequence-derived features have been used to 

predict subcellular localization. LOC3D is one such tool that utilizes structural information 

to predict proteins’ subcellular locations.183 Combining multiple approaches that consider a 

variety of characteristics, such as protein sequence, structure, physicochemical properties, 

and function, can enhance the accuracy of protein subcellular localization prediction. 

The pretrained sequence embedding method uses the pretrain model adopted from 

Natural Language Processing (NLP). SeqVec184 and ProtTrans185 are pretrained models 

on UniRef186 for pretrain embedding and transfer learning for subcellular localization 

prediction. In the case of interacting proteins, they are considered neighbors in a protein–

protein interaction network (PPI). The location of the neighbors in a PPI network can 

provide information about the location of unannotated proteins. Protein interaction data can 

be retrieved from databases such as BioGRID187 and STRING.188 Gene/protein expression 

can also be considered a protein feature as genes/proteins found in the same compartment 

at the organelle or suborganelle level tend to be coexpressed to carry out related functions. 

Gene/protein expression data can establish interactions and create features like k-NN scores 

in the MU-LOC172 method or standalone features in the SLocX189 method.

Classification Algorithms Used in Organellar Protein Prediction

Machine learning (ML) techniques have proven effective in predicting the subcellular 

localization of proteins. These techniques use sequence data from all known proteins with 
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subcellular localization information to create a meaningful model of biological data. The 

parameters required to assign an ML tool for prediction are based on (i) support vector 

machine (SVM), a supervised machine learning algorithm that annotates classification 

and regression in complex biological problems. SVMs aim to locate a hyperplane in an 

n-dimensional space that can classify data into various classes with the maximum margin. 

SVM-based methods include SubMitoPred,190 which uses Pfam domain information to 

predict mitochondrial proteins and their submitochondrial localization. ERPred191 predicts 

ER-resident proteins by training an SVM with a combination of amino acid compositions 

from different parts of proteins. SubNucPred192 predicts protein localization for ten 

subnuclear locations sequentially by combining the presence or absence of a unique 

Pfam domain and an amino acid composition based SVM model. VacPred193 predicts 

vacuole-resident proteins through SVM training. Combining an SVM-based localization 

prediction method with homology search, CELLO2GO194 uses GO terms of homologous 

proteins as possible functional annotations for a queried protein when available. Otherwise, 

the SVM classifier provides localization prediction. (ii) Random Forest (RF) is a deep 

learning classification and regression analysis method. The main idea of Random Forest 

is to construct multiple decision trees and combine them to obtain a more accurate and 

stable prediction.195 Apart from predicting subcellular localization, RF is used in various 

applications such as prediction of cancer drug,196 gene expression analysis,197 biomarker 

discovery,198 and protein–protein interaction study.199 (iii) Neural Network and Deep 

Learning is a feed-forward neural network connecting all neurons in hidden and output 

layers.200 An artificial neural network (ANN) is a collection of connected nodes called 

artificial neurons that model the neurons in a biological framework. Each neuron receives 

a signal, and output is calculated using a nonlinear function of the sum of its inputs. Deep 

learning uses larger networks such as deep neural networks (DNNs),201 convolutional neural 

networks (CNNs),202 recurrent neural networks (RNNs),203 and attention mechanisms.204 

These deep learning methods, as well as traditional ANNs, have been applied in protein 

localization prediction. Several neural network-based methods are available to predict 

subcellular protein localization. SCLpred205 is a neural network for protein localization 

prediction that can map a sequence into fixed-length properties without needing predefined 

features. DeepLoc206 uses CNN and attention mechanisms to predict protein localization 

and detect contributing regions. MULocDeep172 extends target localization coverage to 10 

main subcellular compartments and their suborganellar compartments with 44 localization 

classes in total. DeepMito207 is a deep-learning method that predicts submitochondrial 

localization using CNNs. It uses physical-chemical properties, PSSM, and raw sequence 

one-hot encoding as features. Some methods predict targeting peptides and their cleavage 

sites, which help infer corresponding proteins’ localization. DeepSig208 and SignalP 5.0209 

use deep learning to predict signal peptides (Table 5).

