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Quantumadvantage and stability to errors in
analogue quantum simulators

Rahul Trivedi 1,2,3 , Adrian Franco Rubio 1,2 & J. Ignacio Cirac 1,2

Several quantum hardware platforms, while being unable to perform fully
fault-tolerant quantum computation, can still be operated as analogue quan-
tum simulators for addressing many-body problems. However, due to the
presence of errors, it is not clear to what extent those devices can provide us
with an advantage with respect to classical computers. In this work, we make
progress on this problem for noisy analogue quantum simulators computing
physically relevant properties of many-body systems both in equilibrium and
undergoing dynamics. We first formulate a system-size independent notion of
stability against extensive errors, which we prove for Gaussian fermion mod-
els, as well as for a restricted class of spin systems. Remarkably, for the
Gaussian fermion models, our analysis shows the stability of critical models
which have long-range correlations. Furthermore, we analyze how this stability
may lead to a quantum advantage, for the problem of computing the ther-
modynamic limit of many-body models, in the presence of a constant error
rate and without any explicit error correction.

Quantum information processing systems hold the promise of
solving a number of problems in physics and computer science
faster than their classical counterparts1,2. However, most quantum
algorithms with theoretical performance guarantees require a
fault-tolerant quantum computer3–5. While in principle possible,
implementing a fault tolerant quantum computer is a technolo-
gical challenge that could still take a long time to solve. This has
motivated several investigations trying to identify both quantum
algorithms, as well as physically relevant computational pro-
blems, that can be addressed by quantum hardware in the near
term and without any explicit error correction.

Analog quantum simulators, wherein a target Hamiltonian is
mimicked by an experimentally controllable system, have shown
some promise in solving problems arising in many-body physics
in the near term6–8. A typical analog quantum simulator, while not
necessarily being able to perform an arbitrary computation,
would instead aim to approximately implement a relevant
spatially-local Hamiltonian, H. In several many-body problems, H
can additionally be taken to be translationally invariant. The
quantum simulator can then be used to prepare a physically

relevant quantum state ρH associated with the Hamiltonian H,
such as its ground state, Gibbs state or a state produced under
dynamics. In a typical quantum simulation experiment, we would
then measure the expectation value of an intensive observable O,
which is either often a local observable at a single site on the
lattice or a correlation function, i.e., a product of local obser-
vables at a few sites. Examples of such Hamiltonians and obser-
vables can be found in a variety of problems in physics—for e.g.,
in study of correlated electronic systems9–12, quantum spin
systems13–17 as well as lattice-gauge theories18,19. From a more
experimental standpoint, there have been several proposals to
implement quantum simulation of these models in different
hardware platforms, such as cold atoms in optical lattices, trap-
ped ion systems or superconducting qubits20–28.

Practically, quantum simulators offer several distinct advan-
tages in solving many-body problems as opposed to general
purpose quantum computers. First, quantum simulators aim to
solve only a much smaller and specialized set of problems, and
thus have much milder hardware requirements than a universal
quantum computer. Furthermore, quantum simulators are more
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naturally suited to many-body problems, since they avoid a
Hamiltonian-to-circuit mapping e.g., by trotterizing the evolution
into a quantum circuit, which typically incurs in a rapid pro-
liferation of errors7,8,29–31. Additionally, since the observables of
interest are typically local intensive observables, we expect them
to be somewhat more robust to errors even if the global quantum
state of the simulator is very sensitive. These expectations make
quantum simulators very promising in providing some advantage
with respect to classical computers when addressing typical
quantum many-body physics problems.

However, developing rigorous criteria to outline the quantum
advantage of a quantum simulator runs into several theoretical issues.
First, quantum simulators do not implement any error correction and
typically simulate many-body physics in the presence of noise. While
several previous works have theoretically outlined the computational
power of noiseless quantum simulators by developing the notion of a
universal quantum simulator32–34 and rigorously established the pos-
sibility of quantum advantage, the presence of experimentally realistic
noise has to be carefully accounted for in understanding their utility in
many-body problems. Second, since quantum simulators are usually
devoted to analyzing intensive observables, and inmany-body physics
we are typically interested in the thermodynamic limit of such obser-
vables, we need to revisit the usual notion of quantum advantage. In
particular, instead of characterizing the quantum and classical effort
required to compute the many-body observable as a function of the
system size, which is not meaningful in the thermodynamic limit, we
can characterize the effort required to compute the many-body
intensive observable within a user-specific precision of the thermo-
dynamic limit35,36.

In this work, we address both of these issues—we provide evi-
dence that many physically relevant critical and non-critical many-
body models are stable to errors in the quantum simulator. Impor-
tantly, even without error correction, we can use a quantum simulator
to determine the thermodynamic limits of intensive observables in
these problems to a hardware-limited precision. Furthermore, we also
propose a notion of quantum advantage, in the presence of errors, for
such problems, where the figure of merit is the computational time to
obtain an intensive quantity in the thermodynamic limit to a hardware-
limited precision. By providing explicit lower bounds on certifiable
classical algorithms for the many-body problems that we consider, we
provide evidence that quantum simulators can possibly provide
superpolynomial to exponential quantum advantage over rigorous
classical algorithms even without error correction.

Results
Setup
To keep our analysis general, we will consider quantum simulators for
solving both closed system (i.e., implementing a Hamiltonian) as well
as open system (i.e., implementing a Lindbladian) many-body pro-
blems. Suppose that the quantum simulator was trying to configure a
spatially local Lindbladian L on n spins given by

L=
X
α

Lα , ð1Þ

where Lα is a Lindbladian acting on spins within a local region Λα. For
translationally invariant problems, the superoperator Lα would addi-
tionally be independent of Λα, and for closed system problems, we can
assume Lα = � i½hα , �� for some operator hα supported on Λα. The
quantum simulator would, in general, suffer from coherent errors in
the configured Lindbladian as well as incoherent errors arising due to
its interaction with an external environment. As depicted in Fig. 1, to
account for these errors, we model the ‘implemented’ Lindbladian on
the quantum simulator by

L0ðtÞ=
X
Λ

L0
α � i½hSE,αðtÞ, ��,

� �
: ð2aÞ

Here L0
α � Lα is an error in the Lindbladian implemented on spins in

Λα—this can arise either from configuration errors in the Hamiltonian
and the jump operators corresponding to Lα , or from incoherent
errors that can be well approximated as Markovian. Furthermore, we
also consider the possibility of non-Markovian incoherent errors—
these are captured by hSE,α(t), which accounts for the interaction of the
spins in the region Λα with an external environment (in the interaction
picture with respect to the environment). For concreteness, we will
model the decohering environment as a Gaussian environment and
assume that

hSE,αðtÞ=
XnL

j = 1

Aj,αðtÞQy
j,α + h.c. , ð2bÞ

where Q1,α ,Q2,α . . .QnL ,α
are the jump operators, each supported on

Λα, through which the spins in Λα interact with a decohering environ-
ment, and A1,αðtÞ,A2,αðtÞ . . .AnL ,α

