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B cell tolerance and autoimmunity: Lessons from
repertoires
Jacques Deguine1 and Ramnik J. Xavier1,2,3

Adaptive immune cell function is regulated by a highly diverse receptor recombined from variable germline-encoded segments
that can recognize an almost unlimited array of epitopes. While this diversity enables the recognition of any pathogen, it also
poses a risk of self-recognition, leading to autoimmunity. Many layers of regulation are present during both the generation
and activation of B cells to prevent this phenomenon, although they are evidently imperfect. In recent years, our ability to
analyze immune repertoires at scale has drastically increased, both through advances in sequencing and single-cell analyses.
Here, we review the current knowledge on B cell repertoire analyses, focusing on their implication for autoimmunity. These
studies demonstrate that a failure of tolerance occurs at multiple independent checkpoints in different autoimmune contexts,
particularly during B cell maturation, plasmablast differentiation, and within germinal centers. These failures are marked by
distinct repertoire features that may be used to identify disease- or patient-specific therapeutic approaches.

Introduction
The ability of adaptive immune responses to recognize antigens
depends on a repertoire of receptors generated from the re-
combination of a set of genetically encoded sequences known as
variable, diversity, and joining (V, D, and J) segments at both the
heavy and light chain loci. These segments are joined by addi-
tional random nucleotides to generate a broad array of receptor
chains during B and T cell development. As this process can
generate auto-immune responses, these repertoires are then
pruned to eliminate highly autoreactive receptors in the naı̈ve
adaptive immune cell pool, a phenomenon referred to as central
tolerance. Ideally, repertoire maturation will generate a broad
näıve repertoire that can potentially recognize a vast range of
foreign epitopes and has minimal reactivity to self-antigens,
although, as we will discuss further below, it is evident that
reactivity to self is not completely eliminated, potentially be-
cause a high stringency would limit the breadth of potential
responses.

The retained naı̈ve cells are then exported to the periphery
where they circulate between secondary lymphoid tissues such
as the spleen and lymph nodes. Upon encountering an antigen
that binds to their receptor in the appropriate settings, naı̈ve
follicular B cells will be activated and expanded, contributing
both to the generation of short-lived antibody-producing plasma
cells and germinal centers (GCs) where B cells can further ex-
pand and undergo somatic hypermutation of their receptor.
Somatic hypermutation is essential to select high-affinity clones

through competition for antigen binding and T cell help within
the GC, further increasing antibody specificity but also poten-
tially leading to the emergence of undesirable specificities and
self-reactivity. Ultimately, the GC reaction leads to the genera-
tion of both memory B cells and long-lived plasma cells, and the
latter continues to secrete antibodies over years to decades,
contributing to protection from re-infection and the efficiency
of most vaccinal strategies.

The repertoire of an individual is therefore shaped by a
complex combination of genetic (the V, D, and J segments
themselves as well as variation in the signaling pathways that
control B cell development and activation) and environmental
factors driven by successive antigen exposures. Our ability to
understand both the B cell and antibody repertoires has drasti-
cally expanded with the development of next-generation se-
quencing and single-cell genomics. Here, we will discuss how
these methodologies and the findings derived from their appli-
cation to patient cohorts shed new light on the contribution of
B cells and antibodies to human disease, with a particular focus
on autoimmunity.

Structure and genetic variation of the Ig loci
B cell receptors (BCRs) and antibodies are assembled from a
heavy chain, encoded by the Ig heavy (IGH) locus, and a light
chain that can be derived from either the Ig κ or λ loci (IGK, IGL).
These core loci are located on chromosomes 14, 2, and 22, re-
spectively, and are among the most polymorphic across the
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human genome (Fig. 1 A). Multiple Ig genes are also present as
orphons outside of these loci, and there is recent evidence that
even non-Ig genes can be recombined interchromosomally to
expand the diversity of antibodies in the case of LAIR1-domain-
containing antibodies (Tan et al., 2016), but these processes re-
main poorly characterized and will not be discussed at
length here.

The IGH locus is the first to recombine during B cell devel-
opment to generate the heavy chain from the assembly of V, D,
and J segments. The ImMunoGeneTics database (Giudicelli et al.,
2005) records 57 functional V, 23 D, and 6 J segments. These
segments are highly polymorphic, with, for example, 343 alleles
of variable segments, and it is likely that a lot of the variation is
still uncharacterized (Watson et al., 2017). Indeed, many studies
of diverse populations are uncovering novel alleles at high rates
(Calonga-Solis et al., 2019; Khatri et al., 2021). The IGH locus also
contains an array of constant heavy chain segments that encode

functionally distinct antibody isotypes and are also variable
across the human population. The κ light chain locus, IGK,
harbors 41 V segments and 5 J segments clustered next to a single
C segment. The λ light chain locus, IGL, harbors 33 V segments
and differs from IGK in that each of the five J segments is as-
sociated with its own C segment. IGL also contains VPREB1,
which together with λ5 forms the surrogate light chain. In each
locus, adapted recombination signal sequences of diverse
strength and chromatin structures appear tomaximize a broadly
diverse utilization of these sequences (Zhang et al., 2024).