DATA REPOSITORIES

In MS-based techniques, the raw output contains mass spectral data that requires analysis 

using quantification measurement tools. MS-based subcellular proteomic methods yield 

high-resolution protein subcellular maps (Figure 5).
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The SubCellBarCode database has generated an organellar map of 12,418 proteins in 

five human cell lines.66 The PSL-LCCL database provides information on subcellular 

localization and abundance of six membranous organelles in human cancer cell line 

SK_HEP1.210 The PROLOCATE database assigned 6000 proteins to eight subcellular 

locations in rat liver cells.36 Meanwhile, the HeLa subcellular proteome database quantified 

8700 proteins in HeLa cells31 for absolute protein quantification. Other available databases 

are BioPlex211 and Human Cell Map34 and incorporate cell line-specific protein–protein 

interaction information and subcellular niche information.

High-throughput imaging subcellular proteomic methods readily picture large-scale cellular 

images of living cells for analysis. DeepCell, integrated with the LiveCellNet data 

set, generates clear cellular maps by amalgamating images obtained by fluorescence 

microscopy.212 The yeast GFP Fusion Localization Database is widely used for generating 

S. cerevisiae organellar map with 22 distinct locations.213 Imaging studies using fluorescent 

proteins describing not only protein location but also its abundance in S. cerevisiae in 

different conditions (mutation, environment, stimulus) are available in collections such as 

Cellbase,214 Collection of Yeast Cells Localization Patterns (CYCLoPs),215 YeastRGB,216 

Database of High Throughput Screening Hits (dHITS),217 and Localization and Quantitation 

Atlas of yeast proteomE (LoQAtE).218 The fluorescent protein fusion method has been 

applied to study the subcellular organization of human cells using the Dynamic Proteomics 

database.155 The results from multiple experiments across multiple species confirm the high 

reliability of fusion protein integration for imaging ease.

Data sets that combine MS-based LOPIT fractionation with imaging-based immune 

fluorescence methods are proving more effective for gaining insights into the subcellular 

proteome domain. Such an integration offers higher coverage resolution, reliability, and 

accuracy. For instance, the Cell Atlas map is a part of the Human Protein Atlas, which has 

localized 12003 proteins across 30 subcellular compartments.18 The integration strategy of 

these two approaches enables simultaneous and precise subcellular and temporal resolution 

of the subcellular proteome.

Raw Data Repositories

Raw data files generated from various subcellular proteomic methods are invaluable data 

resources. In MS-based subcellular proteomics studies, raw output files can be submitted 

to standard protein repositories:219 PRIDE,220 Panorama,221 PeptideAtlas,222 and Mass 

Spectrometry Interactive Virtual Environment (MassIVE).223

For imaging-based spatial subcellular proteomics, the raw image data files can be submitted 

to public repositories like Image Data Resource (IDR),224 Cell Image Library (CIL),225 

and Broad Bioimage Benchmark Collection (BC).226 Data repositories ensure public data 

accessibility and reusability for ML-based subcellular proteomic data.

CHALLENGES IN THE FIELD OF SUBCELLULAR PROTEOMICS

Subcellular proteomics has emerged as a rapidly growing field, with many publications 

shedding light on subcellularly resolved protein information from subcellular compartments 
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to single cells.4,62,63,81,82 From a technology development perspective, it is a highly 

interdisciplinary field that integrates imaging and image analysis, subcellular analyses, mass 

spectrometry, and computational machine learning methods. Published global subcellular 

proteomic approaches focused more on static cellular maps56,60 rather than information on 

protein dynamics.21,22,31 Subcellular proteomics employs multiple translational techniques 

to study cellular protein dynamics, protein–protein interaction, and protein relocalization 

following perturbations. Besides the numerous advantages, subcellular proteomics studies 

post specific technical and conceptual challenges for method developers. One of the main 

challenges is reproducibility. Detection of protein subcellular dynamics requires comparative 

analysis of at least two data sets; thus, reproducibility of the methods is crucial.