ðtÞ are annihilation operators for the
environment.We assume that ½Aj,αðtÞ,Ay

j0 ,α0 ðt0Þ�= δα,α0δj, j0Kj,αðt � t0Þ for
bosonic environments or fAj,αðtÞ,Ay

j0 ,α0 ðt0Þg= δα,α0δj, j0Kj,αðt � t0Þ for

Environment

Target Model  Quantum Simulator

Fig. 1 | Schematic depiction of our error model for analog quantum simulator.
A target Lindbladian L, expressed as sum of Lindbladian terms modeling interac-
tions betweengroupsof spins, when implementedon an analogquantumsimulator

would have anhardware error perqubit—this error can eitherbedue to an incorrect
configuration of the Lindbladian (i.e., implementing L0

α instead of Lα) or due to
interaction with an external decohering environment.
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fermionic environments and we choose the normalization of Qj,α such
that

R
RjKj,αðτÞjdτ = 1. The function Kj,α(τ) can be understood as the

memory kernel corresponding to the non-Markovian system-environ-
ment interaction. In particular and not unexpectedly, choosing
Kj,α(τ) = δ(τ) would yield a Markovian master equation for an environ-
ment initially in the vacuum state.

We introduce a parameter δ such that L0
α � Lα

�� ��
� ≤ δ (recall

that the diamond norm Sk k� of a superoperator S is the smallest
number s that satisfies SðρÞ�� ��

1 ≤ s for all ρwhich are possibly defined
on a system larger than the support of S) and kQj,αk≤

ffiffiffi
δ

p
—the

parameter δ can be considered to be the “hardware error rate” in the
quantum simulator. A well designed experimental setup can, in
principle, achieve δ≪ 1—however, since there are an extensive
number of errors in the simulator, we generically expect the state of
the simulator to be at a distance of δ × n from the target state. In the
worst case, this would imply that the results of the quantum simu-
lator can only be trusted when δ < o(1/n), and this would limit their
applicability to small-scale problems. Importantly, for applications
of quantum simulators to problems in many-body physics, this
would imply that noisy quantum simulators, in the worst case,
cannot be used to faithfully capture thermodynamic limits
(i.e., n → ∞).

An alternative viewpoint would be to ask if there are certain
interesting many-body problems for which a good estimate for the
thermodynamic limit can be produced with a hardware with constant
errors. This motivates us to look for ‘quantum simulation tasks’ which
are stable to these extensive errors, as made precise in the following
definition.

Definition 1. (Stable quantum simulation task). Consider the quantum
simulation task on n spins ofmeasuring an observableOwith Ok k≤ 1 in
a state ρL associated with a target Lindbladian L. This task is said to be
stable if the corresponding state ρ0

L prepared by the noisy simulator
satisfies

jTrðOρLÞ � TrðOρ0
LÞj≤ f ðδÞ,

for some continuous f of the hardware-error rate δ, independent of n,
such that f(δ) → 0 as δ → 0.

If a quantum simulation task is stable as per this definition, we
can hope to be able to estimate the thermodynamic limit of the
observable on a quantum simulator to a precision limited only by
the hardware error rate δ, and independent of the size of the pro-
blem. In particular, these problems would not require the hardware
error to be scaled down with system size even in the absence of
error correction, and it is reasonable to consider them to be pro-
blems that analog quantum simulators can conceivably solve in the
near term.

In the remainder of this section, we systematically study several
important problems arising in many-body physics, and show that
commonly considered intensive observables are expected to be stable
to errors. We first study geometrically local Gaussian fermion models
with Gaussian errors—these models, while being a restricted class of
many-body models, provide a setting where we are able establish
strong stability results. Furthermore, physically we expect the results
of these models to provide evidence of stability in more general
situations. For these models, we show that intensive observables
(either local observables, or translationally invariant sums of local
observables) are stable both for the problem of constant-time
dynamics and equilibrium without any restrictive assumptions on
the model—our results hold not only for gapped models, but also for
gapless models. Then, we examine the same question for (non-Gaus-
sian) many-body spin systems—here, we rely on, and in some cases
extend, stability results that show local observables are stable in
constant-time dynamics and in equilibrium, but with more restrictive Ta

b
le

1
|S

um
m
ar
y
o
f
th
e
st
ab

ili
ty

re
su

lt
s
fo
r
d
yn

am
ic
al

an
d
eq

ui
lib

ri
um

m
an

y-
b
o
d
y
p
ro
b
le
m
s,

to
g
et
h
er

w
it
h
th
e
re
q
ui
re
d
as

su
m
p
ti
o
n
s
o
n
th
e
m
an

y-
b
o
d
y
m
o
d
el

an
d
er
ro
rs

P
ro
b
le
m

Er
ro
r

A
ss
um

p
ti
o
n

O
b
se

rv
ab

le
S
ta
b
ili
ty
,f
(δ
)

D
yn

am
ic
s

G
en

er
al

er
ro
rs

G
F:

N
on

e.
G
F:

k-
lo
ca

lo
b
se

rv
ab

le
s.

G
F:

O
(δ
t)
.

S
S
:N

on
e.

S
S
:k

−
lo
ca

lo
b
se

rv
ab

le
s.

S
S
:O

(δ
td

+1
).
(E
st
ab

lis
he

d
in

re
f.
38

fo
r
M
ar
ko

vi
an

er
ro
rs
).

G
ro
un

d
st
at
e

C
oh

er
en

t
H
am

ilt
on

ia
n
er
ro
rs

G
F:

A
ss
um

p
tio

n
1.

G
F:

Tr
an

sl
at
io
na

lly
in
va

ri
an

t
k
−
lo
ca

l
ob

se
rv
ab

le
s.

G
F:

O
(δ

β
),
w
he

re
β
is
a
m
od

el
d
ep

en
d
en

tc
on

st
an

t.
(E
st
ab

lis
he

d
in

re
f.
37

fo
r
g
ap

p
ed

m
od

el
s)
.

S
S
:S

ta
b
le

g
ap

.
S
S
:L

oc
al

ob
se

rv
ab

le
s

S
S
:O

(δ
)(
Es

ta
b
lis
he

d
in

re
f.
54

).

G
ib
b
s
st
at
e

C
oh

er
en

t
H
am

ilt
on

ia
n
er
ro
rs

G
F:

N
o
as
su

m
p
tio

n.
G
F:

Tr
an

sl
at
io
na

lly
in
va

ri
an

t
k
−
lo
ca

l
ob

se
rv
ab

le
s.

G
F:

O
ð

ffiffiffi δ
p

Þ.

S
S
:S

ta
b
ly

ex
p
on

en
tia

lly
cl
us

te
re
d

co
rr
el
at
io
n
s.

S
S
:L

oc
al

ob
se

rv
ab

le
s.

S
S
:O

ðδ
lo
g
d
ð1=

δ
ÞÞ.

(E
st
ab

lis
he

d
in

re
f.
4
6
).

Fi
xe

d
p
o
in
ts

G
F:

C
oh

er
en

t
an

d
In
co

he
re
nt

M
ar
ko

vi
an

er
ro
rs
.