While the stochastic assembly of BCRs from the rearrange-
ments of these loci generates a high diversity of potential se-
quences within each individual, it is also evident that genetic
diversity across the locus can contribute to health and disease.
Long-read sequencing approaches demonstrate a striking extent
of structural variation, with over half of the IGHV segments
being deleted in at least one individual out of a cohort of 154

Figure 1. Rearrangement of germline Ig loci across the lifecycle of B cells. (A) Schematic of the germline configuration of the IGH, IGK, and IGL loci. IGH
contains V, D, and J segments followed by the constant segments, here represented by the letter associated with the Ig isotype, e.g., M for the IgM-associated
constant chain Cμ. IGK and IGL only contain V and J segments, followed by a single constant segment for IGK, while in IGL each J segment is associated with its
own constant segment. (B) Overview of B cell development and activation with key modifications of the IG loci. At the pro-B cell stage, developing B cells
rearrange the IGH locus to yield a functional heavy chain and cells that successfully express a pre-BCR pass a first checkpoint to the pre-BCR stage. At this
stage, the light chain loci are rearranged to yield a functional light chain. Finally, during or around the GC reaction, AID can lead to somatic hypermutation (red
stars in the VDJ/VJ regions represent mutations) or to class-switching among IGH constant segments (here, depicting a locus that has switched to IgG1, where
downstream segments including IgA remain available). Created with BioRender.com.
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subjects (Rodriguez et al., 2023). This study also demonstrated
the existence of many gene usage quantitative trait loci, which
bias the use of specific V segments in the overall B cell popula-
tion and will be important to consider for repertoire-level
analysis. Random nucleotides and later hypermutation can
likely generate an almost unlimited set of specificities, yet
multiple lines of evidence suggest that germline V segments can
favor specific responses, for example, the Phe54 allele of IGHV1-
69 promotes the emergence of broadly neutralizing flu anti-
bodies, is differentially distributed across populations, and also
affects gene usage (Avnir et al., 2016; Lingwood et al., 2012;
Pappas et al., 2014). Similarly, specific IGHV segments are as-
sociated with broadly neutralizing HIV antibodies (Kwong and
Mascola, 2012; Scheid et al., 2011; West et al., 2012), and ap-
proaches that aim to elicit VRC01 class antibodies, linked to
IGHV1-2, have shown that allelic variation impacts the ability to
elicit these precursors from the naı̈ve repertoire (deCamp et al.,
2024; Leggat et al., 2022).

From these observations, it seems plausible that germline
variation could favor the emergence of pathogenic autoanti-
bodies, just like it favors the emergence of specific classes of
protective antibodies. IGH haplotypes could also underlie some
of the repertoire biases observed in autoimmune diseases and
discussed hereafter. Indeed, some associations between IGH
polymorphisms and disease risk have been reported (Avnir
et al., 2016; Parks et al., 2017), but the complex structure of
the locus has generally limited the ability of standard genome-
wide association study approaches to identify associations. The
incorporation of targeted long-read sequencing and tailored
computational approaches (Rodriguez et al., 2020) represents an
important avenue to identify novel genetic risk factors for the
development of autoantibodies, but also to identify association
between disease and the functional roles of antibodies encoded
by the constant chain, which will be discussed in a separate
section.

Assembly of the BCR and antibody structure
During B cell development (Hardy and Hayakawa, 2001), the
heavy chain is assembled first through a D→J then V→DJ joining
by the action of the recombination activating genes (RAG1/RAG2)
(Fig. 1 B). At both junctions, the template-independent poly-
merase TdT (DNTT) will add two to five random nucleotides
before the DNA is repaired by non-homologous end-joining. The
recombined heavy chain will be expressed alongside the surro-
gate light chain as a pre-BCR, and successful signaling from this
receptor will provide a first checkpoint (Melchers, 2015) for
developing B cells. This V→DJ recombination occurs under strict
allelic exclusion (Vettermann and Schlissel, 2010), meaning that
mature B cells will express a single functional heavy chain.
B cells with a productive IGH rearrangement will transiently
proliferate and downregulate RAG before initiating recombina-
tion at the light chain loci and undergoing selection. Recombi-
nation at the light chain loci uses the samemachinery but occurs
in a single V→J step, initially at the κ locus. In the absence of a
productive rearrangement, or if an autoreactive antibody is
generated, further rearrangements can occur at the κ and ulti-
mately λ loci.

In mature B cells, an antibody is formed by two heavy chains
and two light chains linked by disulfide bonds. The antigen-
specificity of the heavy and light chains primarily derived
from V(D)J encoded amino acids across the complementarity-
determining regions (CDR) 1, 2, and 3. CDR1 and -2 are en-
coded by the V segment, while CDR3 is located at the V(D)J
junction and is maximally variable as it is partially encoded by
random nucleotides added by TdT during recombination. The
heavy constant region is conserved across naı̈ve B cells at this
stage, with the segments encoding for IgM and IgD located
proximally to the recombined VDJ segment, enabling B cells to
produce both isotypes through alternative splicing. The BCR
itself is a membrane-bound complex formed by an antibody
dimer (two heavy and two light chains) linked to one hetero-
dimer of Igα and Igβ (also known as CD79A/B) that acts as the
signaling unit of the complex. Structural studies of the complex
in humans (Ma et al., 2022; Su et al., 2022) and mice (Dong et al.,
2022) have shown that BCR assembly is conserved and involves
a conserved four-helix bundle of the transmembrane domains of
these four chains. However, this structural information also
shows that variations in the constant region across isotypes may
modify interactions across the extracellular domains and mod-
ulate the resulting signaling.