Mass spectrometry-based subcellular protein profiling studies typically rely on the 

fractionation of the subcellular content of the cell based on gradient centrifugation or 

cell homogenization techniques. However, it is impossible to attain identical gradient 

fractions and homogenization steps across experiments, and minor differences between 

the replicates can impact the data resolution, fractionation patterns, and subcellular niche 

enrichment.64 Furthermore, the mass spectrometry sample run adds significant experimental 

noise and some degree of nonoverlapping proteins in the same set of biological replicate 

conditions. Robust and meticulously scrutinized technical optimization of experiments 

to cover all substantial changes across MS runs is the most reliable way to increase 

reproducibility.31 Similarly, developing protocols beyond conventional fluorescent staining 

imaging and probing is essential for imaging-based comparative studies. Using alternative 

tags for primary antibody conjugation (like DNA or metals) has facilitated the accessibility 

of different kit-based protocols.57 Also, poorly resolved organelles can further dilute 

the comparative assignment of a protein and can lead to false positive compartment 

localizations. Limitations in imaging resolution and MS sensitivity still constitute significant 

barriers. Integration of super-resolution227 and expansion microscopy approaches114 has 

shown significant improvements in sensitivity and resolution for imaging-based subcellular 

methods.228

Another challenge is the detection of protein subcellular dynamics. Translating proteins 

from one organelle to another is essential for maintaining cellular homeostasis. However, 

studies have reported that protein translocation between organelles is not absolute but 

somewhat relative. The mass spectrometry analysis of a protein subcellular location and 

dynamics results in (a) a qualitative interpretation of the data: compartment localization 

prediction from protein profile, and (b) a quantitative interpretation of the data: intensity 

abundance profile. Qualitative interpretation of protein translocation is biased as only a 

complete transition between organelles can be detected.

However, the shift in protein abundance profiles between organelles is more inclusive.229 

Similarly, in image-based subcellular proteomics studies, detecting partial protein 

translocation between organelles is hard to address as only absolute translocations are 

imaged using complex classifiers (one fit score). Recent advances have addressed the partial 

translocations between organelles using soft classifiers (multiple compartment localization 

with likelihood scores).230
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Subcellular-Temporal Analysis

Comparative mapping experiments are conducted with various cell fractionation methods 

to determine the temporal movement of proteins in a subcellular setup. However, imaging-

based and MS-based studies are inherently discontinuous because cell fixation and 

fractionation lead to cell destruction.21 To perform a global subcellular-temporal analysis 

of proteins in any cell compartment, it is necessary to assemble a series of static images 

to see the whole picture in one frame.61 The main limitation in imaging-based subcellular 

research is parallel live cell imaging, which is used to observe real-time protein dynamics.

False Discovery Rate in Comparative Analysis

Comparative spatial proteomics experiments frequently lead to many false positives, making 

it imperative to estimate the false discovery rate (FDR) of translocations to ensure a 

meaningful interpretation of the results. The best approach is to set up a mock experiment 

(control versus control, with no expected changes) in addition to the actual perturbation 

experiment, using the same data analysis pipeline. A precise estimate of the FDR can be 

obtained by comparing the number of hits in the mock and perturbation experiments at 

a specific stringency cutoff, provided that the experimental noise is comparable in both 

conditions. Replicate experiments are indispensable to achieve low FDR levels.61

Challenges of Imaging-Based Methods

Choosing the most appropriate imaging method for cell biology studies can be challenging 

with the availability of many advanced microscopy techniques. Specimen type, type 

of fluorophores being used, and experiment duration all affect the suitable microscopy 

technique. Data management is also a growing concern, with 4D data generating terabytes 

of information that must be organized and analyzed. However, with affordable memory 

storage and cloud technology, it is becoming easier to make these exciting new techniques 

accessible to the scientific community.231

Imaging Artifacts.—Fluorescence microscopy is a valuable tool for investigating protein 

behavior in living cells, but it has certain limitations regarding spatial and temporal 

resolution. To overcome these limitations, researchers often turn to fixation, a technique 

that immobilizes cells to enable high-resolution imaging of protein localization. However, 

this approach can sometimes result in protein redistribution that does not accurately reflect 

their behavior in living cells. The extent of such artifacts varies depending on the specific 

fixation method and the protein or cellular structure under investigation. While there are 

ways to minimize these effects, no single method can guarantee perfect preservation of 

protein localization. As a result, it is recommended that fixed-cell imaging be complemented 

with live-cell imaging to ensure accuracy.232

False Positives in Imaging Acquisition.—Imaging-based methods may result in false 