G
F:

A
ss
um

p
tio

n
2.

G
F:

Tr
an

sl
at
io
na

lly
in
va

ri
an

t
k
−
lo
ca

l
ob

se
rv
ab

le
s

G
F:

O
(δ

β
),
w
he

re
β
is
a
m
od

el
d
ep

en
d
en

t
co

ns
ta
nt
.

S
S
:G

en
er
al

er
ro
rs

S
S
:R

ap
id

M
ix
in
g
.

S
S
:L

oc
al

ob
se

rv
ab

le
s

S
S
:O

(δ
).
(E
st
ab

lis
he

d
in

re
f.
38

fo
r
M
ar
ko

vi
an

er
ro
rs
).

B
ot
h
re
su

lt
s
fo
r
G
au

ss
ia
n
fe
rm

io
ns

an
d
sp

in
sy
st
em

s
ar
e
su

m
m
ar
iz
ed

—
“G

F”
in
d
ic
at
es

G
au

ss
ia
n
fe
rm

io
ns

an
d
‘S
S
’
in
d
ic
at
es

sp
in

sy
st
em

s.
N
ot
e
th
at

ob
se

rv
ab

le
s
fo
r
th
e
G
au

ss
ia
n
fe
rm

io
ni
c
p
ro
b
le
m
s
ar
e
al
lq

ua
d
ra
tic

.

Article https://doi.org/10.1038/s41467-024-50750-x

Nature Communications |         (2024) 15:6507 3



assumptions on the system.Our results are summarized in Table 1, and
lend strong evidence for several many-body problems being amenable
to noisy quantum simulation.

Stability of Gaussian fermion models
We will consider fermions arranged on a d—dimensional lattice with L
sites in each directionZd

L , and at each site we have D fermionic modes
—we denote by cαx for x 2 Zd

L ,α 2 f1, 2 . . . 2Dg the Majorana operators
associated with each site x. We consider a general open quantum
simulation problem with geometrically local interactions with inter-
action range R. This is specified by a quadratic Hamiltonian H, and nL
linear jump operators Lj,x for every site x 2 Zd

L ,

H =
X

x, y 2 Zd
L

dðx, yÞ≤R

X2D
α,β= 1

hα, β
x, y c

α
x c

β
y , ð3aÞ

Lj, x =
X

y 2 Zd
L

dðx, yÞ≤R

X2D
α = 1

lαj;x, yc
α
y ,8 j 2 f1, 2 . . .nLg:

ð3bÞ

Without loss of generality, we can assume that jhα,β
x, y j≤ 1, jlαj;x, yj≤ 1 and

nL ≤ 2D(2R + 1)d.
For the results in this subsection,we restrict ourselves toGaussian

errors (coherent or incoherent) when this model is implemented on a
quantum simulator. Due to coherent hardware errors, the quantum
simulator instead implements a perturbed Gaussian fermion Hamil-
tonian H0,

H0 =
X

x, y 2 Zd
L

dðx, yÞ≤R

X2D
α,β = 1

h0α,β
x, y c

α
x c

β
y ,

ð4aÞ

such that jhα, β
x, y � h0α, β

x, y j≤ δ. Furthermore, due to errors in the config-
uration of the jump operators, or due to Markovian incoherent errors,
the quantum simulator implements perturbed jump operators L0j, x ,

L0j, x =
X

y 2 Zd
L

dðx, yÞ≤R

X2D
α = 1

l0αj;x, yc
α
y ,8 j 2 f1, 2 . . .nLg:

ð4bÞ

where again jlαj;x, y � l0αj;x, yj≤ δ. Furthermore, we also consider Gaussian
incoherent interactions with a decohering environment which, fol-
lowing the general setup described previously, is captured by a
Gaussian system-environment HSEðtÞ=

P
x2Zd

L
hx, SEðtÞ with

hx, SEðtÞ=
XnL

j = 1

Aj, xðtÞQy
j, x + h.c. : ð5aÞ

Here

Qj, x =
X

y 2 Zd
L

dðx, yÞ≤R

qαj, x;yc
α
y ,

ð5bÞ

with jqα
j, x;yj≤

ffiffiffi
δ

p
and Ax(t) is an annihilation operator in the fermionic

environment coupling to sites in the neighborhood of x. These anni-
hilation operators satisfy fAxðtÞ,Ay

x0 ðsÞg= δx, x0Kxðt � sÞ, where Kx(τ) is
the memory kernel describing the system-environment interaction
and is assumed to satisfy

R
RjKxðτÞjdτ ≤ 1.

Finite-time dynamics. We first consider the problem of evolving the
quantum simulator for time t and measure the expectation value of
Gaussian observablesO0 which are either k—local, i.e., they act on a set
S � Zd

L of k sites

O0 =
X
x, y2S

X2D
α,β= 1

oα, βx, y c
α
x c

β
y , ð6Þ

or weighted averages of k—local Gaussian observables i.e., are of the
form

PM
i = 1wiOi, whereOi is of the form Eq. (6),

PM
i= 1 jwij= 1 andM can

possibly grow with n =DLd. We consider an arbitrary Gaussian initial
state, and let the target state ρ be the state obtained by evolving it with
the target Lindbladian specified by Eq. 3 for time t. We show the fol-
lowing proposition in supplemental note IIA.

Proposition 1. The quantum simulation task of measuring k—local
Gaussian observables, or their weighted sums, after constant-time
dynamics under a spatially local Gaussian Hamiltonian is stable to
coherent and incoherent Gaussian errors modeled by Eqs. 4 and 5
with f(δ) =O(tδ).

We point out that the dependence of the error between the
observable in perturbed and unperturbed models on t is independent
of the dimensionality of the lattice d—this result is thus stronger than
what would be expected simply from locality, wherein the error would
be expected to grow as t × (Number of sites in the light cone at
time t) ∝ td+1—we revisit this in “Methods”.

Equilibrium. We next study the stability properties of intensive
observables in equilibrium. The observables for which we establish
stability results for equilibriumproperties aremore restrictive then the
observables studied in the problem of dynamics—in particular, we
assume that the observables are translationally invariant Gaussian
observables generated by averaging the observables in Eq. (6). More
specifically, ifO0 is a k—local Gaussianobservableof the formof Eq. (6),
then we consider observables of the form

O=
1
n

X
x2Zd

L

τxðO0Þ, ð7Þ

where τx(O0) is the observable O0 translated by x. Physically, such
observables correspond to intensive observables which are
obtained on averaging contributions different points on the lattice
e.g., the average number of fermions

P
x2Zd

L
ay
xax=L

d . Furthermore,
often in many-body physics, the equilibrium state of interest ρ is
itself translationally invariant i.e., τx(ρ) = ρ for all x 2 Zd

L . In this case,
the expected value of a k—local observable O0 coincides with the
expected value of the local observable O generated by O0 as per Eq.
(7) since

Tr ðρOÞ= 1
n

X
x2Zd

L

Tr ðρð0ÞτxðO0ÞÞ,

=
1
n

X
x2Zd

L

Trðτ�xðρÞðO0ÞÞ=Tr ðρO0Þ:

Consequently, for translationally invariant Hamiltonians, observables
of the form in Eq. (7) are not more restrictive than those considered in
dynamics (Eq. (6)).