Once the complete BCR is formed, developing B cells pass
through tolerance checkpoints that will be discussed at length
below given their relevance to autoimmunity. However, it is
important to note here that the IG loci can be further edited by
the action of the enzyme activation-induced cytidine deaminase
(AICDA, also known as AID) during activation and the GC reac-
tion (Victora and Nussenzweig, 2022). Specifically in GCs, so-
matic hypermutation focused on the CDRs enables the mutation
of residues potentially involved in antigen binding and the se-
lection of higher-affinity antibodies. AID is also responsible for
class-switching to another isotype, although there is evidence
that the switch occurs outside of GCs (Roco et al., 2019). In this
process, constant regions encoding for IgM/IgD are excised
through double-strand breaks and a new constant segment be-
comes proximal to the recombined VDJ region (Stavnezer et al.,
2008). Importantly, because of the order of the constant regions
in the germline IGH locus, sequential class-switching can occur
to more distal regions in this order: IGHM/IGHD → IGHG3 →

IGHG1→ IGHA1→ IGHG2→ IGHG4→ IGHE→ IGHA2. This process
can lead to the functional evolution of an antibody clone over
time, and studies have suggested that IgG1 precursors are es-
sential for the emergence of high-affinity IgE in allergy (Xiong
et al., 2012). A survey of the repertoire suggests that many if not
all of these possible transitions can be found in human B cells
(Horns et al., 2016), although some pathways may be enriched,
such as the development of B cells expressing IgG4 from other
IgGs rather than directly from IgM, as seen after repeatedmRNA
vaccination (Irrgang et al., 2023).

Methodological approaches to study Ig repertoires
Our ability to analyze the B cell repertoire has been greatly in-
creased in the last decade by successive developments in se-
quencing and single-cell technologies (Fig. 2). Because the CDR3
region of the heavy chain is highly diverse, initial approaches
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have focused on using next-generation sequencing of this spe-
cific region (Weinstein et al., 2009), or later of a broader seg-
ment of the heavy chain, to define B cell clones. Specifically,
primers specific for the constant chain and a degenerate set of
primers binding all V regions are used to tag and identify V, D,
and J segment usage as well as the sequence of the CDR3 region,
and clones are generally defined based on shared segment
usage and CDR3. One of the major advantages of this approach is
that it can easily be scaled to millions of receptors and therefore
sample a robust fraction of the total repertoire. However, the
main drawback is that because the information of the corre-
sponding light chain is lost, this method does not allow the direct
production and testing of the original antibody. Heavy chain
sequencing can be performed from either DNA or RNA, with
some differences: capture at the DNA level does not allow the
identification of the constant segment, which is separated by an
intron, while measurements based on mRNA can be influenced
by different abundances in different populations—plasma cells,
for example, express antibody mRNAs at much higher levels
than B cells. It is also worth mentioning that as receptor se-
quences are generated and amplified in bulk, several caveats can
bias the results obtained, such as the preferential amplification
of specific V regions and the introduction of PCR errors that can
resemble somatic hypermutation or random nucleotides intro-
duced during VDJ recombination in the CDR3 region. The latter
issue can be avoided with the use of unique molecular identifiers
and deeper sequencing, which allow the reconstitution of a
consensus sequence (Shugay et al., 2014). While this is not the
focus of this review, important experimental and computa-
tional considerations are involved in evaluating these datasets
and defining clonality (Miho et al., 2018), which are detailed in
work from the Adaptive Immune Receptor Repertoire commu-
nity (Truck et al., 2021).

Single-cell approaches have been used to directly obtain
paired light and heavy chains from a single B or plasma cell,

although their scale is more limited than studies of the heavy
chain alone. Early approaches focused on plate-based cloning to
amplify the light and heavy chain and clone complete antibodies
from a single B cell and have reliably been used to study hun-
dreds of antibodies (Brezinschek et al., 1998; Tiller et al., 2008).
The advent of droplet-based single-cell genomics has allowed
groups to scale these approaches to thousands or tens of thou-
sands of cells in a single experiment (Goldstein et al., 2019;
Stubbington et al., 2017). In that setting, each B cell is encap-
sulated in a water-in-oil emulsion and lysed. RNAs are captured
and tagged with a droplet-specific barcode before reverse tran-
scription and whole transcriptome amplification (Macosko et al.,
2015). The resulting material can be used to determine gene
expression but also for targeted amplification of the heavy and
light chains of the BCR, allowing the reconstruction of both
variable regions. These sequences can then be cloned to produce
and test the antibodies of interest generated by the paired heavy
and light chain, as was done extensively for the identification of
SARS-CoV2 neutralizing antibodies within a few months of the
start of the pandemic (Cao et al., 2020; Liu et al., 2020; Scheid
et al., 2021). Because these approaches carry cell-level identifiers
(either a well or barcode) and allow consensus sequence re-
construction, they are less susceptible to the biases mentioned
above.

Several computational or experimental approaches have
tried to bridge the gap between these methods to increase the
throughput of paired chain sequencing. Computationally, T cell
studies have shown that it is possible to infer pairing from the
cooccurrence of heavy and light chains sequenced in split pools,
but the main caveat is that the method cannot detect rare re-
ceptors, which are unlikely to occur in multiple pools. Experi-
mentally, emulsion PCR strategies that directly join the light
and heavy chain into a single product (DeKosky et al., 2015;
Devulapally et al., 2018; McDaniel et al., 2016) and therefore
bypass the need for cell barcodes represent a promising approach

Figure 2. Antibody characterization through sequencing approaches. Left: Schematic of the locus (DNA), transcript (RNA with poly-A tail represented by
AAA), and resulting antibody (protein) for the heavy and light chain of a representative IgG1 antibody. Constant chain regions are depicted in blue, while
antibody-binding fragments are derived from V, D, and J segments (green, yellow, and red, respectively; additional nucleotides inserted during recombination
are not pictured). Note that the constant chain segment is separated from the V(D)J portion in the DNA and unspliced mRNA, but contiguous in the mature
mRNA. Right: Broad characterization of approaches used for BCR sequencing are shown here for mRNA capture. Bulk approaches focus primarily on the deep
sequencing of amplified heavy/light chain regions in an unpaired state. Paired-chain sequencing joins these products in a sequestered PCR reaction (e.g., in an
emulsion). Single-cell RNA sequencing relies on separate sequencing on heavy and light chains in the presence of a cell identifier (either a cell barcode in
emulsions or a well ID for plate-based approaches). Created with BioRender.com.
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for very high throughput paired repertoire sequencing, but at the
cost of additional transcriptomic information.