positives/negatives due to contamination/failures in image analysis. Proteins may show 

bimodal expression due to mixed genetic strains. Image transformations like segmentation 

can introduce errors. In Cluster Q analysis, the segmentation algorithm may incorrectly 

identify bud tips as bud cells. This can lead to incorrect attribution of protein localization 

changes to the bud cells instead of the mother cell. Similarly, clustering methods can also 
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introduce false positives into clusters, particularly when some protein change profiles have 

weaker signals. Data analysis uses distance-based clustering methods, which gives less 

efficient output as data dimensionality increases. Manual evaluation is also recommended 

to validate results and reduce false positives. The unsupervised method focuses on strong 

signals, reducing the search space to hundreds of images. This saves time and effort, 

as human evaluation can be laborious. Predictive approaches based on protein–protein 

interactions and mRNA expression patterns may miss many localization dynamics. Some 

transcription factors observed to change when using manual analysis were not predicted to 

have any localization changes by a previous predictive method.233

Effect of Laser on Imaging Samples.—Laser systems with high power consumption 

can cause damage to tissues due to the rise in temperature generated by laser irradiation. 

This can lead to cellular metabolism and electrical membrane capacitance changes, 

ultimately resulting in cell death. The temperature known to induce cell injury is 10 °C 

when studied in vitro. Tailoring laser parameters to the optical characteristics of the target 

tissue is crucial for effective optical imaging. Careful selection of laser parameters can 

optimize imaging efficacy while minimizing undesirable tissue damage. Determining the 

energy delivered to the tissues is crucial to ensure safety standards in optical imaging. 

Testing the safety of optical imaging lasers is essential, especially in the specific, sensitive 

neonatal population.234

Challenges of Mass Spectrometry-Based Methods

Labeling-based proteomics methods, such as stable isotope labeling by amino acids in 

culture (SILAC) and tandem mass tagging (TMT), offer numerous advantages in identifying 

protein interactions, resolving proteome-wide temporal kinetics and spatial distributions 

in a single experiment. They also allow observations of the spatial distribution of new 

and old protein pools. Under baseline conditions, the spatial profiles of light and heavy 

proteins are highly similar, providing additional assurance of spatial assignments. However, 

the number of dynamic SILAC labeling time points that can be investigated must be 

optimized for different cell types with distinct intrinsic protein turnover rates. Additionally, 

including earlier time points to investigate early translocation events may be technically 

challenging due to low-intensity heavy SILAC-labeled peptides. The double labeling design 

also requires independent MS2 acquisition of light and heavy peptides, which can decrease 

the depth and data completeness of mass spectrometry-based proteomics analysis. Future 

work may alleviate this limitation by modifying the mass spectrometry acquisition methods 

to trigger heavy peptide acquisition and reduce incomplete light-heavy pairs automatically. 

However, protein correlation profiling-based techniques face challenges in recognizing 

proteins with multiple localizations or partial translocations, such as p97/VCP, which has 

multiple subcellular localizations, and its precise subcellular translocation profile is complex 

to interpret from TMT data. Translocated proteins can have lower confidence in location 

classification as translocation may be substoichiometric.235

Data Reproducibility.—Spatial proteomics faces challenges in achieving consistent 

and accurate results due to minor differences in sample handling, staining protocols, 

and instrumentation.236 Standardizing protocols is difficult due to the many parameters 

Bhushan and Nita-Lazar Page 18

J Proteome Res. Author manuscript; available in PMC 2024 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



involved in optimizing protocols. Automation, microfluidics, barcoding technologies, and 

imaging mass spectrometry have been improving the scalability and reproducibility of 

the methods. Reliable automation systems are needed to support different sample formats 

and deliver high reproducibility. Second, each centrifugation technique has advantages 

and disadvantages, depending on the type and quality of the sample and the desired 

outcome. Differential centrifugation is simpler, faster, and cheaper than density equilibrium 

centrifugation, as it does not require a density gradient or any unique rotor. However, it is 

less precise and is more prone to contamination, as the organelles may not be separated 

or damaged by the high speed and force. On the other hand, density centrifugation is 

more accurate, sensitive, and gentle than differential centrifugation, allowing for better 

resolution and preservation of the particles. However, samples must be washed several 

times after spinning in density ultracentrifugation to ensure no cross-contamination between 

fractions. Samples for preparative centrifugation are usually limited in size (e.g., tissues) 

or volume (e.g., cell suspensions or blood). There is a material loss in every wash step a 

sample is subjected to, thus the yield can be meager after an ultracentrifugation protocol. 