For simplicity, we first consider the closed-system setting and
study the stability of the ground state and Gibbs state. Suppose that
the quantum simulator implements a target geometrically local
Hamiltonian (Eq. 3a), but due to the presence of coherent errors
instead configures a perturbed HamiltonianH0 (Eq. 4a). We emphasize
that we only consider the simpler coherent Hamiltonian errors while
studying the stability of ground state and Gibbs state, since these
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states can only be meaningfully defined for a closed system. Later in
this section, wewill study themore natural equilibriumproblem of the
‘Lindbladian fixed point’ where incoherent errors can also be accoun-
ted for. Furthermore, we make the following additional physically
reasonable assumption on the density of modes of the target Hamil-
tonian H.

Assumption 1. The number of eigenfrequencies nη of H, which are
eigenvalues of thematrix hα, β

x, y defining the target Hamiltonian, lying in
the interval [−η, η] for sufficiently small η satisfy the upper bound

nη ≤nf hðηÞ+ κðη,nÞ, ð8Þ

where n =DLd is the number of fermionic modes, fh(η) ≤O(ηα) as η → 0
for some α >0 and κ(η, n) is o(n) for any fixed η.

Alternatively stated, this assumption is a continuity condition on
the thermodynamic limit of the fraction of eigenmodes with energies
in the interval [−η,η] and it ensures that eigenvalues donot accumulate
too fast near zero—more precisely, it demands that limn!1nη=n is a
Hölder continuous function of η. It is expected to be true for most
physically relevant models—in particular, it is weaker than the exis-
tenceof a gap and thus contains gappedmodels, which arewell known
to exist for many experimentally relevant many-body problems. For a
gapped Gaussian fermionic model, fh(η) = 0 since, if there are fermio-
nic eigenmodes near 0, then adding a fermion into thesemodeswould
provide an excited state with only O(n−1) energy higher than the
ground state energy. Furthermore, we also expect this assumption to
be generically true for translationally invariant local Hamiltonians,
where the eigenfrequencies can be described by a smooth dispersion
relation ω(k) as a function of the momentum k associated with that

mode. In this case, fh(η) ≤O(ηα), with α being determined by the deri-
vatives of ω(k) in the vicinity of ω =0.

Considering the target state tobe the ground state of theGaussian
fermion Hamiltonian satisfying assumption 1, we then obtain the fol-
lowing proposition (proved in supplemental note IIB).

Proposition 2. The quantum simulation task of measuring transla-
tionally invariant Gaussian observables generated k—locally as descri-
bed by Eq. (7), in the ground state of a spatially local Gaussian fermion
Hamiltonian whose distribution of modes satisfies Eq. (8) is stable to
coherent Hamiltonian errors as modeled by Eq. 4a with
f ðδÞ=Oð

ffiffiffi
δ

p
Þ+ f hðOðδ1=4ÞÞ≤OðδβÞ for some model-dependent con-

stant β.
We re-emphasize that the stability result above holds with only a

mild continuity assumption on the density of modes of the model. In
addition to gapped Gaussian fermion models whose stability has been
previously shown37, it holds for models which are not gapped, i.e., the
energy separation between the ground state and the first excited state
vanishes as n → ∞. As an example, consider the ground state of the 1D
Su–Schrieffer–Heeger (SSH) model on n fermions with periodic
boundary condition:

HSSH½ J� �
Xn
i= 1

tia
y
i ai + 1 + H.c , ti =

1 i odd ,

J i even :

�
ð9Þ

where an+1 ≡ an. This model displays a (topological) phase transition at
J = 1, where the gap closes as 1/n, and is gapped otherwise. The
observable we consider is the energy density HSSH[ J]/n of the unper-
turbed Hamiltonian. Figure 2(a) shows impact of changing system size
on this energy density—we see that for both gapped (J = 0.5, 1.5) and
gapless ( J = 1.0) cases, the error in the energy density becomes

(b)

(c)

J = 0.5

J = 1.0

J = 1.5

(a)

Fig. 2 | Numerical studyof the impactof errors in theSSHmodel.Theobservable
that we study here is O = HSSH[ J]/n, where HSSH[ J] is the Hamiltonian of the ideal
SSH model (Eq. (9)) a The error in the expected value of the observable O in the
ground state between the perturbed and unperturbed Hamiltonians, as a function
of δ, the hardware error, and thenumber of sitesn. Forboth gapped (J =0.5, 1.5) and
gapless ( J = 1.0) cases, we see that the error in O becomes independent of n as

N → ∞. b Numerically extracted error between the perturbed and unperturbed
models for n → ∞ as a function of δ, and its fit with δ2. c The error between the
perturbedandunperturbedmodel as a functionof J—for the samehardware error δ,
this error peaks at J = 1 which is also the point at which the gap in the unperturbed
model closes. All the errors are computed by averaging over 500 random instances
of perturbed models.
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independent of n as n → ∞, verifying the expectation in proposition 2.
Furthermore, we show the error in the energy density for large n as a
function of δ in Fig. 2(b) and see that, consistent with proposition 2,
this error →0 as δ→0. Finally, Fig. 2(c) shows this error as a function of
J—we see the error peak near J = 1 (i.e., the point where the gap in the
Hamiltonian closes), and that it is smaller for values of J where the
model is gapped.

The translational invariance of the observables considered here is
key to the stability result—translationally varying observables need not
be stable, even if they are intensive and local. A simple example here is
Anderson localization—consider H to be a 1D translationally invariant
tight-binding model i.e., H =

Pn�1
i= 1 ðay

i+ 1ai +a
y
i ai + 1Þ, with errorsPn

i = 1 δia
y
i ai where vi is chosen uniformly at random between [−δ, δ].

The ground state of H is completely delocalized across the spin-chain.
In the presence of errors, no matter how small, this model is known to
be localized. Now, for every δ1, δ2…δn, consider the intensive obser-
vable Oδ1 , δ2 ...δn

given by the average particle numbers on Θ(1/δ) sites
around the site where the ground state is localized. This observable,
when measured in the delocalized ground state of the unperturbed
Hamiltonian H, yields an expected value of 0 as n → ∞. On the other
hand, in the ground state of the perturbed localized model it will yield
an expected value of Θ(1). Thus, not all translationally varying obser-
vables can be stable, even if we restrict ourselves to Gaussian fermion
models, with the observables being intensive and spatially local.

Next, we consider the Gibb’s state, e−βH/Tr(e−βH) where the inverse-
temperature β is a constant independent of n and again study the
stability of translationally invariant Gaussian observables that are
generated k—locally. We show the following proposition in supple-
mental note IIC.

Proposition 3. The quantum simulation task of measuring transla-
tionally invariant Gaussian observables generated k—locally as descri-
bed by Eq. (7), in the Gibbs state at inverse-temperature β of a spatially
local Gaussian fermion Hamiltonian is stable to coherent Hamiltonian
errors as modeled by Eq. 4a with f ðδÞ=Oðβ

ffiffiffi
δ

p
Þ.