These platforms also offer the opportunity to directly eval-
uate the repertoire against an antigen of interest as opposed to
the total repertoire or to examine specific B cell subsets. This can
be accomplished with any analysis modality by simply sorting
the population to analyze with subset markers or labeled anti-
gens, but it is important to note that single-cell approaches can
leverage gene expression, barcoded antibodies, or barcoded
antigens (Setliff et al., 2019) to study multiple subsets or spe-
cificities in a single reaction and scale these analyses.

The at-scale assignment of specificities to an antibody se-
quence remains a key focus of efforts in the field, especially as
B cell epitopes are much less constrained that T cell peptides,
which must be linear and of a specific length to bind to MHC
molecules. While antibody production remains a gold standard,
frameworks focused on motif definition (Truck et al., 2021), or
leveraging general protein folding tools for antibody design
(Bennett et al., 2024, Preprint) are likely to transform this field in
the coming years. Importantly, multiple platforms have been
developed for the study of specificities present in the serum
through either the use of phage display (Bourgonje et al., 2023;
Larman et al., 2011; Xu et al., 2015), yeast display (Klein et al.,
2023; Wang et al., 2022), or using DNA-barcoded antigens
(Credle et al., 2022). These approaches do not generally enable
the identification of the antibody per se but will be a key re-
source for the identification of immunodominant antigens (from
self and non-self) in populations of interest, and these antigens
can be used to sort and profile relevant B cells and plasmablasts.
Specifically in the context of autoantibodies, phage-display ap-
proaches can define specific autoantigens andmotifs targeted by
antibodies, including, for example, reactivities that emerge be-
fore diagnosis (Bodansky et al., 2024; Vazquez et al., 2022;
Zamecnik et al., 2024). These highlighted multiple relevant
antigens such as BEST4 in the intestine, which can then be used
to identify and sequence the reactive B cells. At least theoreti-
cally, this could be performed at a large antigenic scale with
barcodes, although this will require the profiling of many more
cells than single-cell methods can currently accommodate.

Emergence of self-reactivity and autoantibodies
Antibodies against self-antigens, i.e., autoantibodies, are a hall-
mark of many autoimmune diseases of varied ontogeny. Their
role in disease, however, can vary broadly: some conditions are
characterized by specific pathogenic antibodies that perturb the
function of their target, for example, anti-desmoglein antibodies
in pemphigus (Ding et al., 1999), anti-ADAMTS13 antibodies in
thrombotic thrombocytopenic purpura (Tsai and Lian, 1998), or
anti-contactin-associated protein-like 2 antibodies in autoim-
mune neuromyotonia (Comperat et al., 2022). Autoantibodies
against a range of targets are hallmarks of systemic lupus ery-
thematosus (SLE) (Lazar and Kahlenberg, 2023) and rheumatoid
arthritis (RA) (van Delft and Huizinga, 2020), where the core
pathogenic event is assumed to be the deposition of immune
complexes, which can lead to tissue damage and disease pro-
gression. Multiple classes of autoantibodies recurrently occur
across different autoimmune diseases, including rheumatoid

factor, initially identified in RA, as a class of autoantibodies,
generally of the IgM isotype, that bind the Fc fragment of Ig
(Franklin et al., 1957). Similarly, antibodies against nuclear an-
tigens and citrullinated proteins commonly occur in systemic
autoimmune diseases (Suurmond and Diamond, 2015), and anti-
neutrophil cytoplasmic antibodies (ANCA) are commonly de-
tected in vasculitis and ulcerative colitis, where they can inform
diagnosis (Bosch et al., 2006).

This prevalence raises an important conceptual question re-
garding autoantibodies as an unavoidable problem or a func-
tional feature of the antibody repertoire: autoantibody precursor
sequences may be retained simply through imperfect tolerance
or to avoid excessively pruning the repertoire, some autoanti-
bodies may be directly beneficial in the clearance of debris and
apoptotic cells (discussed in Skevaki and Wesemann, 2023).
Interestingly, they can sometimes play immunomodulatory
roles by neutralizing cytokines, as evidenced by the protective
effect of anti-type I IFN antibodies in AutoImmune REgulator–
deficient subjects (Meyer et al., 2016), but the association of the
same autoantibodies with severe COVID-19 (Bastard et al.,
2020). This raises the possibility that anti-cytokine antibodies
durably modify an individual’s immune responsiveness to new
challenges.

Autoantibodies can emerge at two steps of the B cell re-
sponse: during B cell development, through recombination and
random nucleotide insertion, and during the GC reaction,
through somatic hypermutation. In the first scenario, onewould
expect to find an increase in the abundance of self-reactive
antibodies in the mature naı̈ve repertoire, while the second
process would be restricted to GC B cells, memory B cells, or
plasma cells and likely tied to the exposure to specific microbes
with some homology to host proteins. Broadly speaking, the
mechanisms that prevent self-reactive naı̈ve B cells from com-
pleting their development or participating in responses (dele-
tion or anergy) (Nemazee, 2017) remain better understood than
those involved in preventing the de novo emergence of self-
reactivity in the GC (Brink and Phan, 2018), and here, we will
primarily focus on the repertoire-level analysis of these pro-
cesses in different autoimmune diseases.