Ultracentrifugation is still time-consuming, and it can take several hours to fractionate 

a single mixture’s components. Ultracentrifuges are costly devices that require constant 

maintenance. The cell disruption/homogenization method is another essential step while 

considering protocol reproducibility. Disruption of the cellular cell membrane is a crucial 

preparatory step for fractionation protocols. Lysing cells/breaking cellular membranes can 

pose additional problems downstream of homogenization, such as sample contamination 

between fractions.237

Protein Turnover Rate and Localization

Protein turnover is an essential cellular process that regulates protein synthesis and 

degradation rates. Disruption of protein turnover and cellular homeostasis often leads to 

a diseased state. Cellular stress upon external perturbation leads to misfolded proteins, 

triggering unfolded protein response (UPR). Despite continued efforts, we do not fully 

understand how the cellular proteome reorganizes in response to proteostatic stress. Proteins 

utilize the ER vesicular transport and secretory pathway for trafficking, a crucial step 

in producing membrane and extracellular proteins. A mismatch in protein synthesis and 

localization can cause ER stress and mislocalization. Proteins must fold correctly and 

be directed to the right location in the cell, which requires coordination between protein 

synthesis and localization.235

Data Handling and Computational Challenges

Data handling and computational model generation is a prerequisite in spatiotemporal 

analysis studies. The development and application of high-accuracy image segmentation 

methods, as well as the adaptation of analysis tools utilized initially in single-cell omics for 

subcellular omics data, have been instrumental during the early stages of field development. 

However, subcellular omics data pose distinct computational challenges238,239 due to the 

added dimensions and increased data size and the unique nature of the data, which is 

often different from the bulk omics concerning coverage, sensitivity, level of noise, and 

the overall amount of represented information. Single-cell-focused tools also offer limited 

utility for leveraging new opportunities provided by the subcellular content of the data. The 
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large subcellular data sets impose heavy requirements on data handling, infrastructure, and 

computational performance.

Moreover, the unique aspects of subcellular data, including the subcellular information, 

need for custom visualization, and often custom data formats require novel data frameworks 

and repositories focused on subcellular omics data. Previously generated data sets and 

atlases, such as human protein atlas240 or Allen brain atlases,132 have become very useful 

as references and frameworks for building subcellular omics data. Creating new repositories 

supporting raw and processed data deposition will provide reference platforms and enable 

benchmarking data reprocessing and analysis with future computational tools. Unlike other 

omics approaches, subcellular proteomics methods and protocols are relatively nascent and 

expected to improve significantly over time. The progress made in automation, artificial 

intelligence, and machine learning has resulted in significant advancements. Streamlining 

advanced technical workflows, imaging, mass spectrometry techniques, microfluidics, and 

barcoding technologies has improved the reproducibility and scalability of subcellular 

recognition methods and will positively impact the field.

CONCLUSIONS AND PERSPECTIVES

The complexity of a cell’s proteome cannot be explained solely by the number of genes 

present in it. Other factors contribute to this complexity. Subcellular proteomics is a field 

that helps us understand this complexity and its functional significance. For example, 

mapping proteins in multiple compartments can tell us more about how organelles interact 

and how different cellular processes are linked. It can also help identify proteins that have 

multiple functions. Additionally, mapping proteins with temporal and subcellular variability 

in single cells can provide important insights into cellular signaling. Exploring different 

protein isoforms can help us understand the complexity and organization of cells. There 

are two main approaches to studying subcellular proteomics: imaging-based and MS-based. 

Both approaches are necessary to comprehend cellular complexity fully. Several studies 

have shown the synergy of MS-based subcellular proteomics with imaging. Deep machine 

learning-based methods will remain important for image and MS-based sequence analyses. 