We point out that, in contrast to the corresponding result for
ground states, this stability result corresponding to the Gibbs state
does not rely on an assumption on the density of modes of the target
Hamiltonian. However, f(δ) grows with β, so this result does not
directly imply the stability of the ground state since βwould in general
have to be increased with n for the Gibbs state to approximate the
ground state. However, for models with a gap above the ground state,
as well as only very few low-energy eigenstates, at sufficiently low
temperatures (i.e., high β), stability of the Gibb’s state is essentially the
stability of the ground state—in this case, the bound from proposition
2 should be applicable and would yield f(δ) independent of β.

In themore general setting of aMarkovian open quantum system,
the fixed point of the master equation would capture its equilibrium
properties. Here, the quantum simulator is configured to implement
the Hamiltonian and jump operators in Eq. 3 but instead, due to
coherent andMarkovian incoherent errors, implements the perturbed
Hamiltonian and jump operators in Eq. 4. Similar to the case of the
Hamiltonian ground state problem, we make an assumption on the
spectral properties of the target Lindbladian—in particular, similar to
assumption 1, we assume (Hölder) continuity of the fraction of modes
with decay rates in the interval [0, η],

Assumption2. (Informal). TheGaussianLindbladianhas a uniquefixed
point and the number of eigenmodes nη with decay rates lying in the
interval 0,ηð �, for sufficiently small η, satisfies the upper bound

nη ≤nf‘ðηÞ+ κðη,nÞ, ð10Þ

where n =DLd is the number of fermionic modes, fℓ(η) ≤O(ηα) as η → 0
for some α > 0 and κ(η, n) ≤ o(n) for any fixed η.

We provide a precise definition of eigenmode decay rate of a
Gaussian Lindbladian in supplemental note IID. We remark that this
assumption is very mild and is expected to be satisfied for physically
relevant models—in particular, similar to the case of Gaussian Hamil-
tonians, this assumption is satisfied for translationally invariant mod-
els. Furthermore, this assumption is expected to be satisfied for
Gaussian fermion models that are rapidly mixing in which case all the
modes other than the fixed point mode typically have a system size
independent decay rate (i.e., there is a gap in the decay rate spectrum
of the Lindbladian)38. Beyond rapidlymixing Lindbladians, assumption
2 includes systems which have eigenmodes with decay rates scaling as
O(1/n) (i.e., the Lindbladian decay rate spectrum is gapless), and take a
much longer time (~Θ(n)) to reach its fixed point. Formodels satisfying
assumption 2, we show the following proposition in supplemental
note IIA.

Proposition 4. The quantum simulation task of measuring transla-
tionally invariant Gaussian observables generated k—locally as descri-
bed by Eq. (7), in the fixed point of a spatially local Gaussian fermion
Lindbladian whose distribution of modes satisfies Eq. (10) is stable to
coherent andMarkovian incoherent errors asmodeledbyEqs. (4a) and
(4b) with f(δ) =O(δ1/2) + O(fℓ(δ1/4)) ≤O(δβ) for some model-dependent
constant β.

Quantum spin systems
While for Gaussian fermion models, we could prove tight stability
results withminimal assumptions on themodel, looser stability results
hold for quantum spin systems undermore restrictive assumptions on
their many-body spectrum. Here, we consider more general spin sys-
tems and show the stability of several quantum simulation tasks, in
both dynamics and equilibrium, using locality results that have already
been established in the many-body literature39–46.

Finite time dynamics. Consider first the setting where an initial state
ρð0Þ= ð∣0i 0h ∣Þ�n is evolved under a Lindbladian L (Eq. (1)) for a time t
that is independent of n. Since geometrically local Lindbladians are
expected to have a finite velocity of correlation propagation, obser-
vables at time t should only be impacted by qubits which are within an
~ t distance of their support and thus not be impacted errors on all the
qubits. Thismotivates us to consider observablesO that are supported
on n—independent number of qubits—more specifically, we consider
observables that are either local (i.e., act non-trivially on an n—inde-
pendent subset of spins), or of the form

O=O1O2 . . .Ok , ð11aÞ

where O1, O2…Ok are local and k is independent of n, or

O=
XM
i= 1

wiOi, ð11bÞ

where
PM

i= 1jwij= 1,Oi are of the formof Eq. 11 andM can possibly grow
with n. For these observables, the stability of this quantum simulation
task can be stated:

Proposition 5. The quantum simulation task of measuring k − local
observables, or their weighted averages, for constant-time dynamics
under a spatially local Lindbladian is stable under coherent and inco-
herent errors with f(δ) =O(td+1δ).

The proof of this result, provided in supplemental note IIIA uses
the Lieb-Robinson bounds39,40,43. We note that a similar result has been
proven for coherent errors andMarkovian incoherent errors in ref. 38.
Our contribution is to show that this bound holds in the more general
setting of coherent and non-Markovian incoherent errors, and thus is
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more directly applicable to experimentally realistic quantum
simulators.

Note also that for large t, the error between the target observable
and the observablemeasured on the quantum simulator grows as td+1—
this result can be interpreted by noting that for a geometrically local
model ind-dimensions, the number of qubits within the light-cone of a
local observable at time t is ~t d—since any error in a qubit within the
light cone and at any time t could lead to an error in the local obser-
vable, we obtain a worst-case bound scaling as ~td+1 in the observable
value. Furthermore, this is looser than the corresponding result
in Gaussian fermion models (proposition 1), where the error grows
only as t.

Equilibrium. We next study the stability of the task of simulating the
ground state and Gibbs states of H, and focus only on understanding
the impact of coherent Hamiltonian errors. This problem has been
previously extensively investigated in many-body physics41,45,46, and in
this section we cross-examine these results from the perspective of
analog quantum simulation. We assume that H is gapped i.e., the
energy difference between the ground state and the first excited state
is larger than a constant Δ independent of n. Furthermore, we also
assume that the Hamiltonian remains gapped in the presence of errors
—werefer to sucha targetHamiltonianH to be stably gapped.Wepoint
out that the stability of the gap in the presence of errors or pertur-
bations has only been shown for certain frustration free models with
local topological order47–50 and is not true for all gapped models49,51–53,
butweposit it as a reasonablephysical assumption. The stability of this
quantum simulation task is a direct consequence of the spectral flow
methoddeveloped byHastings et al.41,45 which shows that there exists a
unitary taking the ground state of H to the ground state of H0 that is
quasi-local. We thus obtain the following proposition and we include a
proof of this in supplemental note IIIB.

Proposition 6. (From refs. 41,54). The quantum simulation task of
measuring k-local observables or their weighted averages (Eq. 11), in
the ground state of stably gapped spatially local Hamiltonians is stable
to coherent Hamiltonian errors with f(δ) =O(δ).

The choice of observables here is crucial to having a stable
quantum simulation task—it is well understood that even for stably
gapped Hamiltonians, non-local observables would not be stable.
Furthermore, we point out that for the case of Gaussian Fermions and
for translationally invariant local observables, our stability result
(proposition 2) is less restrictive—in particular, it does not require even
the existence of a gap in the target Hamiltonian.