Developmental tolerance pathways in the bone marrow and
the periphery
Reactivity to self is common in newly rearranged BCRs
(Wardemann et al., 2003) and is associated with longer CDR3
regions and positively charged amino acid usage. These self-
reactive B cells are normally depleted from the mature B cell
pool at two independent checkpoints, one in the bone marrow
and one in the spleen. In the bonemarrow, up to 90% of the IgM+

immature B cells are depleted before reaching circulation (Loder
et al., 1999). This occurs either through apoptosis and clonal
deletion or by receptor editing (Gay et al., 1993; Prak and
Weigert, 1995; Tiegs et al., 1993), where a developing B cell
will re-express RAG to continue light chain recombination and
potentially produce a non-self-reactive BCR. Importantly, this
process can leave a distinct signature on the repertoire as it
favors the usage ofmore distal light chain V segments. Immature
B cells that pass this first checkpoint subsequentlymigrate to the
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spleen, where they become transitional B cells and undergo
further selection before 1–3% of the initial bone marrow pool
emerges as mature B cells (Loder et al., 1999). A fraction of these
cells, initially identified as IgM−IgD+, retain autoreactivity but is
anergic and hyporesponsive to further stimulation (Duty et al.,
2009). This anergy appears to depend on elevated phosphatase
and tensin homolog expression and follows a gradient (Smith
et al., 2019), potentially coupling increasing autoreactivity with
decreasing responsiveness without fully purging the repertoire
of these specificities.

The relative contribution of these different checkpoints and
mechanisms to tolerance in the näıve repertoire—and the
mechanisms involved in their failure in disease—remain diffi-
cult to fully assess in humans, but studies of the repertoire have
provided important insights. SLE is an autoimmune disease
characterized by the presence of autoreactive antibodies against
nuclear antigens, phospholipids, and other targets (Lazar and
Kahlenberg, 2023). The breadth of these antibodies has promp-
ted the investigation of defects in early central or peripheral
B cell tolerance, and studies of SLE have demonstrated that this
process is indeed defective in patients, leading to the retention of
25–50% self-reactive cells in these subjects, compared with
5–20% in healthy individuals (Yurasov et al., 2005, 2006), and
similar retention of cells with self-reactivity was described in RA
(Samuels et al., 2005). Whether this defect occurs in the bone
marrow or splenic checkpoint may depend on antigens, as the
presence of anti-HepG2 reactivity was not significantly different
in newly emigrant B cells from controls, but anti-cyclic citrulli-
nated peptides (CCP) were absent from this population in con-
trols, while they are found in disease. Overall, the evidence
suggests that at least some self-reactivities are enriched in
newly emigrant B cells in the context of autoimmune suscep-
tibility (Meffre and O’Connor, 2019), including in healthy sub-
jects carrying the PTPN22 R620W autoimmune risk variant
(Menard et al., 2011). In spite of this, repertoire-level evidence
for broadly impaired receptor editing in humans—a process
that would primarily occur in the marrow—appears less clear,
with some groups reporting increased (Dorner et al., 1998) or
decreased (Panigrahi et al., 2008) editing. The repertoires of
myasthenia gravis (MG) patients, where disease is driven by
autoantibodies against the acetylcholine receptor or muscle-
specific kinase, suggest diminished editing based on a lower
distance between the recombined V-J segments (Vander Heiden
et al., 2017).

Despite the overall reduction in self-reactivity at the splenic
checkpoint, many studies in animal models have shown that
low-level self-reactivity can be positively selected at this step
(Gaudin et al., 2004; Levine et al., 2000). A recent study of
humanized mice showed that this process occurs in human
B cells but is followed by a regulatory T cell– and MHC class
II–dependent negative selection process (Chen et al., 2022).
These subsequent positive–negative selection events in the
spleen may explain the fact that the repertoire does not seem to
follow a simple narrowing path from immature to transitional to
näıve cells (Martin et al., 2016). The involvement of T cells in
shaping the naı̈ve B cell repertoire is also supported by studies of
AIRE-deficient subjects, in which tolerogenic pathways in the

bone marrow appear functional, but autoreactive mature B cells
emerge as similar frequencies as in SLE or RA patients (Sng
et al., 2019). Type I IFN signaling also appears to be a potent
modulator of splenic selection in SLE, as it enhances the survival
of transitional cells and potentially enables the retention of more
autoreactive cells in the repertoire (Dieudonne et al., 2019; Liu
et al., 2019).

Regardless of the specific checkpoint, differences in devel-
opmental tolerance are expected to result in changes in the pre-
antigenic repertoire, which can be inferred from the study of
sequences that lack somatic hypermutation and are associated
with an IgM/IgD isotype. A joint study of multiple autoimmune
diseases reported broad differences in the pre-antigenic reper-
toire of early-disease SLE but also Crohn’s disease (CD), Behcet’s
disease, and eosinophilic granulomatosis with polyangiitis
(EGPA) in terms of IGHV usage, and these differences were by
comparison minor in ANCA or IgA vasculitis (Bashford-Rogers
et al., 2019). Many of these differences persisted in themutated/
switched repertoires, and indeed across many studies of gene
usage across B cells and diseases have reported shifts in V seg-
ment usage (reviewed in Bashford-Rogers et al., 2018; Foreman
et al., 2007). Importantly, many of the studies discussed here
assessed the repertoire in the absence of a comprehensive se-
quencing of the germline Ig loci, therefore some of the associ-
ations uncovered may be linked to disease-associated germline
configurations in addition to selection events.