As subcellular proteomics-based localization studies become more popular, predicting 

unknown protein localization computationally becomes less critical. Instead, computational 

approaches can help improve proteome-based experiments, contribute to understanding 

molecular mechanisms of protein sorting, characterize dynamic translocation processes, 

and contribute to synthetic biology. By integrating subcellular proteomics with other omics 

technologies, such as transcriptomics and metabolomics, an integrated orthogonal field can 

be developed for subcellular omics studies. Repositories must be developed for imaging-

based and MS-based subcellular proteomics data to enable meta-analysis of studies using 

different cell types, perturbations, and growth conditions. Existing repositories such as 

UniProt should consider how to incorporate and cross-reference these data sets for the 

benefit of all cell biologists. We envision a new era of cellular modeling, where the 

subcellular dynamics of proteins are integrated with other omics measurements to gain 

insight into the crosstalk between the different layers of cellular regulation. This will lead to 

a greater understanding of cellular phenotype and activity.
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Figure 1. 
A schematic workflow of mass spectrometry-based subcellular protein niche identification 

involves the following steps: (1) Cell lysis and homogenization to obtain membrane-bound 

and membrane-less organelles, (2) differential and density gradient centrifugation to separate 

organelles, and (3) data analysis using deep machine learning tools for distinct subcellular 

niche identification and protein dynamic translocation. Machine learning (ML) tools help to 

simplify complex data sets.
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Figure 2. 
Schematic workflow of proximity labeling strategies. (a) Proteins of interest (Bait) are 

genetically fused with an enzyme such as APEX/APEX2/BirA, BioID2, miniTurbo, or 

TurboID (1) that biotinylates adjacent proteins upon incubation with biotin (2). Control lines 

can indicate the labeling enzyme, which is fused to a control bait that is nonspecifically 

localized, such as GFP. (3). After labeling, proteins are enriched through a streptavidin 

pull-down, followed by identification through mass spectrometry. These labeled proteins are 

termed “Prey.” The prey is compared with proteins isolated from control lines to identify 

high-confidence proximity interactors. (b) Two types of analyses can be used to study 

subcellular components through proximity labeling, namely bait-centric and prey-centric 

analyses. Isotopic labeling and bait quantification techniques are used to identify proteins 

in organelles. Clustering baits and prey-centric studies can reveal proximity interaction 

networks.
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Figure 3. 
Schematic workflow of imaging-based subcellular protein niche identification. Imaging 

analysis can be done through live cell imaging using membrane-permeable dyes and 

fusion proteins. Time-lapse microscopy studies the protein translocation between subcellular 

compartments. Alternatively, the immunochemistry-based method uses antibodies, aptamers, 

and nanobodies against target proteins to study the cell compartment proteome.
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Figure 4. 
Summary of machine learning-aided spatial proteomics applications in cell biology.

Bhushan and Nita-Lazar Page 38

J Proteome Res. Author manuscript; available in PMC 2024 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Following is a schematic workflow of machine learning tools that can be used with MS-

based spatial proteome data analysis: (1) Cell homogenization and subcellular fractionation 

are performed to determine the enrichment of the organelle of interest. (2) Mass 

spectrometry is used to identify each subcellular component proteome, which provides a 

large amount of raw data to analyze. (3) The data processing step is crucial, as missing 

values are imputed, and the data is normalized against the database. (4) Processing large 

data sets can be challenging, but machine learning tools can assist in data reduction and 

clustering. (5) Semisupervised clustering is generally used for novelty detection of the 

cellular compartments. (6) Similarly, supervised clustering can predict the subcellular niche 

of the protein of interest. (7) Downstream quantitative analysis methods such as cluster 

analysis algorithms are then used to visualize the data.
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Table 2.

Standard Gradient Media Used in the Density Centrifugation Method

gradient medium type uses

Sucrose Organelles, proteins, vesicles, polysomes

Glycerol Mammalian protein separation

Ficoll, polysucrose and dextrans Mammalian cells (sometimes in combination with iodinated density gradient media), mammalian subcellular 
particles (infrequent)

CsCl DNA, proteins

Cs2SO4 DNA, RNA

Diatrizoate WBC separation and enrichment

Nycodenz, Histodenz Mammalian cells, organelles, membrane vesicles, viruses

Iodixanol Mammalian cells, organelles, membrane vesicles, viruses, plasma lipoproteins, proteins, DNA

Colloidal silica media

Percoll cell compartments and membrane fractions
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