We next consider the Gibbs state of H at some temperature β
independent of n, and assume that the Gibbs state has an exponential
clustering of correlation46 i.e., for any two observables A, B separated
by distance l,

∣hA� Bi � hAihBi∣≤ Ak k Bk kOðe�c2lÞ,

for somemodel-dependent constant c2. Furthermore, as in the case of
ground states, we assume that this exponential clustering of correla-
tions is stable under errors. In this case, we obtain that the problem of
measuring 1—local observables and theirweighted averages is stable—a
proof of this is included in supplemental note IIIC.

Proposition 7. (From ref. 46). The quantum simulation task of mea-
suring local observables or their weighted averages, as given by Eq. 11
with k = 1, in the Gibbs state of spatially local Hamiltonians with stable
exponential clustering of correlations is stable to coherent Hamilto-
nian errors with f ðδÞ=Oðδlogdð1=δÞÞ.

More generally, we can consider the problem of finding local
observables in the fixed points of spatially local Lindbladians. For this,
we restrict ourselves to rapidly mixing Lindbladians which were

identified in ref. 38—a Lindbladian L on n spins with fixed point σ is
rapidly mixing if eLt � Trð�Þσ

�� ��
� ≤poly ðnÞe�ΘðtÞ i.e., irrespective of the

initial state, the state of the system converges exponentially fast to the
fixed point σ. Under this assumption, we can show the following sta-
bility result.

Proposition 8. The quantum simulation task of measuring k-local
observables, or their weighted averages, in the fixed point of spatially
local Lindbladians which satisfy rapid mixing is stable to coherent and
incoherent errors with f(δ) =O(δ).

The proof of this proposition, presented in supplemental
note IIID, builds on the analysis in ref. 38—in particular, we point out
that ref. 38 already establishes that local observables in fixed points of
spatially local rapidly mixing Lindbladians is stable to coherent errors
and incoherentMarkovian noise. Our key contribution is to extend this
to the more general and experimentally realistic setting of non-
Markovian noise.

Quantum advantage without noise
In the absence of any noise, the advantage of a quantum algorithm
over a classical algorithm is often formulated in terms of their run-time
scalingwith respect to the system size. However, inmany-bodyphysics
problems, the quantities of interest are the value of certain intensive
observables in the thermodynamic limit i.e., when the system size
n → ∞. Consequently, it is less meaningful to consider the algorithm’s
complexity as a function of system size and instead consider it as a
function of the target precision ε demanded in the computed ther-
modynamic limit35,36. Apart from being theoretically meaningful,
expressing run-times in terms of precision might additionally be
practically relevant in scenarios where we are trying to calculate either
phase transition points53,55 or critical exponents characterizing a phase
transition, both of which are typical calculations of interest in many-
body physics. More precisely, let us consider a many-body model
defined as a family of Lindbladians fLngn2N and observables fOngn2N,
where Ln,On act on n—spins. We are interested in the expected value
of On in a many body quantum state, e.g., in equilibrium or dynamics,
associated with the Lindbladian Ln,ρLn

. We furthermore assume that
the models and observables under consideration have a well-defined
thermodynamic limit i.e.,

O* := lim
n!1

Tr ðρLn
OnÞ ð12Þ

exists. Now, given a precision ε, it is reasonable to assume that we can
then choose n as a function of ε such that

jO* � TrðOnρLn
Þj ≤ ε, ð13Þ

i.e., approximate the thermodynamic limit by a finite-size problem
(note however, one can artificially construct models where this may
not be strictly possible53). The run-time of a quantum simulation or a
classical simulation for thefinite-size problemcan thus be expressed in
terms of the precision ε demanded in the thermodynamic limit. This
allows us to then compare the scalings of the run-time of these
algorithms with the precision ε, and declare an algorithm to have an
advantage in precision compared to others depending on their
respective scaling. For instance, if a quantum algorithm has a
complexity TQ = poly(1/ε), then we will have a superpolynomial
advantage over a classical algorithm with complexity
Tcl = expðlog2ð1=εÞÞ and exponential advantage over a classical algo-
rithm with complexity Tcl = expðOð1=εÞÞ.

Finite-time quantum dynamics. We consider first an initial product
state ∣0i�n, and for t > 0, we take ρLn

= eLnt ð∣0i 0h ∣Þ�n� �
. The observable

of interest is a fixed local observable On = O. The existence of the
thermodynamic limit is obtained directly using the Lieb-Robinson
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bounds39,40, which also characterize the error between the thermo-
dynamic limit and its finite-size approximation—for the problem of
computing a local observable after evolving ∣0i�n for finite-time twith
respect to a d—dimensional spatially-local Hamiltonian, O* exists and
fulfills Eq. (13) for n=Ωðlogdð1=εÞ+ tdÞ. On an ideal quantum simulator,
one would evolve n=Θðlogdð1=εÞ+ tdÞ qubits for a time t and measure
theobservable. Theprocedurewouldbe repeatedΘ(1/ε2) to reduce the
measurement error in the observable to ε, yielding a total run-time
of O(t/ε2).

On a classical computer, in general, the only algorithms with a
rigorous guarantee known for the problem of computing local
observables for a finite number of spins n are either exact diag-
onalization or Krylov subspace methods56. Using either of these
methods has a worst-case run-time that scales at least exponentially
with the number of spins n. To compute the thermodynamic limit to a
precision ε, we would first approximate the thermodynamic limit by a
finite-size problem and then use these classical algorithms on the
resulting finite-size problem. In supplemental note IVA (proposition 1),
we exhibit a local observable in a simple nearest-neighbor tight-bind-
ing model on Zd such that the system size needed to approximate its
thermodynamic limit to a precision ε, for a fixed t, is at least
ΩðlogdðΘðε�1ÞÞ=logd logðΘðε�1ÞÞÞ. Thus, exact diagonalizationor Krylov
subspace methods scale at least super polynomially with ε−1 on worst-
case instances, yielding a super polynomial advantage of using quan-
tum simulators.

Wenote that there are several classical heuristic algorithms,which
use an efficiently contractable tensor network ansatz, that in many
problems are much faster than the worst case57,58. However, these
methods do not have rigorous guarantees—since, when noiseless, the
quantum simulation of dynamics is not a heuristic, we only compare it
to classical algorithmswith rigorous guarantees.We alsopoint out that
one could also use other classical methods that operate directly in the
thermodynamic limit instead of analyzing a finite-size
approximation59,60. For instance, in ref. 59 a method based on cluster
expansion was analyzed for which the computational time is upper
bounded by poly(ε−1), although this upper bound scales super-
exponentially with time. To the best of our knowledge, providing a
lower bound on this classical algorithm is an open problem. However,
assuming that it has the same scaling with t as the upper bound pro-
vided in ref. 59, a quantum simulatorwill have anexponential quantum
advantage with respect to thismethod for evolution times t ~ poly(ε−1).