Among these shifts in V usage, IGHV4-34 is a prototypical
example of changes in selection. This segment encodes anti-
bodies with natural self-reactivity that is dependent on a
framework region motif (Pascual et al., 1991), but also the ability
to bind commensal bacteria (Schickel et al., 2017). It is present in
the naı̈ve repertoire of healthy subjects but expanded in the
naı̈ve repertoire of SLE, EGPA, CD (Bashford-Rogers et al., 2019),
and MG (Vander Heiden et al., 2017) patients. Interestingly, this
segment is also frequently found in leukemic B cells (Xochelli
et al., 2017), which may be consistent with an increased tonic
signaling in cells that express this BCR. The expansion of this
family is therefore consistent with a defective elimination of
autoreactive B cells from the naı̈ve repertoire in multiple auto-
immune diseases.

Selection and diversification during B cell activation
As mentioned above, the Ig genes are modified in two critical
ways during B cell activation: somatic hypermutation and class-
switch recombination. Both processes are dependent on the
activity of AID (Muramatsu et al., 2000), and somatic hyper-
mutation is tied to the dedicated structure of the GC, where
B cells undergo rounds of mutation and competition for antigen
and T cell help, ultimately producing high-affinity antibodies
(Victora and Nussenzweig, 2022). While the high expression of
AID in GC cells has long suggested that class-switch recombi-
nation occurs in GCs, current evidence supports a model where
switching primarily occurs outside of the GC (Roco et al., 2019).
In addition to changes to the antibody’s specificity and function,
the outcome of the GC reaction will also establish B cell fate,
broadly speaking either to a memory B cell phenotype or to an
antibody-secreting plasma cell (Akkaya et al., 2020). While this
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is considered the canonical path of B cell activation and differ-
entiation, it is important to note that B cells can be activated
outside of GCs through extrafollicular responses (Elsner and
Shlomchik, 2020). These extrafollicular structures occur more
frequently in autoimmune diseases such as lupus and may
contribute to pathogenic antibodies through short-lived plasma
cells, while long-lived plasma cells derive primarily from GC-
matured B cells. Even though somatic hypermutation was long
considered a hallmark of the GC, there is evidence that it occurs
in extrafollicular responses (Schroder et al., 1996; Stott et al.,
1998), but studies of this pathway in humans still await more
confirmation through, for example, in situ repertoire studies.

Somatic hypermutation and self-pathogen mimicry
Somatic hypermutation presents a key challenge for the estab-
lishment of tolerance, as GCs must and indeed do actively pre-
vent the emergence of newly self-reactive cells (Chan et al.,
2012). This process can even lead to the “redemption” of pre-
viously self-reactive BCRs such as those derived from IGHV4-34
(Sabouri et al., 2014), but it is also clear, based on the evidence of
extensive hypermutation, that many autoantibodies derive from
a GC reaction and that this tolerance checkpoint can be bypassed
in disease (Brink, 2014; Brink and Phan, 2018). In the context of
repertoire sequencing, hypermutation is marked by the pres-
ence of related descendants of a naı̈ve B cell, enabling the re-
construction of lineage trees among B cells (Abdollahi et al.,
2023; Hoehn et al., 2016). Specific considerations are, how-
ever, important both because of the nature of clonal evolution
and of the fact that the root of the tree—i.e., the unmutated V(D)
J sequence—is partially known but contains both random nu-
cleotides and potentially uncharacterized genetic variation.
These approaches are particularly useful in the context of a
known specificity, for example, when looking at anti-citrullinated
protein antibodies in RA (Tan et al., 2014) or anti-desmoglein
antibodies in pemphigus (Qian et al., 2007). At the level of the
entire repertoire, it is interesting to note that the diseases
with the largest changes in gene usage in the naı̈ve repertoire
(SLE, EGPA, and CD) were also the ones with the largest clonal
expansion and clonal diversification (Bashford-Rogers et al.,
2019). Whether this is coincidental or reveals shared suscep-
tibilities in the splenic and the GC checkpoints remains to be
investigated.

One case where GCs may directly facilitate the emergence of
self-reactive antibodies is in the context of homology between a
pathogen-derived and a human protein, a phenomenon de-
scribed asmolecular mimicry (Rojas et al., 2018). For example, in
the case of multiple sclerosis, an autoimmune disease associ-
ated with Epstein-Barr virus infection (Ascherio et al., 2001;
Bjornevik et al., 2022), studies of the circulating and cerebro-
spinal repertoires identified monoclonal antibodies specific to
both the viral protein EBNA1 and the adhesion molecule Glial-
CAM (Lanz et al., 2022). The association between pemphigus
folaceus and leishmaniasis infections in endemic regions in
Brazil (Calonga-Solis et al., 2023) supports a similar mechanism,
where an antigen from the sand-fly vector has partial homology
to desmoglein (Qian et al., 2012). However, in some cases, the
association between the development of autoimmunity and a

pathogen could be explained simply by a relaxation of tolerance
checkpoints in the absence of direct homology, for example, in
the context of high interferon levels. This likely occurs in severe
viral infections such as COVID-19, where a broad range of au-
toantibodies have been identified (Credle et al., 2022; Klein
et al., 2023; Wang et al., 2021) and are unlikely to all repre-
sent homologies with viral proteins, although understanding
the extent of mutations and the longevity of these antibodies
will be important to clarify whether they derive from GC re-
actions or through enhanced extrafollicular responses during
severe inflammation.