Ground state. Consider next the problem of estimating local obser-
vables in the ground state of many-body Hamiltonians in the ther-
modynamic limit. The convergence rate of a finite-size approximation
of a local observable to its thermodynamic limit for the ground state
problem is expected to depend on whether the model is gapped (and
hence the ground state has exponentially decaying correlations42,61) or
gapless.While it is generally hard to rigorously characterize the rate of
convergenceof afinite-size approximation to the thermodynamic limit
for ground states, it is physically reasonable to assume either Loga-
rithmic Convergence, where Eq. (13) holds for n=Ωðlogdð1=εÞÞ with d
being the lattice dimension, or Power-Law Convergencewhere Eq. (13)
holds for n =Ω(poly(ε−1)). The first case is expected to hold for gapped
models, and can be rigorously established for models satisfying local
topological quantum order condition47,49,50. Additionally, for gapped
models, Logarithmic Convergence is expected to be tight sincewe can
easily construct examples of spatially local gappedHamiltonians (such
as the AKLTmodel62), for which a system-size of at leastΩðlogdðε�1ÞÞ is
needed to approximate the thermodynamic limit of a local observable
to a precision ε (see supplemental note IVB, proposition 2). Power-Law
Convergence is expected to hold for critical (gapless) models—for
instance, this is the case for the Gaussian fermionic Hamiltonians
analyzed in the previous section, under very general conditions for the
Fermi surface. Similar to the situation with dynamics, currently

available classical algorithms with rigorous guarantees to compute a
ground state observable use either exact diagonalization or a Krylov
subspace method on the finite-size Hamiltonian approximating the
thermodynamic limit. Thus, for models satisfying the Logarithmic
Convergence condition, a classical computer would require time
expðΩðlogdðε�1ÞÞÞ in the worst case. Instead, for models satisfying the
Power-LawConvergence condition, a classical computer is expected to
require time expðΩðpoly ðε�1ÞÞÞ.

Furthermore, to ensure that there is a quantum algorithm that
reaches the ground state we will assume that Hn is adiabatically con-
nected to a family of Hamiltonians Hð0Þ

n with efficiently preparable
ground states such that the minimal gap, Δn, along the adiabatic path
fulfills Δn≥Ω(1/poly(n)). This assumption ensures that using the adia-
batic algorithm one can reach the ground state within an error ε in a
timeTQ = poly(n, 1/ε), orTQ = poly(1/ε) if framed entirely in termsof the
precision of the thermodynamic limit and is expected to hold for
physically relevant gapped or gapless models. Moreoever, for a con-
stant gap, and with certain further assumptions on the frustration of
the Hamiltonian, it is provably possible to reach the ground state in
TQ =polylogðn, 1=εÞ63. Comparing this run-time with those of the clas-
sical algorithms discussed above, we then expect a superpolynomial
quantum advantage for (gapped) models satisfying Logarithmic Con-
vergence to the thermodynamic limit, and (gapless) models satisfying
Power-Law Convergence to the thermodynamic limit.

Fixed points. Similar to ground states ofmany-body Hamiltonians, we
can consider the problem of computing local observables in the fixed
points of many-body Lindbladians. Depending on the spectral prop-
erties of the Lindbladian, a local observable in the fixed point may
exhibit Logarithmicor Power-LawConvergence to the thermodynamic
limit. In particular, for rapidly mixing Lindbladians, it has been shown
in ref. 38 that local observables in the fixed point exhibit a logarithmic
convergence to the thermodynamic limit. Additionally, this con-
vergence is tight i.e., we can exhibit a specific rapidly mixing Lind-
bladian for which a system-size of at least Ωðlogdðε�1ÞÞ is needed to
approximate the thermodynamic limit of a local observable to a pre-
cision ε (see supplemental note IIIC, proposition 3). Furthermore,
Lindbladians which are not rapidlymixing but take time polynomial in
the system size to reach their fixed points would have local obser-
vables satisfying Power-Law Convergence. Examples of such Lind-
bladians would be those corresponding to Glauber dynamics
corresponding to the 2D critical Ising model64.

As with the ground state problem, Krylov subspace or exact
methods, which have a rigorous guarantee, would require a worst-case
time expðΩðlogdðε�1ÞÞÞ for models with logarithmic convergence and
expðΩðpoly ðε�1ÞÞÞ for models with power-law convergence. Further-
more, under the physically-motivated assumption that Lindbladian
dynamics, for a finite systemwith system-size n, reaches its fixed point
in at most poly(n) time, an ideal quantum simulator that implements
this Lindbladian would require a time O(poly(1/ε)) to approximate the
thermodynamic limit of local observable to a precision ε. Thus, we
expect to obtain a superpolynomial quantum advantage for problems
with logarithmic convergence, and exponential quantum advantage
for problems with power-law convergence.

Quantum advantage with noise
In the presence of errors, the arguments formulated in the previous
subsection no longer hold. For unstable quantum simulation tasks, we
expect thermodynamic limits in the presence of errors to be a bad
approximation to the target thermodynamic limit. However, for stable
quantum simulation tasks in particular, the noisy quantum simulator
can still produce a faithful approximation of the thermodynamic limit
with the hardware error δ setting a limit on the obtained precision.
More precisely and as depicted in Fig. 3, in time polyð1=ε0Þ, the quan-
tum simulator is expected to compute the thermodynamic limit of the
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noisy model to a precision ε0—the precision of the target thermo-
dynamic limit obtained is thus upper bounded by

ε≤Oðmaxðε0, f ðδÞÞÞ,

where f(δ) is given in Definition 1. Therefore, in the presence of hard-
ware errors, the quantum simulator need not be run beyond a time
needed to obtain ε0 = f ðδÞ, and we can expect to compute the target
thermodynamic limit to a precision of O(f(δ)). As summarized in
Table 1, we typically obtain f(δ) = O(δα) for α > 0 for most stable many-
body simulation tasks, and thus to be able to obtain the thermo-
dynamic limit to a precision of O(poly(δ)), determined entirely by the
hardware error δ, in quantum-simulation time O(poly(1/δ)).

A numerical illustration of this analysis is shown in Fig. 4—here, we
use the adiabatic quantum algorithm to find the energy density
observable in the ground state of the critical SSH model (i.e., Eq. (9)
with J = 1). Figure 4a shows the convergence of the energy density
observable, in the absence of errors, to its thermodynamic limit—we
see that a power-law convergence is obtained, as physically expected
for gapless models. In Fig. 4b, we use a system-size that yields a pre-
cision ofO(f(δ)), as determined by the stability bounds on the ground-
state of this model, and simulate an adiabatic algorithm to find the
ground state in the presence of hardware error. We see that, in the
presence of errors, the accuracy in the achieved precision is funda-
mentally limited by the hardware precision δ—Fig. 4 shows the run-
time of the adiabatic algorithm as a function of this hardware-limited
precision.We see that this run-time scales polynomiallywith 1/ε, where
ε is the hardware-limited precision that is achieved by the adiabatic
algorithm.