Regulation of newly emerging self-reactive B cells
Aside from the case of mimicry, where maturation of pathogen
specificity and self specificity goes hand in hand, it is evident
that normally functioning GCs select against responses to au-
toantigens. In a particularly elegant study, Singh et al. (2020)
studied the development of pathogenic, cold-aggregating, auto-
antibodies against Ig and performed both V(D)J sequencing and
genomic sequencing of lymphoma-associated genes. They found
that mutations that occur in lymphoma and affect signaling (for
example, in CARD11, TNFAIP3, and KLHL6) precede pathogenic
V(D)J variation. This suggests that these pathogenic autoanti-
bodies can only emerge in the context of altered signaling that
enables the survival of the B cells expressing such receptors.
Besides B cell–intrinsic evolution, it is also clear that T cells play
an essential role in regulating the emergence of B cell self-
reactivity, as patients with T cell defects show a high level of
autoantibodies, for example, in patients with FOXP3 mutations
(Tsuda et al., 2010).

Follicular helper T cells (Tfh) in particular provide key sur-
vival and differentiation signals to GC B cells (Crotty, 2014) and,
much like for B cells, multiple central and peripheral tolerance
mechanisms are in place to prevent the activation of self-
reactive T cells (Xing and Hogquist, 2012). This suggests that
B cells diverting away from the acquisition of pathogen-derived
antigens will lose access to T cell help. There is also accumu-
lating evidence for a more direct suppression by follicular reg-
ulatory T cells (Tfr), initially discovered in human tonsils as
FoxP3 expressing cells with Tfh features (Lim et al., 2004) and
further characterized through murine studies (reviewed in
Stebegg et al., 2018). In humans, these cells appear to derive
from either regulatory T cells or Tfh cells (Le Coz et al., 2023),
with the former potentially being selected for self-reactivity. In
this case, acquisition and presentation of self-antigens by B cells
may directly mark them for suppression by Tfr cells, andmurine
studies indeed suggest that this is relevant to prevent the
emergence of antinuclear antibodies (Ke et al., 2023).

Class-switch recombination
Class-switch recombination is a deletional process that uses AID-
generated double-strand beaks to bring a more distal constant
chain in proximity to the recombined VDJ segments at the heavy
chain locus (Stavnezer et al., 2008). The selection of the isotype
appears to bemainly regulated by cytokines derived from helper
T cells and other immune cells (reviewed in Moens and Tangye,
2014), but rearrangements to IgG4 and IgE, seem more likely to
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occur through successive switching than via a direct switch
from IgM/IgD (Horns et al., 2016).

As their name indicates, IgG4-related diseases (Stone et al.,
2012), including pemphigus, are associated with pathogenic IgG4
antibodies. Interestingly however, the constant chain of IgG4 has
weak to negligible binding to both the complement molecule C1q
and the Fcγ receptor, suggesting that these antibodies are causing
disease solely through variable-region dependent mechanisms, for
example, desmoglein antibodies disrupting cadherin binding and
junctions in the skin. Interestingly, a switch to IgG4 is also ob-
served in recurrent activation, such as repeatedmRNA vaccination
(Irrgang et al., 2023), and may be a protective mechanism to limit
the inflammation generated by highly matured antibodies. IgA-
switched versions of common RA autoantibodies such as rheu-
matoid factor and anti-CCP also occur and may delineate more
severe disease forms (Sieghart et al., 2023; Svard et al., 2011) and
could be induced by interactions with specific microbes (Chriswell
et al., 2022). In addition to isotype switching, antibody constant
chains can be further modified by glycosylations that modulate
their function, and these change in multiple autoimmune con-
ditions (reviewed in Seeling et al., 2017; Zhou et al., 2021).

While these changes in isotype or glycosylation are key bio-
markers of disease, whether this represents a true disease-
inducing process remains unclear at this stage, as, for example,
increased IgG4 levels could be expected merely through the
presence of sustained GC reactions. Indeed, surveys of B cell
repertoires have reported changes in switches that would be
consistent with changes in the inflammatory environment
(Bashford-Rogers et al., 2019). It is interesting to note however
that the RA risk gene AFF3 has been mechanistically linked to
changes in class-switching in murine B cells, suggesting that
preferential switching can play a role in some autoimmune
diseases (Tsukumo et al., 2022).

Memory B cells, plasmablasts, and plasma cells
Antibody-secreting cells generated from the B cell pool can be
either short-lived plasmablasts, which primarily derive from pre-
GC B cells and provide rapid antibody production, or long-lived
plasma cells, which derive from post-GC B cells and establish in
the bone marrow niche or mucosal tissues (Nutt et al., 2015).

In the context of lupus, the short-lived plasmablast com-
partment that derives from extrafollicular responses has been
shown to contribute significantly to the secretion of autoanti-
bodies, including from unmutated IGHV4-34 clones (Jenks et al.,
2018, 2019; Tipton et al., 2015). This differentiation path appears
to depend on TLR7, thus linking the development of these cells to
a core SLE pathway. Interestingly, short-lived plasmablasts also
expand in acute viral infections such as COVID-19, where they
can cause autoimmune symptoms (Woodruff et al., 2022). This
short-lived pathway is directly relevant to therapeutics, as dis-
eases driven by a continuous generation of short-lived plasma
cells should be responsive to B cell depletion through rituximab
treatment, as is observed in pemphigus vulgaris (Ahmed et al.,
2006; Joly et al., 2007). By contrast, large-scale trials of ritux-
imab in SLE failed tomeet clinical endpoints (Merrill et al., 2010;
Rovin et al., 2012), suggesting a role for long-lived plasma cells in
this and other diseases. These extrafollicular responses also

appear associated with the emergence of so-called age-
associated B cells, a T-bet-expressing subset of antigen-
experienced B cells that is expanded in lupus and other
conditions (Jenks et al., 2018; Wang et al., 2018). Indeed a
recent study showed that these cells depend on the tran-
scription factor ZEB2, which represses GC fate (Dai et al.,
2024) in both mice and ZEB2 haploinsufficent patients.