To define a notion of advantage in the presence of noise, we can
now compare the classical and quantum run-times needed to achieve
this hardware-limited precision. Assuming f(δ) = poly(δ), it follows
from the discussion in the previous subsection that we would need
classical run-times that are either superpolynomial or exponential in
poly(1/δ) to achieve the precision that can be achieved by quantum
simulators in time poly(1/δ). That is, if δ is decreased by a constant
factor, then the run-time of the quantum simulator will only increase
at-most polynomially with this factor, while the run-time of the clas-
sical simulator will increase by a super-polynomial or exponential
factor.We summarize our expectation of noisy quantumadvantage for
the quantum simulation task of finding local observables in dynamics,
ground states and fixed points in the Table 2.

We emphasize the following two points regarding Table 2. First,
the “provable" quantum advantage for dynamics, stably gapped
ground states with logarithmic convergence, and fixed points of
rapidly mixing Lindbladians is only with respect to Krylov subspace
methods or exact methods, which are the only known classical algo-
rithms with rigorous guarantees known for these models. To the best
of our knowledge, it remains an open problem to provide a universal
lower bound on any possible classical algorithm or even connect a
possible quantumadvantage for the specificmany-bodyproblems that
we consider to well-known complexity assumptions. Second, we only
conjecture the quantum advantage for critical models (both ground
states and fixed points)—our conjecture is based on the novel stability
results that we provide for Gaussian fermion models and under the
expectation that thesemodels could capture the qualitative physics of
more complex non-Gaussian models, even though Gaussian fermion
models on their own can be solved efficiently on classical computers.

Discussion
We have considered both the stability and quantum advantage of
using near-term analog quantum simulators for thermodynamic
limits of many-body problems in physics. Based on both existing
theoretical results in many-body literature, and new technical
results for Gaussian fermion models, we argue that many physically
relevant many-body problems are stable to a constant rate of error
on the quantum hardware being used to solve them and thus are
accessible in near-term experiments. We also hypothesize that
these algorithms have an advantage, with respect to the obtained
precision, in computing thermodynamic limits of many-body pro-
blems. Our formulation and results provides some evidence for
near-term analog quantum simulators being useful for solving
many-body problems.

Extending the stability results for gapless/critical models to
the case of quantum spins, or non-Gaussian fermionic systems is

Fig. 4 | Numerical study of quantum adiabatic algorithm in the presence
of error. We consider using the adiabatic algorithm to find the energy density
observable for the critical SSH model in the thermodynamic limit (TL).
a Convergence of the energy density to the thermodynamic limit as n → ∞—the
scaling of ε with n reveals a power-law scaling that is expected for gapless models.
b The adiabatic algorithm in the presence of hardware errors—the quantity being
plotted is the error of the noisy adiabatic algorithm from the thermodynamic limit

of the noiseless model. The precision achieved by the adiabatic algorithm is fun-
damentally limited by hardware errors. c The final precision (ε) achieved by an
adiabatic algorithm in the presence of errors as a function of the adiabatic algo-
rithmrun-time, confirming thatT ~ poly(1/ε) as expected fromour analysis. Thus, on
decreasing the hardware error, the error achievable by the noisy quantum simu-
lator decreases and the run-time of the quantum algorithm increases at most
polynomially.
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Fig. 3 | Precision and run-time attained by noisy quantum simulators. An
erroneous quantum simulator can obtain the thermodynamic limit of the per-
turbed model to a precision ε0 in time poly ð1=ε0Þ—this thermodynamic limit,
however, can have an error f(δ) from the target thermodynamic limit in the pre-
sence of hardware error δ.
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an immediate open problem suggested by our work. While pre-
vious work by Hastings41 indicates that, under some assumption
on the density of states of the many-body model, such a stability
result could hold for gapless spin systems, it would be interesting
to see if restricting observables to being translationally invariant
could help improve these results. Similarly, understanding the
stability of Lindbladian dynamics and fixed point problems for
quantum spin systems or non-Gaussian fermionic systems beyond
the rapid mixing assumption and under both Markovian and non-
Markovian errors would also be important directions. This has
been under investigation recently in the context of defining
stable phases of matter65,66.

Methods
Here, we provide the key ideas behind the proofs of the theoretical
results presented in results section. Detailed proofs building upon the
ideas presented in this section can be found in the supplement.

To prove the stability results for the Gaussian fermion pro-
blems, we utilize the fact that both equilibrium and dynamical
properties of Gaussian fermion models can be captured by just the
covariance matrix of the state at hand—more specifically, for a time-
dependent Gaussian state ρ(t), the corresponding covariance
matrix is given by

ðΓðtÞÞα,βx, y =
1
2
Tr cαx , c

β
y

h i
ρðtÞ

� �
,

and its dynamics, for the quantum simulator model with gaussian
errors and noise sources described in results section, is derived in
lemma 3 in supplemental note II. The stability result for dynamics
(proposition 1) is obtained from an application of rigorous time-
dependent perturbation theory on the effective equations of motion
for the covariance matrix.

For analyzing stability of equilibrium states, as described in the
results section (propositions 2–4), we consider only translationally
invariant observables (Eq. (7)). Suppose ρ0 and ρδ respectively denote
the noiseless and noisy equilibriumGaussian states, then in lemma6of
supplemental note II we establish the following bound on the error in
the expected translationally invariant observable O

jTrðOρÞ � Tr ðOρδÞj≤
4D2k
n

eO0

			 						 			 Γ� Γδ
		 				 		

1,
ð14Þ

where Γ and Γδ are the covariance matrices corresponding to ρ and ρδ
respectively, O0 is a k—local observable defined in Eq. (7) and ~O0 is a
2n × 2n matrix with matrix elements oα, βx, y such that

O0 =
X

x, y2Zd
L

X2D

α,β= 1
oα,βx, y c

α
x c

β
y :

We remark that the bound in Eq. (14) is obtained by explicitly utilizing
the translational invariance of O and hence its block-diagonality in the
momentum basis. Without translational invariance, the best bound on
∣Tr(Oρ) −Tr(Oρδ)∣wouldbe jj~O0jjjjΓ� Γδ jj1, which for k,D ≤O(1) would
asymptotically be much worse than the bound in Eq. (14). Building on
Eq. (14), in supplemental note II, we then show that jjΓ� Γδ jj1 ≤OðnδαÞ,
for some α > 0, for all the considered equilibrium problems (ground
state, Gibb’s state, fixed points).

The proofs of stability results for spin systems (propositions 5–8)
provided in supplemental note III builds on the quasi-locality results in
refs. 39–46. Proofs of propositions 5 and 8 build upon38 and addi-
tionally consider non-Markovian perturbation to the dynamics. The
key technical ingredient to handle non-Markovian perturbations is the
input-output equations for the environmentwhichare commonly used
in quantum optics67. The input–output formalism allows us to effec-
tively locally bound the effect of non-Markovian perturbations on the
dynamics of the quantum simulator, and together with Lieb-Robinson
bounds43 allow us to prove propositions 5 and 8. The proofs of pro-
positions 6 and 7 are only minor modifications of the quasi-locality
results in ref. 45 and ref. 46 respectively.

Code availability
The code used for generating numerical results in this paper is publicly
available68.
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