As they are both generated through the GC reaction, switched
memory B cells and long-lived plasma cells represent distinct
functional states within the same lineage. Consistent with this
idea, Ig sequences from these two populations share similar
characteristics (Ghraichy et al., 2021), but the plasma cell rep-
ertoire appears much more focused, while memory B cells
maintain a large amount of sequence diversity. This is consistent
with the idea that long-lived plasma cells maintain circulating
levels of high-affinity antibodies that prevent reinfection while
memory B cells provide a diverse pool from which responses to
variants can be generated in the case of secondary infection with a
related pathogen (Akkaya et al., 2020). The study of autoreactive
long-lived plasma cells is, however, hampered by the limited ac-
cess to the bone marrow niche in patients. Nevertheless, the
presence of highly mutated self-reactive antibodies in disease is
likely associated with established long-lived plasma cells, which
would not be eliminated through rituximab therapy.

In addition to the bone marrow, antibody-secreting cells also
establish in the mucosa, especially for the local secretion of IgA,
and in inflamed tissues, such as the synovium in RA (Doorenspleet
et al., 2014; Elliott et al., 2020). The repertoire analysis of these
cells shows an expansion of several clones, including IGHV4-34
antibodies, with some sharing with circulating cells. These fea-
tures are reminiscent of the characteristics of the extrafollicular
response observed in SLE. In the intestine, studies of ulcerative
colitis have demonstrated an expansion of IgG-secreting cells
(Scheid et al., 2023; Uzzan et al., 2022). Inflammation was asso-
ciated with a reduced repertoire diversity and an increase in CDR3
length, although there was no evidence of marked polyreactivity.
Uzzan et al. (2022) identified an autoantibody specific for the
integrin αvβ6, althoughwe did not identify broad autoreactivity in
intestinal plasma cells of either healthy or ulcerative colitis sub-
jects, and most antibodies profiled appeared to bind to bacterial
antigens. While still limited, these studies of local plasma cell
compartments raise an interesting question about the role of
tertiary lymphoid tissues (TLO) in the emergence of autoanti-
bodies: while extrafollicular responses bypass the GC checkpoint
altogether, one could imagine that the tolerance checkpoint
enforced by TLO is weaker than in bona fide GCs. This would
be consistent with the emergence of local autoantibodies in
cancer-associated TLOs (Sharonov et al., 2020), but this as-
sociation could also simply derive from the fact that inflamma-
tion supports both the development of TLOs and the emergence
of autoantibodies.

Conclusions and future directions
Antibodies generated from recombined germline sequences en-
able the recognition of an almost unlimited set of antigens, and the
development of next-generation sequencing and single-cell ap-
proaches is now enabling the assessment of these repertoires at
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scale. Specifically in the context of autoimmunity, studies of
repertoires have demonstrated that multiple independent check-
points are involved in the prevention of self-recognition. This
occurs before antigen encounter in both the bone marrow and the
spleen, where the secondary process is at least partly enforced by
T cells, suggesting a complex interplay between B and T cell tol-
erance. Upon antigen exposure, at least two independent processes
prevent the production of autoantibodies by restricting extra-
follicular generation of self-reactive plasma cells and limiting the
emergence of de novo autoreactivity in the GC, a process that again
involves crosstalk with the T cell repertoire. These different
checkpoints are particularly relevant to therapeutic approaches, as
rituximab efficiently targets B cells and the replenishment of short-
lived plasma cells, but does not affect the long-lived plasma cell
compartment.

Importantly, much of our understanding of the mechanisms
that occur within the bone marrow or GCs is derived from an-
imal models where these compartments are readily accessible,
and repertoire studies of bone marrow samples, lymph node
aspirates, or tonsil organoids, among others, will be essential to
refine our knowledge of these processes in humans. With these
tools in place, deeper studies of the B cell repertoires across
different cell states, tissues, and diseases offer new opportuni-
ties to identify disease-modulating antibodies and to design
specific therapeutic approaches, as it is evident that distinct
autoimmune diseases represent failures of tolerance at different
checkpoints. Further technical and computational developments,
particularly to associate antibody sequences to specificity at a
larger scale, will also be essential to enable these studies and
refine our understanding of immune tolerance.
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N. Landegren, D. Eriksson, P. Bastard, S.Y. Zhang, et al. 2022. Auto-
antibody discovery across monogenic, acquired, and COVID-19-associ-
ated autoimmunity with scalable PhIP-seq. Elife. 11:e78550. https://doi
.org/10.7554/eLife.78550

Vettermann, C., and M.S. Schlissel. 2010. Allelic exclusion of immunoglob-
ulin genes: Models and mechanisms. Immunol. Rev. 237:22–42. https://
doi.org/10.1111/j.1600-065X.2010.00935.x

Victora, G.D., and M.C. Nussenzweig. 2022. Germinal centers. Annu. Rev.
Immunol. 40:413–442. https://doi.org/10.1146/annurev-immunol-120419
-022408

Wang, E.Y., Y. Dai, C.E. Rosen,M.M. Schmitt,M.X. Dong, E.M.N. Ferré, F. Liu,
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